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ABSTRACT. - The linear stability of shock waves in a radiating relativistic
gas is analyzed. According to the ratio between the sound speed and gas
speed behind and ahead the front of discontinuity, the radiative shocks are
classified as slow and fast shock waves respectively. With the help of the
technique of dissipative energy integrals, it is proved that the fast shock
waves are stable. An ill-posedness example for stability problem for slow
shocks is constructed.

Key words: Relativistic radiation hydrodynamics, variable Eddington factor, stability of
shoch waves.

RESUME. - Nous analysons la stabilite lineaire des ondes de choc dans
un gaz relativiste radiatif. Les chocs radiatifs sont classifies comme chocs
lents et rapides selon le rapport entre la vitesse du son et la vitesse du gaz à
1’ arriere et a l’avant du front de discontinuite. A l’aide de la technique des
integrales d’énergie dissipative on demontre que les ondes de choc rapides
sont stables. On construit aussi un exemple mal pose pour le probleme de
la stabilite des chocs lents.

Annales de l’Institut Henri Poincaré - Physique théorique - 0246-0211 1
Vol. 67/97/02J~ 7.00/© Gauthier-Villars



146 A. M. BLOKHIN, V. ROMANO AND Yu. L. TRAKHININ

1. INTRODUCTION

Radiation represents the more efficient mechanism for dissipative effects
occuring in many problems of relativistic astrophysics and cosmology.

Radiation can be well described by means of kinetic theory [ 1 ] . but

such an approach is a formidable task even for numerical simulations.

We shall follow a macroscopic description in the framework of radiation
hydrodynamics [2]: radiation is considered as a dissipative fluid which

obeys the usual balance law of continuum mechanics. We will adopt the
mathematical model for radiation by Anile-Pennisi-Sammartino [3], [4]
(hereafter APS), which is based on a generalization to the relativistic
case of the variable Eddington factor given by Levermore [5]. The APM
model is formulated in the framework of the Extended-Thermodynamics
of irreversible processes [6], [7] and leads to equations of hyperbolic type
(for other theories which give rise to nonlinear parabolic equations see

Refs 8, 9).
As well-known, the solutions of hyperbolic systems can develope

discontinuities in a finite time [10], [11] (shock waves, contact

discontinuities, rarefaction waves). In particular, shock waves in radiating
gases are of great importance in models of gravitational collapse, supernova
explosions, formation of quark-gluon plasma.

Stability of relativistic shock waves in simple fluids was investigated
by several authors (see Ref. 12 and references therein). We will follow
the method previously adopted in [13], [14], [15] for relativistic simple
gas, magnetofluid dynamics and superfluid. It consists in the application of
the so-called technique of dissipative energy integrals to the investigation
of the well-posedness of mixed linear problems (Cauchy and boundary
value problem). If the mixed problem for the pertubation of the basic shock
solution is well-posed, then the shock wave is stable; othewise, it is unstable.
We classify the shock waves as fast and slow ones. It is proved that fast

radiative shocks are stable while for the slow ones a ill-posed problem is
constructed. This imples in turn the instabilility of the second type solutions.
One of the most important stages of our approach is the symmetrization

of initial quasilinear equations which describe the motion of radiating gas
in order to apply, with suitable developments, the theory of mixed problems
for symmetric i-hyperbolic systems (by Friedrichs).
The problem of stability of strong discontinuities in continuum mechanics

has recently assumed a special importance in view of the wide application
of computational methods to find approximate solutions to the problems
of continuum mechanics with strong discontinuities (e.g. see ref. 16 for

Annales de l’Institut Henri Poincaré - Physique théorique
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a recent numerical code in radiation hydrodynamics). Clearly, a positive
answer on the question of stability of discontinuities in a given model is an
essential preliminary step for the application of computational methods.
The paper is organized as follows. In section 2 we set forth the complete

system of Radiation Hydrodynamics equations and in sections 3 the problem
of their symmetrization is discussed. In section 4 the problem of shock wave
stability is presented. Section 5 is devoted to prove the well-posedness of
the mixed problem for fast shock waves. The case of slow shocks is

investigated in section 6, where the fulfilment of the Lopatinsky conditions
is discussed and an ill-posed problem is presented.
We shall use units such that c = ~ = 1, with c being the speed of

light in the vacuum. Repeated indeces are to consider summed and in

local coordinates the Greek indices run from 0 to 3 and Latin ones from

1 to 3, except where stated otherwise. Moreover the simbol * indicates

transposition for matrix.

2. THE COMPLETE SYSTEM OF RADIATION

HYDRODYNAMICS EQUATIONS

The relativistic radiation hydrodynamics equations of motion are

represented by the continuity equation and the balance equations for the
energy momentum-tensor of matter and radiation,

where is the energy momentum tensor of matter and that of

radiation. B7 P is the covariant derivative with respect to the metric g pv
of the space-time, uP is the four-velocity of an observer comoving with
the fluid.

In usual problems in which radiation is important the main dissipative
processes occur due to the transport of photons, therefore we neglect
viscosity and heat conduction of gas. In general matter and radiation behave
like two distinct fluids whose interaction is expressed through the source
terms f". In thermodynamics equilibrium radiation becomes thermalized
and it is completely determined by means of the local temperature of the
gas (black-body radiation).

VoL 67. n° 2-1997.
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With respect to the normalized four-velocity the energy-momentum
tensors can be decomposed as

e and p are the total energy density and pressure of gas. By writing
e = with eo the. specific internal energy and p the density
measured in the frame determined by uJ-L and by introducing the specific
entropy s and the absolute temperature T of the gas, one can relate eo, p
and p by means of an equation of state according to the Gibbs relation

on the basis of kinetic theory or statistical mechanics. For the moment we
do not restrict ourselves to a particular equation of state.

J, HJ1 and KJ11/ are the radiative energy, density, flux and shear tensor.
They satisfy

For thermalized radiation the expression of J is obtained by the

distribution of Planck

where B is the black-body energy density and cr the Stefan-Boltzmann
constant.

In order to close the system ( 1 )-(3) one has to specify a relation between
J, 77~ and KlLv (closure problem), by taking into account

If the radiation field is isotropic, is given by the classical Eddington
approximation

where h 03BD = + u u03BD is the projection tensor orthogonal to uu.
Levermore [5] in the case of static medium has obtained on the basis of

kinematic considerations a variable Eddington factor,

Annales de l’lnstitut Henri Poincaré - Physique theorique
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where 03C61 = 1 - cp, CP2 == ?’ cP 
= 03C6(03BB2)=2-4- 3À- A- == .

We observe that the physical range of values for A is 0  A~ « 1, the

limiting case being isotropic radiation and free streaming respectively.

Lately APS [2], [3] have cast the previous closure in covariant form
and showed that it can be derived by means of the entropy principle as
formulated in the framework of extended thermodynamics [6], [7].

The source terms in (2)-(3), which model the interaction matter-radiation,
are the moments of the collision kernel of the transport equation for photons.
Except Thomson scattering, in general it is not possible to express them
as explicit functions of J, 7~ and KJLV [17], [18]. We will adopt a
phenomenological description by means of a sort of mean absorption ~,

We note that by using the continuity equation, the balance equation and the
Gibbs relation, the following additional consevation law holds

The fluid flow, in contrast with a simple ideal gas, is not adiabatic on account
of the dissipative effects of radiation. The presence of the additional relation
(5) will play an important role in the next section for the symmetrization
of balance equations for matter.

Since the thickness of the shock is almost always negligible compared
with the characteristic length for which curvature is relevant, we will work
in Minkowski space-time A4. Only for special problems in very early
universe we expect the inclusion of curvature effects to change significantly
the results.

Let (~.~) be local coordinates in A4. Then

and the four-velocity of the fluid has components

where r = ( 1 - V2)-1/2 is the Lorentz factor, with v2 = 

Vol. 67, n’ 2-1997.
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Explicitly eqs (1)-(3) now read

with h = 1 + eo + p/ p the relativistic hentalpy.
If the state equation is in the form

in view of (4) we can write

and consider system (6)-(10) in the unknown variables vector

where

3. SYMMETRIZATION OF BALANCE EQUATION

Our aim is to investigate the stability of shock waves arising from the
system ( 1 )-(3) by applying the energy method. One of the most fruitfull way

Annales de rlnstitut Henri Poincaré - Physique theoriquz
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to employ that method is to rewrite the balance equations in a symmetric
form. We recall that a system of the type

is said symmetric if 80 and Bi are symmetric matrices. Further if 80
is positive definite then the system is said symmetric t-hyperbolic by
Friedrichs. We shall symmetrize the balance equation for matter and

radiation saparately with different methods.

3.1. Symmetrization of the balance equations for medium

Since for gas the additional law

holds we can use the procedure suggested in Refs 19, 20, 21, 22, 23. The
basic ideas are the following.

If

is a system of balance equations such that the supplementary relation

is satisfied by each solution of (11), then a new set of dependent variables
Q = ..., qn) can be introduced by means of the relation

with - standard scalar product in R3. Setting

the system (2) can be rewritten in a symmetrical form as

where

with aQ = £qiqj and 
67, n ‘ 2-1997.
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The calculation can be simplified by introducing the matrices and
&#x3E; with the aid of the relations [13], [14], [15]

where

Then

In the present case we find the following canonical variables

and productive function

It is easy to verify in the particular case u2 = u3 = 0 (which will be
considered in the following, even if the same result holds in general) that
2014~4~&#x3E;0if the following inequalities take place

where

Annales de rlnstitut Henri Poincaré - Physique theorique
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It is easy to show that, as in classical Gas Dynamics, inequalities ( 12) are
fulfilled if the state equation eo = eo ( p, s) satisfies the following inequalities
which express causality (sound speed smaller than the velocity of light)
and convessity of the relativistic free entalpy:

Note (see Ref. 15) that system (2) can be rewritten as

where in the particular case u2 = U 3 = 0

F = -7*F. It is easy to see that the matrices

are symmetric and B(°) &#x3E; 0 &#x3E; 0 and inequalities ( 13) fulfilled.
Consequently system (14) is also symmetric t-hyperbolic (by Friedrichs).

VoL67,n° 2-1997.
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3.2. Symmetrization of radiation equation
In this subsection we discuss the topic of symmetrization of radiation

equations (3). With this purpose we adopt the same idea used in refs 3,4
and based on the procedure of extended thermodynamics [6]. We want to
impose the entropy principle on system (3), i.e. we assume that there are
functions 4l" = 4l" (W), g = g (W ) and canonic variables (or Lagrange
Multipliers ) r 0: = r 0: (W") such that the relation

holds for every smooth solution of system (1)-(3). Here

We define the productive functions L, Mt~&#x3E; , k = 1, 2, 3:

By using the theorem of representation formulas for tensor-valued isotropic
function [24], we seek the productive functions in the form

where

Annales de l’Institut Henri Poincaré - Physique théorique
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From (15) derive

To compare expressions (15) with expressions (3), we introduce the

representation for HO:

where Co, d are related by

and satisfy the conditions

Substituting the expressions (16) into (3) and comparing the obtained
expression with (15), one has

actually, the last expression is an identity (for the given expression of Co
and c.p). Using relation (16)2 and (17)i 2, we have the differential equation
for unknown function £:

67. n 2- 1997.
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its solution is

Since

we have that

wherefrom

, ’ .

By means of the previous relations, we obtain

Consequently system (3) can be rewritten in the canonic form

Here

Anrtales de l’Institzst Henri Poincare - Physique théorique
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Considering the case

we have

where

It is easy to verify that in the particular case U2 = ~c3 = 0, 7~ = 0,
k = 1; 2. 3 the matrix &#x3E; 0, i. e., system (17) is symmetric t-hyperbolic
(by Friedrichs).

Moreover, we have for system (6)-(10) the entropy relation

which holds for every smooth solution of system (6)-( 10).

VoL 67, n 2-1997.
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4. SHOCK WAVES IN RELATIVISTIC RADIATION

HYDRODYNAMICS: THE STABILITY PROBLEM

A shock wave is an oriented hypersurface £ in space-time, across which
the field variables suffer a jump discontinuity, i. e. the tensor fields governing
the motion are regularly discontinuous [12].
We will be deal with shocks between two equilibrium states. In such a

case radiation is completely thermalized and radiative stress-energy tensor
is, then, given in the smoothness regions by

The mathematical properties of shocks for relativistic radiating gas were
discussed in Ref. 25, where it was proved that under the assumption ( 13) on
the equation of state the jump conditions admit a unique solution satisfying
the entropy inequality. Moreover, it was shown that the ipersurface E is

space-like. Therefore, if ~ is described by the equation

we can introduce the unitary space-like four vector

and the conditions

must hold on E for the system ( 1 )-(3) where for every regularly
discontinuous function f is [ f] = f- - f+, the subscripts +, - denote
the value of the function ahead and behind the shock front, respectively.
We assume the undisturbed shock to be stationary. Then, one can choose
the local coordinates (t. adapted to the shock front. In particular, the
local chart can be taken such that the equation ~ 1 = 0 represents locally the
hypersuface ~. The shock wave will be given by a step-wise function with
different constant value for for each t in the two region x~  0 and x &#x3E; 0.

We will investigate the stability of the solution under small disturbances
(linear stability).

Annales de l’Institut Henri Poincare - Physique théorique
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The indisturbed state has the following form:
when x1  0:

when x1 &#x3E; 0:

We assume that at x~ = 0 conditions (20)-(21) hold on the discontinuity
surface

Vo!.67,B° 2-1997.
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and require the fulfilment of the

necessary conditions:

Let us consider a small pertubation of the previous solution and denote
by the matrices and Arad
for U = U and so on. Let us linearize the system (14)-(18) around the
indisturbed state. In order to simplify the notation we indicate again the
pertubation of the matter and radiative variables with the vectors U and W.
The stability is investigated by studying the well-posedness of the

following mixed problem with moving boundary conditions.

MAIN PROBLEM I. - To find piece-wise smooth solution which satisfies

the boundary conditions:

Annales de I ’Institut Henri Poincaré - Physique théorique
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for t &#x3E; 0 and x’ E R2 , x 1 = 0; and the initial data

for t = 0.

Here xl = F(t, x’) is a small displacement of the discontinuity front,

By performing the following change of coordinates, which is regular for

sufficiently small values of F (t, x’ ),

we reduce the problem to a problem with fixed boundary conditions.

Necessary conditions for the stability of shock waves are the geometrical
Lax conditions (see Ref. 10 for a review), which assure that the problem is

VoL 67, n° 2-1997.
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well formulated with respect to the number of boundary conditions. Shock
solutions satisfying the Lax conditions are said evolutionary.
We observe that the matrix

where

values:

has the following eigen-

and if VI &#x3E; cs, then A~ &#x3E; 0, j = 1, 5; if VI  cs, then ÀI,2,3,4 &#x3E; 0, ~~  0.

The matrix has the following eigen-values:

and &#x3E; 0, ~2  0 if 3(vl)2  1, and ~1,2,3,4 &#x3E; 0 if 3(vl)? &#x3E; 1.

Therefore, one has evolutionary shocks when

or when

We call the last two type of discontinuous solutions as fast and slow shock
waves respectively. In the next sections the stability properties will be

studied for both the type of evolutionary shocks.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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We observe that fast shocks can occour only in very special situations,
as in early universe, because it is required that the sound speed of gas is
greater than that of radiation. An example can be a barotropic fluid with
equation of state e with = 1 (stiff matter), considered in several
cosmologial models.
The slow shock waves include almost all the cases of interest for radiative

phenomena in astrophysics or laboratory experiments.

5. WELL-POSEDNESS OF STABILITY

PROBLEM FOR FAST SHOCKS

By virtue of the first inequality from (37), the matrix has

five positive eigen-values, and the matrix has four positive
eigenvalues. Consequently system (32), (33) does not need the boundary
conditions for xl = 0 and its solutions in this case is completely determined
by initial data for x1  0. Without loss of generality we presume that
W(t, x) - 0 for x1  0 (see also Refs 13, 14).
We can turn the stability problem for fast shock waves into the proof of

the well-posedness of the following problem.

MAIN PROBLEM II. - We seek a solution to the system of equations (30),
(31) which satisfies the boundary conditions

for t &#x3E; 0 and x’ E 1~2 ~ x 1 = 0 and the initial data

for t = 0. The coefficients d, A, v are described above.

Vol. 67, n° 2-1997.
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As in Gas Dynamics (see Ref. 14), we can derive the following boundary
condition 0 for Main problem II

where

with po = r/3, p 1 = Cs j52 = 03B22 = c2s - (A1)2 while the

coefficients ak, k = 1, 2, 3 can be determined from boundary conditions
(41 ), (42).
We will obtain the so-called a priori estimation without loss ofsmoothness

for Main problem II. This allows us, by using standard techniques (see for
example Ref. 27), to prove the well-posedness of Main Problem II and in
turn to achieve the fast shock waves stability in Radiation Hydrodynamics.
The basic idea used is to consider besides the eqs (30)-(31 ) also another

problem with dissipative boundary condition at xl = 0. By taking a suitable
linear combination of the two systems we obtain an expanded system which
has also dissipative boundary conditions. This allows us to get the desidered
a priori estimate for Main problem II. The construction process of the

expanded system consists of two stages. Firstly from the system

we construct the following symmetric t-hyperbolic (by Friedrichs) system:

Here

Annales de l’lnstitut Henri Poincaré - Physique theorique
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Q is the square matrix such that

= diag(h x A, E(ho x Aa)), a = 0, 3, ~p = diag(IsxO,E(I1oxO)) are
block-diagonal matrices, I5 x Aa is the Kronecker product of the matrices
~5 and AD:, ~5 is the unit matrix of order 5 etc.; E is a positive constant.

Writing the energy integral in differential form for the symmetric
system (45) and integrating it over the domain R~, we obtain

where

etc. In order to deduce eq. (46), we have assumed Vp to be square integrable
in ~. Therefore when or 
Estimating the second and the third term in equality (46) with the help

of boundary conditions (41), (42) and system (14), we obtain the inequality

where Ml . M2 &#x3E; 0 are constants;

From boundary conditions (42) and system (30) (31 ) at Xl = 0 we deduce

Vol. 67. n° 2-1997.
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where /3i~, ~0.1.2 are constants. Using the inequality [29] that

and the property of the trace of a function in on the plane z~ = 0
(see Ref. 29), we transform inequality (47) to the following form:

where Mi, M2 &#x3E; 0 are constants.

Now we proceed to the second more complicated stage consisting in the
construction of the expanded system. Since VI  c~ we observe that P
satisfies the wave equation

with

Then the vector

satisfies the symmetric system [13]

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where ~1~2 13 are some constants, and E &#x3E; 0 if 1 + l2 + l3 ;

We rewrite boundary conditions (44) in the form:

where

The constants a, a2 are derived from the system

Solving this system, we choose, for example, the number a as follows:

In general, the number a is complex (if ~ 2014 4mn &#x3E; 0, then a is real).
Therefore, the function L P is a complex function and the vector

is a complex vector which satisfies a symmetric t-hyperbolic (by Friedrichs)
system:

where Ep, Qp, R2p, R3p are block-diagonal matrices of order 20,
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We choose

.... n " I I ,

a5 is an arbitrary positive number. Thanks to this choice, we obtain

where kij, i = 1,4, j = 2, 3, k5, M3,4 are positive constants; El &#x3E; 0 is
a constant such that

We write out the energy integral in the differential form for system (50):

Here Dp = It is easy to verify that Dp &#x3E; 0. We integrate
equality (52) over the domain R+ assuming again that IVpl is square
integrable in R+ and therefore 1-+0 whether or x ~ ~ 3 ~ -~ x . As
a result, in view of (50), with the help of the property of function trace
from W.; (R§ ) on the plane ~ 1 = 0, we obtain the following inequality:

Annales de l’lnstitut Henri Poincaré - Physique theorique
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where

-B[5 = M4) &#x3E; 0, M6 &#x3E; 0 are constants dependent on 61.
Adding inequality (49) to inequality (53) and considering that under an

appropriate choice of the constant E the quadratic form

is positive definite, we obtain the inequality:

where J2 (t) = Jo(t) + M7 &#x3E; 0 is a constant. The last inequality
implies the desired a priori estimation for Main problem II:

Thus, from (54) we conclude that the estimation

holds for Main problem II. Here M8  oo is a positive constant dependent
on T.

Note that for the function F(t, x’) the estimation

may be obtained (Mg  oo is a positive constant dependent on T).
From estimations (54), (55) it follows (see 27) that Main problem II is

well-posed for m, n &#x3E; 0 and this implies the fast shock waves are stable.

6. INSTABILITY OF SLOW SHOCK WAVES

Now the slow shocks will be studied.

By virtue of (39), the matrix has five positive eigen-values,
and the matrix (W~ ) has three positive eigen-values and one negative
eigen-value. At the same time, as a consequence of (40), the matrix B1(U)
has four positive eigen-values and the matrix has three positive

Vol. 67, n 2-1997.
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eigen-values, i. e. , at x 1 = 0 it is necessary to set up eight boundary
conditions for systems (30), (31 ) and (32), (33) plus a condition to determine
the function F(t, x’).
The study of stability for slow radiative shock corresponds to the analysis

of the well-posedness of Main Problem I under the conditions (39)-(40).
Applying the same technique to the case of slow shock waves, omitting
details, we conclude that if the inequality.

holds, then the boundary conditions of the corresponding expanded system
are dissipative. However, by virtue of (39), (40) it is not difficult to see

that condition (56) is not fulfilled. Indeed, we shall show, by following the
Ref. 30, that it is possible to construct ill-posed examples of Hadamard-type
for slow shock waves, that is a sequence of solutions of the form

where the matrices A and Aoo and the constants P, v 00, ~~ will be
described below and the constants ci will not be all zero and determined

by the boundary conditions.
In order to simplify the calculations we rewrite system (2)-(3) as

where

, ,

Annales de l’Institut Henri Poincaré - Physique théorique
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Qrad are quadratic matrices and Dmat, Drad are rectangular matrices
such that

Applying the Fourier-Laplace transform to the Main Problem I, we obtain
the following boundary value problem for the system of ordinary differential
equations:

Here

Vo!.67,n° 2-1997.
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While applying the Fourier-Laplace transform, we assume that V(t. x) = 0
for t  0.

Annales de l’Institut Henri Poincaré - Physique théorique
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Let

Then

Further let n » 1. We can expand the values yy, ~, ~2,3, the elements
of matrices etc. as a power series in the small parameter n because the
element of the matrices M, M~ are analytic functions:

etc. Then we have:

where

Vol. 67, n° 2-1997.
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for 7~ = = 0 (it is also not difficult to write out the matrix A for
this case and for the case when T/2 + ç2 -f- cv2 = 0 or 77~ + ç2 -~ c,v3 = 0). Here

ReB &#x3E; 0 and the eigen-values of the matrix Q lie strictly in the left

semi-plane (ReAj(Q)  0).
The explicit form of the matrices Qo, Ao and the parameter Bo are

not relevant. We report only that ReBo &#x3E; 0 and the eigen-values of the
matrix Qo lie strictly in the left semi-plane. Nk, k = 1,6 are the matrices
with elements of order 0(~-). It is not difficult to write out the analogous
representation for the matrix 

The eigen-values of the matrix lie strictly in the left semi-

plane ; 14 is the unit matrix of order 5; Nk, k == 7, 10 are the matrices
with elements of order 0(~-).
We have the following relations for constants ck, k = 1, 9:
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The last equation has only the trivial solutions if

where

Here

It is also not difficult to write out the matrix L for the cases: 1). ~ 
ç = 0; 2). 7? = = 0.

One says that the boundary conditions (34), (35) of Main Problem satisfy
the Lopatinsky condition if requirement (62) is fulfilled for all ~ &#x3E; 0,
(I, L) E R3. This means that exponentially growing solutions do not exist
for the problem under consideration. Let us prove that the Lopatinsky
condition is not fulfilled.

We consider the equality

as a relation which must be satisfied by the values 7}, ~, (~2,3. We show that
there exist fi &#x3E; 0, (~, cv) E R such that equality (6.5) is fulfilled. As proved
in the Appendix, there exist 7yo &#x3E; 0,~o. Wo = (~~3) (~70 + Ç5 + 2 = 1,
~~.3 &#x3E; 0) such that det L(s~°}, = 0, i.e., [0 = det £(0) = 0.
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We choose ~~°~ = 1(°) = 0, ~~) = (~, 0) = 0) and
the values s~~&#x3E;, ~,y 3, ~; = 1.2.3... as roots of the corresponding relations:

Thus, for

the Lopatinsky determinant det L is equal to zero. Consequently, boundary
conditions (34), (35) do not satisfy the Lopatinsky condition.
The last fact allows us to write out the ill-posedness example of Hada-
mard type for Main problem:

with the eigenvalues of the matrices Qr in the left semi-plane and
ReBr~ &#x3E; 0 (Brx; = 0(; )). For the previous solutions it is not

possible to determine a uniform bound for t &#x3E; 0 and therefore we have

proved the instability of slow shock waves.
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7. CONCLUSIONS

The present analysis reveals substantial differences between fast and slow
shocks in radiation hydrodynamics. However, the obtained results have a
rather clear physical meaning.
Even if the shocks are treated as discontinuities, they are really

represented by thin region where the field variables have strong gradients.
The thickness of those regions is of the order of the mean free path of the
fluid (a mixture in our case). For very high temperatures (e.g. ultrarelativistic
limit) the sound speed of matter tends to radiative one. As a conseguence,
the characteristic velocities of matter and radiation are of the same order.

For slow gas at relatively low temperature matter and radiation behave
quite differently. For example if the temperature is 10~ - 105 K the mean
free path of photons is of the order of 10-2 - 10-1 cm, while that of gas
particles is of the order of 10-5 cm. Since the viscous exchange zones are
determined by the longer mean free path, one can consider pratically the
gas shock embedded in the radiative one. In fact in newtonian problems, in
the analysis of shock strucure for radiating gas continuity is required for the
radiative variables and jumps are allowed only for the matter fields [31 ] .
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APPENDIX

PROOF OF THE EXISTENCE OF THE
ROOT OF THE LOPATINSKY DETERMINANT

. 

Here we prove that there exist &#x3E; 0, ~ Cùo = Cùg) (’l}õ+Ç-õ+ICùo 12 =1,
~2.3 &#x3E; 0) such that ç, w) = det L(s~°~ , = O. Let
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Then we have

where is a real-valued function.

Let us show that the equality

has roots such that

On one hand we have

(see (39)-(40)). On the other hand

where

It is straightforward to verify

Then
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Thus B &#x3E; 0 and we have:

This implies that there exist 0  ?7o  1, = (@£, 0), 0   1,

fio == 0 such that

It remains to show that

It is easy to see that

Therefore conditions (Al) hold. This completes the proof.
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