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ABSTRACT. — The principle of maximum entropy is employed in order to
close the set of the moment equations in relativistic radiation hydrodynamics
to a finite order. A procedure to obtain explicit expressions for the source
terms is given. In particular in the present paper bremsstrahlung and
Thomson scattering are considered.

RESUME. — Le principe d’entropie maximale est employé pour fermer a
un ordre fini I’ensemble des équations des moments en hydrodynamique
radiative relativiste. On donne un procédé pour obtenir des expressions
explicites des termes de source. En particulier nous regardons dans cet
article les phénomeénes de bremsstrahlung et de diffusion Thomson.

1. INTRODUCTION

Several problems in astrophysics and cosmology require a careful
relativistic treatment of radiative transport which is of crucial dynamical
importance [1], [2], [3], [4]. Typical situations, such as gravitational
collapse, accretion disk into black hole, perturbation of the cosmic
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124 G. MASCALI AND V. ROMANO

background radiation are usually represented by a two component model:
an ideal fluid which interacts with radiation [5].

The transport equation for photons is in general an integro-differential
equation in seven independent variables and the effort to solve it directly
by numerical methods seems prohibitive also for the present computing
resources. In particular cases, for special geometries (e.g. spherical
symmetry) some numerical codes exist, but the most common method
to tackle the problem is to resort to analytical approximations in order
to get a set of reduced equations which gives a description within an
acceptable freedom of accuracy and at the same time presents reasonable
numerical difficulties of implementation.

The simplified mathematical models of radiative transport describe
radiation as a dissipative fluid. The main difficulty concerns the fact that in
several problems radiation can cover all the range of the optical depth from
the opaque to the transparent one. This implies the possibility that radiation
is completely out of the equilibrium and therefore almost all the current
fluid theories fail to describe radiation because they have the underlying
hypothesis that the thermodynamic state is not too far from equilibrium.

By using the Chapman-Enskog expansion [6], Thomas obtained in the
diffusion approximation the analogue of the Eckart theory for radiation.
Therefore such an approach suffers the well-known problems of instability
and acausality [7].

An’improved relativistic theory, the relativistic extended thermodynamics,
for dissipative fluids was proposed by Israel and Stewart [8] (see also [9],
[11]). Udey and Israel [10] and Schweizer [12] showed how it is possible to
cast the constitutive equations for the radiative flux and the stress tensor in
the framework of extended thermodynamics. However, that theory predicts
that the largest characteristic velocities are smaller than the speed of light
even if there is no evident physical reason for this behaviour and the
shock structure is not regular. A proposed method of overcoming these
problems is to include the non-linear effects in the constitutive equations
of extended thermodynamics. A systematic procedure to get this aim is
provided in the frame of continuum mechanics by the Rational Extended
Thermodynamics [13], [14]. Its application to radiation hydrodynamics has
led to an exact nonlinear closure [15] relation of the stress tensor as a
function of the radiative energy density and flux which is the same as that
obtained by Levermore [16] under the hypothesis that there exists, in the
presence of a static medium, a reference frame where radiation is isotropic.
The analysis of the shock structure and asymptotic wave solutions shows
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MAXIMUM ENTROPY PRINCIPLE 125

that the inclusion of nonlinear effects does not solve the problem of the
maximum characteristic speed and irregular shock structure.

An alternative approach is the method of moments (see [17] for a
review). The distribution function of photons can be expanded as a series
of polynomials whose coefficients are the solution of an infinite set of
differential equations obtained by considering the moments of the transport
equation. For practical calculations one has to truncate the infinite system to
a finite order. But in the moment equation of order &, the £+ 1 and the k+2
moments appear. Therefore the resulting truncated system is not closed. If
one simply neglects the moments of order greater than a prescribed one,
the system can have complex eigenvalues. In order to obtain well behaved
solutions the structure of the moment equations should provide a hyperbolic
system in order to assure finite speeds of propagation for the disturbances.
Several ad hoc closures appeared in literature. Recently, it was proposed
to use the principle of maximum entropy for closing at the wanted order
the set of the moment equations (see [18]).

Here we apply this method to relativistic radiation hydrodynamics
and obtain an expression of the distribution function of photons which
maximizes the entropy functional and has an explicit dependence on the
frequency. This latter property allows us to get in a systematic way the
moments of the source term as functions of the moments of the distribution
function of photons and completely closes the system of the moment
equations.

The developed procedure is applicable to all the cases of physical interest
where radiation plays a relevant role. Here, in account of the algebraic
difficulties, we shall restrict attention to bremsstrahlung and Thomson
scattering. The analysis of Compton and double Compton scattering will
be considered in a future paper.

In section 2, the basic equations for a radiating gas are presented, in
section 3 the method of moments is sketched. Section 4 is devoted to apply
the maximum entropy principle and in the subsequent section the case of
almost equilibrium situation is analysed in detail. In section 6 the problem
of expressing the moments of the source term is solved for bremsstrahlung
and Thomson scattering. At last an asymptotic analysis for waves of high
frequency is presented.

Units so that ¢ = A = k = 1 are used, ¢, h, k being the light velocity,
Planck’s constant and Boltzmann’s constant, respectively. We shall work
in the framework of classical General Relativity and adopt for the metric
tensor the signature +2 (see [19]).

Vol. 67, n° 2-1997.



126 G. MASCALI AND V. ROMANO

2. EQUATION OF MOTION
FOR A RELATIVISTIC RADIATING GAS

Let us consider a photon which moves in the space-time. By neglecting
the electromagnetic field, the equations of motion are,

dz* o
DEk>
* =0, 2

where ) is an affine parameter so that £k is the photon four-momentum

and % is the total derivative expressed, in local coordinates, by

DEk* ok*
—— =k*— 4+ kKT,
dA ox® + ll
4, are the Christoffel symbols associated to the metric tensor.

The state of the photon is instantaneously determined by the four-
momentum at the event x. The set of the photon states constitutes the
photon phase-space

My = {(z, k) : 2z € M,k € T,(M), k*k, =0, k future — directed}

T.(M) being the tangent space to M in z.

In kinetic theory one assumes that the mean number of photons with
world lines crossing a space-like hypersurface G of space-time is expressed
as the integral of a distribution function F(z*,k*) over the region ¥ of
the phase space with z in G.

Then, by introducing the following volume element on X [20]
T k™ Ay

with .
O = g!na,awgdxa Adz? A dz®

element of hypersurface and

dk' A dk? A dE3

2
Tph = —— —
= rE VoI [ ks | ’
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MAXIMUM ENTROPY PRINCIPLE - 127

element of volume in the space of momenta, g being the determinant of the
metric tensor, one has that the mean number of photons crossing G is

N:/\F(m”,k")aak‘l A Tph.
b

Now let D be a region of the space time and D the subset of M, given
by the pairs (z#,k*) of My, with z* in D. By using the Stokes theorem
we have that the number of collisions in D is given by

F(a#, k*)ouk® Ampn = / d(F (2, k*)ouk® A Ton).
8D D

In the absence of collisions or in the case of a detailed balance between
creations and annihilations of photons, we have

d(F(z", k" )ook* AN mpp) = 0.
Whence [20]

oF oF
LF) = k*— - T5,k°k"=—— =0,
L] Ox™ by Ok~
which is the Liouville equation, L[F] representing the density of collisions
in phase-space.

In general the following transport equation holds

where C'[F] is the collision term.

Photons interact with other species of particles which obey similar
transport equations. Just one additional component will be considered.
We assume it to be in local thermal equilibrium and described by a Juttner
distribution (the relativistic analogue of the Maxwellian distribution)

s

where p® is the four-momentum, ji(z) the chemical potential, T'(z) the
temperature and u* the mean four-velocity of the particles which constitute
the material component, the upper sign being for bosons the lower for
fermions.

Vol. 67. n° 2-1997.



128 G. MASCALI AND V. ROMANO

By calculating the moments associated with F', we get macroscopic
quantities as the 4-current density

Nt = / k" F(z, k)

T

and the energy-momentum tensor of radiation

T:h":/ kE* kY F(z, k)mpn,

where P, is the future-directed part of the light cone of the tangent space
at the event z.

In a similar way by integrating the Juttner distribution, one has the
particle 4-current density and the energy momentum tensor of the fluid
through which radiation propagates. The sum of the energy momentum
tensor of matter and radiation is the source term of the Einstein equation.
The fundamental equations of motion for the matter plus radiation consist of
the field equation for the evolution of the metric tensor g, , the conservation
laws of total energy-momentum and number of particles, the equations of
state for the material medium and the transport equation for photons [12].
Solving this system of equations is prohibitive even numerically also in
special geometry or special relativity. The main difficulty arises from the
integration of the transport equation. This has led to the development of
analytic approximation methods in order to simplify the transport equation.
One of the most known methods is that of moments which substitutes the
original transport equation with a hierarchy of equations for the integrated
quantities associated to the distribution function of photons, reducing in
this way the dimensions of the problem from seven in the phase-space to
four in the space-time.

3. THE METHOD OF MOMENTS

Let x be an event of space-time and u* the four-velocity field of the world
lines of the fluid (or generally, the world lines of “fiducial observers™). We
denote by €2 the unit sphere in the projected tangent space orthogonal to
u* and consider a function, G(n), defined in 2, n being the unit vector
in 2 . One can develop G in series of the projected symmetric trace free
(PSTF) polynomials

GM) = Gayoa, @,
k=0
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where

o4 =1 fork=0,

P =n<*M ... fork=1.2,-----

are the PSTF polynomials and
A\

Ap _ (2k + 1)! Ay
g CArk! / e

are the PSTF moments of G, with <> denoting the symmetric trace free
component. Capital script letters are used to indicate the PSTF-tensors. The
convergence of the series is guaranteed under the hypothesis of integrability
of the function G(n) and moreover if G(n) is more regular the sum function
has the same regularity.

We recall two useful formulas which will be used in the following
(see [17])

0 if k£ is odd

no‘l...no‘k—_— 4
/Q k-:_r pleres o pek—1ak) f ko is  even

and

1 0 if p#gq
— [ dQ PBa)p4r = { ' .
/ (ng ) (Qpil)ngAP if p=gq

The photon four-momentum may be resolved into pieces along and
orthogonal to u,

= w(u* +nt)

with w photon frequency as measured in the frame comoving with u*,
n*ny = 1 and un, = 0. Therefore the distribution function of photons

may be written as
F(z";w,n) = Fz,w) + Fu(z,w)®" + Fu(z,w)®* +------

The specific intensity I, = (QW)’“’ 3F. can be developed in an analogous
way. If the specific intensity is integrated over all the frequencies and
expanded in series of PSTF polynomials, one gets

o0 < (2k 4+ 1)!
1:/ dew:ZuMAk@Ak |
0

4rk!
k=0

Vol. 67. n° 2-1997.



130 G. MASCALI AND V. ROMANO

where p<ar par>
VE (z) = / ———5 '
P

are the so-called frequency-integrated PSTF-moments of F. If calculated in
the local rest frame of the medium where the invariant integration element
on the light cone is mp,p = %50) dwd ), the moments read

1R o
MA”_Tr?(2k+1)!!/(; T dw

The PSTF moments have to satisfy the infinite set of equations obtained
from the transport equation integrated in the momentum space. Explicitly
the kth PSTF moment equation is (see [17])

MAk—l;ak

Ary ATy
{M;7 + MBUT + e

— (k= )M g5, — (k- 1) MA*Pqs + gMAk@

S5k Ak-17 5%k Ap—27, 0k k(k+3)
T aE M S EMEOE o

PSTF
k(k - ]-)(k + 2) MAk_zo,ak_lak g — SAk
(2k—1)(2k 1 1)

MAR=1gok

where semicolon indicates covariant derivative, a, = uﬂua;,@ is the four-
acceleration, © = u’; the expansion, oas = (ua;3)7STF the shear and
w = 2(Ua;3 — Us,)’ the rotation of the observers, while

4]\ k<a1 kak>
Ry .’L') ( ]{3,\’&)‘ 1 C[F]ﬂ'ph

is the kth PSTF-moment of the source function C[F].

With this procedure we substitute the original transport equation in the
phase space with the set of moment equations in the space-time. However
this approach presents the following problems. On one hand, for practical
calculations one has to truncate the expansion to a finite order. But the
equation of order k contains the moments of order k£ + 1 and &k + 2. As
a consequence in the first r equations the first » + 2 moments appear.
Therefore one needs to find two closure relations.
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On the other hand, for a general collision kernel, the moments of the
source term cannot be expressed as functions of the moments of the
distribution function and in principle are to be considered as additional
unknown fields. Usually the latter problem is overcome by prescribing
phenomenological expressions for S84+ (e.g. see [17]) or by resorting to
approximate procedures based on the Rosseland means (see [12]).

We propose g method which gives the required closure relations and
allows to obtain an explicit form of the source moments in terms of the
moments of the distribution function in a systematic way.

4. CLOSURE OF THE MOMENT EQUATIONS
AND PRINCIPLE OF MAXIMUM ENTROPY

In order to make the PSTF moment formalism computationally viable,
we assume that a certain number of macroscopic densities M#+, with
k=0,...,knqe, are sufficient to describe the radiation state satisfactorily.
The value of k.4, must be determined in such a way that theory matches
up with experimental results.

Analysing the hierarchy of balance equations for the variables M“* with
k=0,..., knas, it is evident that, in order to obtain a closed system of field
equations for these variables, it is necessary to relate the additional fields
MAkmaz 8 MAkmazBY SAk with k = 0, ..., kmae to the aforesaid variables
and to those describing the material medium which, in our hypotheses, are
the numerical density of material particles n, the temperature 7' and the
four-velocity wu*.

Such relations are called constitutive equations:

SAkmaz = SAkmaz (M- , MAkmaz Tyt (4)

We shall derive these equations by exploiting the entropy maximum
principle.

Vol. 67, n® 2-1997.



132 G. MASCALI AND V. ROMANO

The total entropy four-flow is the sum of the material and the photonic
part
h* = ht + h;‘h

:_A)yumf¢ﬂifﬂM1iﬁhm

—/ KF InF — (14 F)In(1 4+ F)Jrn.
Pyn
According to the Boltzmann H-theorem, the entropy production is never
negative
o(x) =hi, > 0.

The assumption that the material medium is locally in thermal equilibrium
fixes, as we saw, the form of the distribution function of the material
particles.

Now we assume that the photon distribution function may be written in
the approximated form

F(z, k)~ F(M, -  MAkmes k)

and we require the distribution function F' to maximize the radiation entropy
density, as measured in the rest frame of the material medium, under the

constraints

MA"' = /P w2 q)Ak F7rph k= 071 "'kmaz'- (5)

ph
Once we obtain_F, we can calculate the constitutive quantities (3)-(4),
by substituting F in the expressions of MAkmez8 AAkmasBY Sk with
k=0, ... knaz-
Let us consider the photon entropy density, as measured by fiducial
observers
@“:ﬁmﬁ:/ WK [FinF - (1+ F)In(1+ F)jm
Jp,,
and maximize it with respect to F' under the aforesaid constraints.

We take into account of the constraints by introducing the Lagrange
multipliers A4, with & = 0..... kpe.. These depend on the macroscopic
densities describing the radiation state.

Therefore
kmaz
h;h = hph — Z A__;J (/ w2 P F7l'ph — MAJ‘)
=0 Ppn
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has to be maximized without constraints.
Then. we must have

§hL, =0

with

s, = Kin—— — 34 LA
ph = - Uy I+ F . Ai(—k,\u/\)‘Q Tph-

P
This gives

1
= A A M (6)
exp(—kaut 32, Ag, @4) — 1

When the photon gas is in equilibrium with the material medium, the photon
distribution function becomes the Planckian one

1
b= -1
By comparing the last two expressions, we conclude that the equilibrium
value of the Lagrange multiplier A is equal to the inverse of the absolute
temperature 7' of the material medium, while the remaining Lagrange
multipliers Aga;, with j = 1,..., kmae, vanish in equilibrium, the index 0
referring to quantities evaluated in the equilibrium state. In situations out of
thermodynamic equilibrium, in order to obtain the explicit expressions of
the lagrangian multipliers, we have to invert the highly non-linear system
of equations consisting of the constraints (5), where F' is given by (6).
Only for very special situations, exact nonlinear solutions are known.
For example in [15] the following nonlinear closure relation involving a
variable Eddington factor was found

B 1-x 3x — 1 Mo M 1
Mz = M( 5 has + 5 MM, 3th,.3.
with
5 2 MoM,
X=3 -3\ e

which coincides with the expression obtained by Levermore [16] on the
basis of kinematical considerations.

In general in order to invert eqs (5) one has to resort to numerical
routines or expansion procedures. In particular if the system is not too

Vol. 67, n° 2-1997.



134 G. MASCALI AND V. ROMANO

far from equilibrium, it is possible to linearize eqs (5) and express the
lagrangian multipliers as functions of the first k,,,, moments (see next
section). The entropy four-vector satisfies the additional balance law

o F
e = —/ln <F+ 1>C[F]7rph.

The existence of the last additional law allows us to show, by using the
results presented in [21], [22], [23], [24], [25], that the resulting system of
equations for the moments is symmetric time-hyperbolic, after Friedrichs
and Lax (see [26] for a review), by assuring a well posedness of the Cauchy
data [27] and well-behaved solutions in the sense that the propagation speed
of the wave front is always finite. Let us consider the four entropy flux
ht, and let hy, = —u,hy, be the entropy in the rest frame of the observer
comoving with the fluid. In order to prove that the system of the moment
equations is symmetric-hyperbolic we need to show that the Hessian matrix
of the entropy with respect to the fields is negative definite,

8 hph

Z@A/u DA, §Ma4,6Mp, <o,

for arbitrary variations 0 M 4.
One has

dhph = Ag dM*
J

and by introducing the Legendre transformation
h= hph - Z AAJMAja
J

we can write the moments as partial derivatives
oh

A; — —
M Ay,

From the definition of M, putting

kmax

S=w Y Ay 0,
=0
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it follows
%*h oM 2 / 3 €xpX oY _ 4.
= - = D dwdQ)
aJ\AJ ‘\Bk 8ABJ. (27T)3 [exp(z) — 1]2 8ABk

-2 / iP5 8Bk g,
(2m) [exp(Z) — 1]

that is the Hessian matrix of A is positive definite. But we have also

9%h
———— b6A 4. 6Ap, = — SMAIEN 4.
Z 97 0Mp, A;0A B, ; M A,

9%h
Z Aj ph By
bM™ OMA; 8,/\/13’c A aaE oM ’

therefore

P
Z T B, MM, < 0.

We observe that the previous result holds for the exact closure relation
between the lagrangian multipliers and the moments. When the eqs (5) are
inverted with approximations method (e.g. expanding near equilibrium) the
hyperbolicity is guaranteed only in a neighbourhood of the equilibrium state.

S. ALMOST THERMAL PHOTON DISTRIBUTION

Now we suppose that radiation is close to the equilibrium with the
material medium and set

Aa;, = %60]- - AA.J. i=0,1,.  kmaz-
In equilibrium
AU =0 j=0,1,..., kmaz-
By linearizing F' with respect to the A4, we get

8F0 s

Z@* Aa,

F=F

Vol. 67. n° 2-1997.



136 G. MASCALI AND V. ROMANO

Comparing this expression with the expansion of F in series of the PSTF
polynomials, at the first order in the A’s we have

OFy

— _g2_-9
F=F-T 3T A
JdFy
.7:# = —Tza_T/\#
0Fy
f4knzar = _TzﬁAAkmaz

Fap,oos, =0 for p>0.
Substituting in the formulas of the PSTF moments, we obtain

M= My —4XT M,
k!
. L ook for 0< k< kmax
M e 1)!!4T/\/10/\ or 0 <k <

Mal Ok ppgr+p = 0 fOI‘ p > 0

where M is the equilibrium energy density of radiation.

Incidentally, we notice that the only PSTF moment of the distribution
function which has non-zero value in equilibrium is the energy density, this
is due to the fact that the distribution function is isotropic in equilibrium.

Now we are able to find the Lagrange multipliers as functions of the
chosen state variables

\ = Mo —M
4T M,
4, i+ '
A = m/\/{ 0< ] S kmax-

Summarizing, we obtained two basic results:

1) the constitutive equations of the (kmqr + 1)th and (k.. + 2)th
moments of the photon distribution function are:

Mal Qa3 =0

ay ...ap 3y
-//Vl max

2) we determined F as a function of the basic state variables by
substituting the A’s, we found, into the expressions of the moments of
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the distribution function

OFy Moy — M
F=F 720 Mo
0 oT  4M,

L OF, (2 + 1!

Fli "M 0<j < Enar

T T 9T 4Mg !
We emphasize that the dependence of F on the frequency w is completely
determined.

6. THE SOURCE TERMS

Besides the closure problem, the method of moments should provide the
moments of the source term as functions of the moments of the distribution
function. The exact solution of this second problem can be obtained by
solving the transport equation directly, but in the frame of an analytic
approximation method one needs to find an external procedure to deal with
the moments of the source term. The main problem is represented by the
fact that in general the cross section depends on the photon frequency.

One of the advantages of the closure obtained with the maximum entropy
principle is that the explicit dependence on the frequency is achieved and,
as we shall show, this allows us to evaluate the moments of the collision
term as functions of the moments of the photon distribution function. In
principle the procedure, we shall outline, is applicable to all the cases
of interaction between matter and radiation occurring in the common
astrophysical situations.

Essentially, we are interested in the physical situations where the magnetic
field is negligible, the frequencies of the photons of interest are large
compared with those of the plasma, and in the medium electrons and
positrons are in local thermodynamic equilibrium at a temperature 7'
which is in the range 10°K (po/gem=3)?/3 < T < 6 x 10°K. The last
limitation assures that the medium is non-degenerate and fully ionized and
at the same time that the mean electron and positron thermal speeds are
non-relativistic. In such a case the dominant processes of interaction are
the electron-ion bremsstrahlung and Thomson scattering, with relativistic
effects represented by a possible Comptonization of the photon frequency
and photon production and destruction by double Compton scattering [28].

In the present article only bremsstrahlung and Thomson scattering are
considered. The cases of Compton and double Compton will be treated in
a forthcoming article.

Vol. 67. n° 2-1997.



138 G. MASCALI AND V. ROMANO

6.1. Bremsstrahlung

The invariant collision term is given by
CplF] = gw‘zpoeg —wrpF

where poep = poep(w.n.(z),T(z)) is the bremsstrahlung emissivity and
kB = Kp(w.n.(z).T(z)) the bremsstrahlung opacity function, n. and p,
being respectively the electron number density as measured in the comoving
frame and rest mass density of the medium.

The moments of the source term for bremsstrahlung read

k<ex.. kor> 2 [
Sak(g) = - __“ 2 pAe
B (‘E) /};: (—k)\u’\)k‘l CB[F]th (27‘_)3/(; /d&)de B[F]

For £ = 0 we have

1 [ 1 _Mog—M [ OF,
Sp = Po€EB — 7—1_-2—/ dww3f€BF0 + FTE—MO——-/ dw wgﬂBa—T?
0 0

where o
_ Po /
PoEB = 5 dwep
0

is the total emissivity per unit of volume and depends only on the local
properties of the matter.
For £ > 1, one has

1 MAx OF
A _ Lo 3 0
Sp' = 72" 4Mg /0 dwwrp oT -

Since the medium is in local thermodynamic equilibrium at temperature
T, the following relation holds

€B 2 3
=L — kp—uw3F
Po B (zﬂ)Qw 0

and therefore
1 <
pPo€B = —2/ dww*kp Fy.
™ Jo

In the case of electron-ion bremsstrahlung the total emissivity per unit
volume is

 rom\ /2 )
pofp = 1?6 <_37_r) < 22> Pm.n2TY2G(T).
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where oo
é(T):/ G exp(—r)dz,
0
G(T) being the mean Gaunt factor which in the regime of interest for
T > 10°K can be approximated by

3\ /2
G(T) = (—) z7V2 for z > 1,
™

G(T) = (?) In(2.2/z) for z < 1.

T. is given by T'/me,n. = 25, < Z? > is the mean square ion charge per
electron, « is the fine-structure constant and z = w/7.
If we introduce the bremsstrahlung mean time of photons

47T2M0
tg = 7
B T [ dww’kp % (7)
the moments of the source term can be rewritten as
M—-M MAx
SB:———D, S‘B4’°=— k>1.
tB tB

6.2. Thomson scattering

The collision kernel of the Thomson scattering does not depend on the
frequency and its moments can be evaluated in an exact way.

The source term for pure Thomson scattering is
3
CrlF) = newFaT/ dQ(n') F(w,n)[(nan'*)* +1] — newor F
0 Q
with o7 Thomson cross-section. By rewriting it in the form

9
CrlF] = ~10™ worFu " — n.wor Z Fa, &4,
k=13, kmax
we easily get the moments
Sr=0
SOAB — __Q_HTMa,B
T 10
Sik = —kp M per k #0,2.
where kK = n.or. Also in this case, one can write the moments of the source
in the form of relaxation terms by introducing the Thomson mean time
1
tr = — (8)

/{T.
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7. ASYMPTOTIC ANALYSIS FOR HIGH
FREQUENCY WAVE SOLUTIONS

The number of moments necessary for an adequate description of
a physical problem involving radiative transport can change according
situations. Essentially, it depends on the range of variability of the optical
depth. For almost isotropic radiation only few moments should be sufficient.
For problems such as the gravitational collapse, the mean free path is almost
zero near the core of the star, but it becomes very large in the outsider
stellar atmosphere. In such a case the number of necessary moments can
increase considerably.
Here, in a simple physical situation, we show how it is possible to fix
a minimum number of moments by analysing the characteristic velocities.
Let us consider a radiative field which is in almost thermal equilibrium
with a static medium. Let us suppose, moreover, that we can neglect the
effect of the gravitational field and consider a Minkowski space-time. The
moment equations read
dMZ1LA k 8'M<i1"'7:k—1 + aM“”J
ot 2k+1  Ox%> ozI
k=0,1,--, knaz

where

Mil'“ikmaxj = O
and the source terms S;,...;, are modelled by means of relaxation times

1
Si1»~-i;\. = '——(Mil-nik - 5Ok-/\/10>7

Tk

with 7. defined in eqs (7) and (8).
For the sake of simplicity, we restrict attention to a one-dimensional case.
By choosing the x axis as direction of propagation, the equations (9) read

. k
oM, Rem oMy 1
5 + Z Caip 9 "’E;(MB — bopMo) (10)

A=0.1," ., knaz

with
My = (M. My, My, -7,

1/71p the diagonal matrix

1 . (1 1 1 >
— =diag| —. —, —,---
TAB To T1 T2
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and C4p a tridiagonal matrix

0 1 0

(e3] 0 1

0 as 0 . _ T
Ca=1|9 o ... ... 1 with e = 7577

0 Okmaz 0

We look for solutions of the system (10) represented by wave types
of high frequency and small amplitude. By introducing formally a small
parameter €, we seek solutions in the.following form

L[o—l-eUexpé(Qt—qa:). (11)

q is the wave number and (2 is the frequency. U, is the unpertubed constant
state of thermal equilibrium,
uO = (B70707 o ')7

with B black-body energy density. We recall that the phase velocity is
given by ’

v Q
R= 5
" Re(q)
By substituting the expression (11) in (10), one gets
kmaz
iQuA — z'q Z CABuB = —LUB.
5 TAB

If the period of the waves is very short €/7 < 1, one can neglect, for a
small time analysis, the right hand side of eq. (10). Therefore, we obtain the
same equations as in the free-streaming case, in the sense that the response
time of the medium is much longer than the period of the wave.

In the limit of high frequency one expects that the phase speed is c,
i.e. the velocity of light. .

The phase speeds are given in the limit of high frequency by the
eigenvalues of the matrix C4p and these in turn depend on the number n
of the considered moments. In table 1 we show the eigenvalues for n = 2,
3.6, 10. By increasing the number of the moments, they tend to assume
values between—1 and 1: for n = 2, the maximum absolute value of the
eigenvalues Aoz 1S \/5/3, for n =3 Aoz = \/3/_5 In table 2 the value
of A\qz 1s reported as a function of n. One sees that A,,q, ~ 1 if n > 30
with an error smaller than 0.1%. However, with only 5 momenta \,,,, ~ 1
with an error of about 10% which can be acceptable in many problems.
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TABLE 1

Characteristic velocity

for several numbers of moments

n=2 n=3 n==~6 n =10
0.577 0.774 0.932 0.974
-0.577 0 0.661 0.865
- -0.774 0.238 0.679
- - -0.238 0.433
- - -0.661 0.149

- - -0.932 —-0.149

- - - —0.433

- - - -0.679

- - - -0.865

- - - -0.974

TABLE 2

Characteristic velocity

with maximum absolute value

for several numbers of moments

n Amax n Amax n Amax
- - 11 0.978 21 0.993
2 0.577 12 0.982 22 0.994
3 0.774 13 0.984 23 0.994
4 0.861 14 0.986 24 0.995
5 0.906 15 0.987 25 0.995
6 0.932 16 0.989 26 0.995
7 0.949 17 0.991 27 0.996
8 0.960 18 0.992 28 0.996
9 0.968 19 0.992 29 0.996
10 0.974 20 0.993 30 0.997
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We notice that for a given n, the solutions which correspond to the
eigenvalues with absolute value smaller than A, have not a clear physical
meaning. They seem spurious results deriving from the approximation of the
solution of the moment equations to the solution of the transport equation.
It is interesting to observe that the results do not change if nonlinear
terms are included in the closure relation (e.g. by inverting the constraint
equations keeping also the second order term). Indeed, in account of the
fact that the system is near thermodynamic equilibrium, only the first order
term can be retained. As a consequence, the present asymptotic analysis is
intrinsically related to the number of moments. However, the nonlinearity
in the closure relation can play a crucial role in assuring the hyperbolicity
of the moment equations because the results of section 5 strictly hold only
for the exact solutions of eqgs (5).

CONCLUSIONS AND ACKNOWLEDGMENTS

We have presented a method which allows us to close at the wanted
order the set of the moment equations associated to the transport equation
of photons. In order to get an explicit closure relation we have considered
an almost termal equilibrium state, but in principle the procedure can be
extended by including non linear terms (e.g. quadratic ones). Moreover, the
inclusion of Compton and double Compton does not introduce additional
conceptual difficulties. We defer to a subsequent paper the study of these
further questions.

The proposed model can be usefully employed in the numerical simulation
of a wide class of astrophysics problems or laboratory experiments with
high speeds where special relativity is required.
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