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A representation independent propagator II: Lie

groups with square integrable representations

Wolfgang TOMÉ

Department of Radiation Oncology
UP Shands Cancer Center, University of Florida,

Gainesville, FL 32610-0385, U.S.A.

Ann. Inst. Henri Poincare,

Vol. 65, n° 2, 1996, Physique theorique

ABSTRACT. - Recently a representation independent propagator has been
introduced for the case of a real, compact Lie group. In this paper we
prove that such a propagator can be introduced for a real, connected and
simply connected Lie group with square integrable representations. Even
though the configuration space is generally a curved manifold the lattice
regularization for this propagator, nonetheless, corresponds to a propagator
on a flat manifold.

Nous avons recemment introduit un propagateur dans Ie cas
d’un groupe de Lie compact reel, independant de la representation. Dans cet
article, nous prouvons qu’un tel propagateur peut etre defini pour un groupe
de Lie connexe et simplement connexe admettant des representations de
carre integrable. Bien que Fespace des configurations soit, en general, une
variete courbe, la regularisation sur reseau de ce propagateur correspond
neanmoins a un propagateur sur une variete plate.

1. INTRODUCTION

In [23] a representation independent propagator has been constructed for
real, compact Lie groups. In this paper the construction of such a propagator
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176 W. TOME

is extended to the case of a real, connected and simply connected Lie group
with square integrable representations.

Prior to constructing the representation independent propagator for any
real, connected and simply connected Lie group G with square integrable
representations, its construction is first outlined for the Heisenberg Weyl
group; for an alternative construction in this case see [ 16] . Let P, Q, and
I be an irreducible, self-adjoint representation of the Heisenberg-algebra,
[Q,P] = = 1, [Q,7] == [P,7] = 0 on some Hilbert space H. Then,
any normalized vector ~ E H gives rise to a set of states of the form:

where V(p, q) == exp( -iqP) exp(ipQ). In fact these states are the familiar
canonical coherent states which form a strongly continuous, overcomplete
family of states for a fixed, normalized fiducial vector r~ E H. The map
C1] : H ~ L2(IR2, dpdq), defined for any 03C8 E H by: .

yields a representation of the Hilbert space H by bounded, continuous,
square integrable functions on the reproducing kernel Hilbert space L(IR2)
which is a proper subspace of L2 (1R2 ) . Let D be the common dense
invariant domain of P and Q, which is also invariant under V (p, q);
consequently, one can easily show that the following relations hold on D :

Notice, that the operator V * (p, q) intertwines the representation of the
Heisenberg-algebra on the Hilbert space H, with the representation of
the Heisenberg-algebra by right invariant differential operators on any
one of the reproducing kernel Hilbert spaces L~ (IR2 ) . An appropriate
core for these operators is given by the continuous representation of D,
D 1] = C~ ( D ) . Q) be the essentially self-adjoint Hamilton operator
of a quantum system on H; then using the intertwining relations ( 1 ) and
(2) one finds for the time evolution of an arbitrary element ~~ (p, q, t) in
any one D C the following
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177A REPRESENTATION INDEPENDENT PROPAGATOR II: GENERAL LIE GROUPS

where the closure of the Hamilton operator has been denoted by the same
symbol. This equation can be written in the following alternative form

with given by:

This propagator is clearly independent of the chosen fiducial vector. A
sufficiently large set of test functions for this propagator is given by

n where is the set of all continuous functions on
IR2. Hence, every element of is an allowed test function for this

propagator. Taking in (4) the limit t 2014~ one finds the following initial
condition:

Taking into account that the Feynman propagator is given in the Schrodinger
representation and that the limit propagator K ( . , . , ~;., .~) is a product of
two delta distributions, the propagator K may be interpreted as a two-
dimensional Feynman propagator on p and q being the
position variables. In fact the operators given by equation ( 1 ) and (2) are
elements of the right invariant enveloping algebra of a two dimensional
Schrodinger representation. Based on this interpretation following standard
procedures (cf. [ 14]) one can give the representation independent propagator
the following regularized standard phase space lattice prescription:

where (p, 4)&#x3E; (Po, == (?’, 9’), and E EE (t - + 1).
Observe that the Hamiltonian has been used in the special form dictated by
the differential operators in equations (1) and (2) and that Weyl ordering
has been adopted. Taking an improper limit by interchanging the limit with
respect to N with the integrals one finds the following formal standard
phase space path integral

Vol. 65, n° 2-1996.
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here "k" and "x" denote "momenta" conjugate to the "coordinates" "q" and
"p", respectively. When a similar construction is extended to more general
groups it is shown in section 4 that the construction of a regularized lattice
phase-space path integral is possible and moreover that the resulting phase-
space path integral has the form of a lattice phase-space path integral on
a multidimensional flat euclidian space.

Despite the fact that the representation independent propagator has been
constructed as a propagator appropriate to two (canonical) degrees of

freedom, it is nonetheless true that its classical limit refers to a single
(canonical) degree of freedom [16]).

2. COHERENT STATES AND

COHERENT STATE PATH INTEGRALS

This section serves as an introduction to group coherent states, the

continuous representation using group coherent states and the construction
of coherent state path integrals based on group coherent states. Readers
already familiar with this material can skip ahead to section 3 without
serious loss of continuity.

2.1. Coherent States: Minimum Requirements

Let us denote by H a complex separable Hilbert space, and by ,C a

topological space, whose finite dimensional subspaces are locally euclidian.
For a family of vectors {|l~}l~ on H to be a set of coherent states it must
fulfill the following two conditions. The first condition is:

Continuity : The vector |l~ is a strongly continuous function of the labell.
That is for all E &#x3E; 0 there exists a 8 &#x3E; 0 such that

Or stated differently, the family of vectors {~ )}~ on H form a continuous
(usually connected) submanifold of H. We assume that &#x3E; 0 for all

l E ,C. In the applications we are considering the continuity property is

always fulfilled.

The second condition a set of coherent states has to fulfill is:

Completeness (Resolution of the Identity) : There exists a

positive measure on ,C such that the identity operator IH admits

Annales de l’Institut Poincaré - Physique theorique



179A REPRESENTATION INDEPENDENT PROPAGATOR 0 II: GENERAL LIE GROUPS

the following @ resolution o f identity

2.2. Group Coherent States

To avoid unnecessary mathematical complication at this point we restrict
our discussion to compact Lie groups. However, we would like to point out
to the reader that the discussion applies to a general Lie group, as defined
in section 4. Let us denote by G a connected, compact d-dimensional Lie
group. It is well known that for compact groups all representations of
the group are bounded and that all irreducible representations are finite
dimensional. Moreover, one can always choose a scalar product on the
representation space in such a way that every representation of G is unitary,
(cf. [3, Theorem 7.1.1]). Therefore, without loss in generality we assume
that we are dealing with a finite dimensional strongly continuous irreducible
unitary representation !7~ of G realized on a ~-dimensional representation
space H03BE. Let us denote by the set of finite dimensional self-

adjoint generators of the representation U03BE. The = 1,..., d, form an
irreducible representation of the Lie algebra L associated with G, whose
commutation relations are given by

where cijk denote the structure constants. The physical operators are

defined by X~ - fiX k. For definiteness it is assumed that there exists
a parameterization for G such that

up to some ordering and where l E ,C. Here  denotes the compact
parameter space for G. For all l ~  and a fixed normalized fiducial vector
7y E H, we define the following set of vectors on H,

It follows from the strong continuity of that the set of vectors defined
in (6) forms a family of strongly continuous vectors on H~ . Furthermore,
let us consider the operator

Vol. 65, n ° 2-1996.
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where dg(l) denotes the normalized, invariant measure on G. It is not hard
to show, using the invariance of dg, that the operator 0 commutes with
all U9 L , l E L. Since U9~t~ is a unitary irreducible representation one has
by Schur’s Lemma that 0 = Taking the trace on both sides of (7)
we learn that

Hence, the family of vectors defined in (6) gives rise to the following
resolution of identity:

Therefore, we find that the family of vectors defined in (6) satisfies the

requirements set forth in subsection 2.1 for a set of vectors to be a set

of coherent states. So we conclude that the vectors defined in (6) form a
set of coherent states for the compact Lie group G, corresponding to the
irreducible unitary representation U9~1~ .

2.3. Continuous Representation

Analogously to standard quantum mechanics one can use the set of

coherent states defined in (6) to give a functional representation of the

space H~ . Let us define the map

This yields a representation of the space H( by bounded, continuous,
square integrable functions on some closed subspace L~ ( G) of L2 ( G) . Let
us denote by B any bounded operator on H~, then using the map C~ and
the resolution of identity given in (8) we find that:

holds. Choosing B = IH~ we find

Annales de l’Institut Henri Poincaré - Physique theorique
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where

One calls (10) the reproducing property. Furthermore, the kernel 
is an element of L~ (G) for fixed l E £. Therefore, the kernel 

is a reproducing kernel and L~(G) is a reproducing kernel Hilbert space.
Note that a reproducing kernel Hilbert space can never have more than
one reproducing kernel (cf. [20, p. 43]). Therefore, since L~ (G) is a

space of continuous functions, is unique. Moreover, since the
coherent states are strongly continuous, the reproducing kernel is

a jointly continuous function, nonzero for l == l’, and therefore, nonzero
in a neighborhood of l = l’ . This means that ( 10) is a real restriction

on the admissible functions in the continuous representation of H~ . Of
course a similar equation holds for the Schrodinger representation, however
there one = b ( q - q’ ) which poses no restriction on the allowed
functions. In fact, the reproducing kernel is the integral kernel
of a projection operator from L2 (G~ onto the reproducing kernel Hilbert
space L~ (G) [20, p. 47]). This ends our discussion of the kinematics

(framework) and brings us to the subject of dynamics.

2.4. The Coherent State Propagator for Group Coherent States

Let 03C8 E H, and denote by H(1,...,d) the bounded Hamilton

operator of the quantum system under discussion, then the Schrodinger
equation on H, is given by

since ~L is assumed to be self-adjoint and does not explicitly depend on
time, a solution to Schrodinger’s equation is given by:

Now making use of (9) we find

where

Vol. 65, n° 2-1996.
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Note that the coherent state propagator K~ (l", t"; l’, t’) satisfies the

following initial condition

Hence, as t" ~ t’ we obtain the reproducing kernel K~(l";l’) which, as it
has been mentionned above, is the integral kernel of a projection operator
from L2 (G) onto L~(G). Moreover, since 1C~ (l"; l’) is unique, we see that
if we change the fiducial vector from ~ to ?/, save for a change of phase,
the resulting coherent state propagator is no longer a propagator for the
elements of the reproducing kernel Hilbert space L~ (G), but is a propagator
for the elements of the reproducing kernel Hilbert space L~(G’). Hence,
we see that the coherent state propagator t"; l’, t’) depends strongly
on the fiducial vector ~.

Using standard methods (see e.g. [ 14] and [ 17] ) we now derive a coherent
state path integral representation for the coherent state propagator. We start
from the identity

where E = ( t" - t’ ) / ( N + 1), therefore, we find

Inserting the resolution of identity (8) N-times this becomes

where = l" and lo = l’. This expression holds for any N, and
therefore, it holds as well in the limit N ~ 00 or E ~ 0, i.e.

Annales de l’Institut Henri Poincaré - Physique theorique
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Hence, one has to evaluate for small E. For

small E one can use the approximation

where

Inserting ( 12) into ( 11 ) yields

This is the form of the coherent state path integral one typically encounters
in the literature. It is worth reemphasing that the coherent state path integral
representation of the coherent state propagator ( 13) depends strongly on
the fiducial vector.

2.4.1. Formal Coherent State Path Integral

Even though there exists no mathematical justification whatsoever we
now take an improper limit of ( 13 ) by interchanging the operation of
integration with the limit E 2014~ 0. As pointed out in [ 17, p. 63] one can
imagine as E 2014~ 0 that the set of points h , j == 1,..., N, defines in the limit
a (possibly generalized) function l (t), t’  t  t". Following [ 17, pp. 63-64]
we now derive an expression for the integrand in ( 13) valid for continuous
and differentiable paths l (t) . Note that the set of coherent states ~(l) we
have defined in (6) is not normalized, but is of constant norm given by d~~2.
We now rewrite the reproducing kernel _ ~ r~ ( h + 1 ) , r~ ( h ) ) in

the following way

Vol. 65, n ° 2-1996.
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this approximation is valid whenever G 1, j = 0,..., N.
Hence, as E 2014~ 0 the approximation becomes increasingly better since the

form a continuous family of vectors. Therefore, one finds

for ~~r~(l~+i) - ~7(l~)~~ G 1, j = 0, ... , N. Using (14) in (13) and taking the
limit ~ ~ 0 the integrand in (13) takes for continuous and differentiable
paths the following form:

where

and where we have introduced the coherent state differential

Hence, we find the following formal coherent state path integral expression
for the coherent state propagator:

where

A discussion of what is right and what is wrong with ( 15) can be found in
[ 17, 64-66] we only remark here that ( 15) depends strongly on the choice of
the fiducial vector and on the choice of the irreducible unitary representation
of G. Hence, one has to reformulate the path integral representation for
the coherent state propagator every time one changes the fiducial vector
and keeps the irreducible representation the same, or if one changes the
irreducible unitary representation of G. Now in many applications it is

often convenient to choose the fiducial vector as the ground state of the
Hamilton operator 7~ of the quantum system one considers; see for instance
Troung [24, 25]. Hence, one has to face the problem of various fiducial
vectors. In section 4 we develop a representation independent propagator,
which nevertheless, propagates the elements of any reproducing kernel
Hilbert space L~ (G) associated with any irreducible, square integrable
unitary representation of G. Hence, we can overcome the above limitation.

Annales de l’Institut Henri Poincaré - Physique theorique
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3. NOTATIONS AND PRELIMINARIES

3.1. Notation

In this chapter, G is a real, separable, connected and simply connected,
locally compact Lie group with fixed left invariant Haar measure dg. Let
D(Gj be the space of regular Bruhat functions with compact support on G
(cf. [5] and [19, pp. 68-69]). Let T be a closable operator on some Hilbert
space H, then we denote its closure by T. Given a basis x1, ... , ~d of the Lie
algebra L, we shall denote by Xi = i = 1,..., d a representation of
the basis of the Lie algebra L by symmetric operators on some Hilbert space
H with common dense invariant domain D. The commutation relations take

the form == z We say that the representation U of the
Lie algebra L satisfies Hypothesis (A) if and only if U is a representation
of the Lie algebra L on a dense invariant domain D of vectors that are
analytic for all symmetric representatives .Y~ = = 1,..., d, of a
basis = 1,..., d. If Hypothesis (A) is satisfied then by Theorem 3 of
Flato et al. [10] the representation == 1,..., d, of the Lie algebra L
on H is integrable to a unique unitary representation of the corresponding
connected and simply connected Lie group G on H. We will always assume
that a representation of L by symmetric operators satisfies Hypothesis (A).
Therefore, the representation of L by symmetric operators is integrable to a
unique global unitary representation of the associated connected and simply
connected Lie group G on H. Let there exist a parameterization of G such
that the unitary representation U of G can be written in terms of the X ~ as

for some ordering, where l is an element of a d-dimensional parameter
space G. The parameter space G is all of IRd if the group is non-compact
and a subset of IRd if the group is compact or has a compact subgroup.

In what follows we shall need a common dense invariant domain
for X 1, ... , Xd that is also invariant under the one-parameter groups

= 1, ... , d. Define D as the intersection of the domains
of all monomials for all 1  zi,..., i ~  d. By definition D
contains D, hence is dense in H. Then by Lemma 3 of [ 10] the restriction

Vol. 65, n ° 2-1996.
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of Xi,..., X d to D is a representation of L and by Lemma 4 of [ 10] D
is invariant under all one-parameter groups = 1,..., d.

Let and functions such that on D the following
relations hold:

Note that, the parameterization of the Lie group G is chosen in such a way
that and respectively. Therefore, the
inverse matrices [A’~ (~(0)] and ~p-1"t~(g(l))~ exist. Furthermore, let

!7(/) be the d x d matrix whose mk-element is such that on D

holds. One can easily check that !7(/) is given by exponentiating the

adjoint representation of L,

here c~ denotes the matrix formed from the structure constants such that

ck = 

3.2. Preliminaries

We shall need the following two results in the sequel. Their proofs if not
indicated otherwise may be found in [23].

LEMMA 3.2.1. - The functions and are related as

follows:

Annales de l’Institut Henri Poincare - Physique " theorique "
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LEMMA 3.2.2. - The functions 03C1mk(g(l)) and ’ satisfy the’

following equations

where are the structure constants for G.

Proof - (iii) Using Lemma 3.2.1 (iii) can be rewritten as

This equation can be simplified as follows

Differentiating the product and rearranging the terms yields:

Vol. 65, n° 2-1996.
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Next using = , , which is proved along the
same 

- lines as Theorem 2.1 (ii) in [23], we find

Now contracting both sides of (22) with p-1 f°(g(l)) yields

where,

has been used. Finally contract both sides 
to obtain the relation,

which is (i), and therefore, establishes (iii). D

4. THE REPRESENTATION INDEPENDENT

PROPAGATOR FOR A GENERAL LIE GROUP

4.1. Coherent States for General Lie Groups

In the following we mean by a general Lie group G a finite dimensional
real, separable, locally compact, connected and simply connected Lie group
for which the set Gd of (classes of) square integrable unitary representations
is non empty.

Annales de l’Institut Henri Poincaré - Physique théorique
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For continuous, irreducible, square integrable, unitary representations the
following relations hold (see [6, 8]):

(i) Let ~, ~ E 0. Then (U9~, ~~ is square integrable if and only if
03BE E D(K-1/2). Where K is a unique self-adjoint, positive, semi-invariant
operator on H with 

(ii) Let ~ E H, and ~, ~’ E D ( K-1 ~ 2 ) . Then one has

Let ~X2 ~d 1 be an irreducible representation of the basis of the Lie
algebra L corresponding to G, by symmetric operators on H satisfying
Hypothesis (A), then L is integrable to a unique unitary representation of
G on H. Let there exist a parameterization of G such that,

where l e 9.
Now let 7/ E D ( K 1 ~ 2 ) ; then we define the set of coherent states for

G, corresponding to the fixed continuous, irreducible, square integrable,
unitary representation as:

It follows directly from (23) that these states give rise to a resolution of
identity of the form

where dg( l) is the left invariant Haar measure of G given in the chosen
parameterization by

where ~y(L) == 

The map C~ : H ~ L2(G), defined for any 03C8 E H by:

Vol. 65, n° 2-1996.
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yields a representation of the Hilbert space H by bounded, continuous,
square integrable functions on a proper closed subspace L~(G) of 
Using the resolution of identity one finds

where

One calls (28) the reproducing property. Furthermore, the kernel (l’; [)
is an element of L~ (G) for fixed l C ~. Therefore, the kernel (l’; l )
is a reproducing kernel and L~ (G) is a reproducing kernel Hilbert space.
One easily verifies that the map C~ is an isometric isomorphism from H
to L~ (G). Note that (U, H) is unitarily equivalent to a subrepresentation
of (A, L2(G)), since C~ intertwines on H with a subrepresentation
of on L~ (G).
LEMMA 4.1.1. - The unitary representation ’intertwines’ the operator

representation ~X m~m=1 Of L on H, with the representation of L by right
and left invariant differential operators on anyone of the reproducing
kernel Hilbert spaces L2~ (G) C L2 (G). In fact setting ~l = (all , ... , 
the following relations hold:

A common dense invariant domain for these differential operators on any
one of the L~ (G) C L2 (G) is given by the continuous representation of
D, i.e. D~ - C~ (D).

(For the proof see [23] Corollary 2.4.)

COROLLARY 4.1.2. - The differential operators ~~~(-i~l, l)~~=1
( ~x~ (i~l, l ) } %=1) are essentially self-adjoint on anyone of the reproducing
kernel Hilbert spaces L~ (G) and can be identified with the generators

Annales de l’Institut Henri Poincare - Physique theorique
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~ 11 (X ~ ) ~ ~-1 ( ~ P (X ~ ) ~ ~-1 ) subrepresentation of the left (right) regular
representation of G on L~ (G).

Proof - By Corollary 2.5 in [23] the differential operators
are symmetric on any one of the reproducing kernel

Hilbert spaces L~ (G) and can be identified with the generators ~~1(X~ ) ~~=1
of a subrepresentation of the left regular representation of G on L~ (G).
The essential self-adjointness of the operators k(-i~l, l) , k = 1, ... , d,

on L~ (G) is established as follows. Since each of the operators X ~,
l~ = 1, ... , d, has a dense set D c H of analytic vectors, see section 3,
we have by Lemma 5.1 in [21] that each X ~ , I~ = 1,..., ~ is self-adjoint.
Hence, the restriction of each = 1, ... , d, to D is essentially self-
adjoint. Since, C~ is an isometric isomorphism from H onto L~ (G) we
have that the closure of each == 1,..., d, contains a dense
set of analytic vectors, namely, hence, is by Lemma 5.1 in [21]
self-adjoint. In particular, each ~~(-i~l, l), A = 1, ... , d, is essentially
self-adjoint on D~ .

Similarly one can prove that the operators l ) ~~=1 are essentially
self-adjoint and that they can be identified with the 
of a subrepresentation of the right regular representation of G on L~ (G) . D

COROLLARY 4.1.3. - The family of right invariant differential operators
commutes with the family of left invariant differential

operators ~x~ (i~l, l ) ~~-1.

Proof - Let and be arbitrary, then

Vol. 65, n ° 2-1996.
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where we have used Lemma 3.2.2 (iii) in the fourth line. Therefore,

and since, and were arbitrary, this establishes the

Corollary. D

4.2. The Representation Independent
Propagator for General Lie Groups

4.2.1. Construction of the Representation Independent Propagator

Let G be a general Lie group and let U be a fixed element Then

it is a direct consequence of Lemma 4.1.1 (i) that for any 03C8 E D

holds independently of 7/. Therefore, the isometric isomorphism C~
intertwines the representation of the Lie algebra L on H, with a

subrepresentation of L by right-invariant, essentially self-adjoint differential
operators on any one of the reproducing kernel Hilbert spaces L~(G). To
summarize, we found in section 4.1 that any square integrable representation
U of G is unitarily equivalent to a subrepresentation of the left regular
representation A on L~(G). Furthermore, the generators of G are represented
by right invariant, essentially self-adjoint differential operators on L~ (G).

Let (7r,H) be a representation of G, then we denote by the

von Neumann algebra generated by the operators ~r9, g E G. By
Proposition 5.6.4 in [7] there exists a projection operator PI in the center
of the von Neumann algebra such that the restriction AI of A to
the closed subspace PI[L2(G)] of L2 (G) is of type I, and such that the

Annales de l’lnstitut Henri Poincare - Physique theorique
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restriction of A to the orthogonal complement of has no type I
part. Since G is separable and locally compact there exists by Theorem 5.1 in
[8] a standard Borel measure 1/ on G, the set of all inequivalent irreducible
unitary representations of G, and a v-measurable field ( U~ , H~ ) ~ E G of
irreducible, square integrable, unitary representations of G, such that the
type I part of A, can be decomposed into a direct integral,

where ~ 0 I~ is a representation of G x G on H~ 0 
Denote by the essentially self-adjoint Hamilton operator of a

quantum system on H,. Then the continuous representation of the solution
to Schrodinger’s equation, = takes, on
L~(G), the following form

where,

where,

Let a, ,Q E D(G), then put

a*(g(l)) - and define the map D(G) x -P(G) 3
(a, /3) -j a * /? E P(G’) as follows:

V3l.65,n° 2-1996.
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With these definitions we find that:

Note that lC.,,(a, ~3) is a bilinear, separately continuous form on D(G) x
D(G). We call the bilinear separately continuous forms on D(G) x 
kernels on G. Also observe that /C~(c~ /?) is a left invariant kernel, that is

Therefore, we can write (29) as

In the above construction E D(K1~2) was arbitrary, furthermore as shown
elsewhere [8, Corollary 2] for 03B1 E D(G) the operator K1/2U(03B1)K1/2 is

trace class. Therefore, we can choose any ONS D(K1~2) and
write

Note that {3) is a left invariant kernel on G, since each (0152; ~3) is
a left invariant kernel on G. Therefore, by Proposition VI.6.5 in [19] there
exists a unique distribution S in D’(G) such that 1CH(a;~3) = * {3).
In fact we see that = Therefore,
we find the following propagator which is an element of D’(G):

Remark 4.2.1. - This propagator is clearly independent of ~ the fiducial
vector that fixes a coherent state representation. However, this propagator
is in general no longer a continuous function but a linear functional acting

Annales de l’lnstitut Henri Poincaré - Physique theorique
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on D ( G ) . We will see below that the elements of any reproducing kernel
Hilbert space lie in the set of test functions for this propagator. Q

LEMMA 4.2.1. - The propagator KH (l, t; l’, t’) given in (33) correctly
propagates all elements of any reproducing kernel Hilbert space L~ (G),
associated with the irreducible, square integrable unitary representation

of the general Lie group G.

Proof - Let ~ E D(K1/2) be arbitrary, then for t’ ) E L2~(G)
one can write

where the fourth equality holds by (23). Therefore,

i.e. the propagator propagates the elements of any L~ (G) correctly. D

In the above construction the irreducible, square integrable, unitary
representation was arbitrary, hence we can introduce such a propagator
for each inequivalent unitary, irreducible, square integrable representation
of G. By Corollary 5.1 in [8] there exits a positive, 03C3-finite standard Borel
measure v on G, a v-measurable decomposition ( U9(l~ , H~ ) ~ EG of and

a measurable field ( K~ ) ~ E G of nonzero, positive, self-adjoint operators such
that K~ is a semi-invariant operator of weight 0 (g-1 ) in H, for v-almost
all ( E G such that for 0152, {3 E 

is well defined. Here,

Vol. 65, n° 2-1996.
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and is given in the chosen parameterization by

Hence, we can write down the following propagator for Ar of G on 

Therefore, we find the following propagator for the type I part of the left
regular representation 

Pemark 4.2.2. - Observe, that this propagator is clearly independent of the
fiducial vector and the irreducible, square integrable unitary representation
one has chosen for C. A sufficiently large set of test functions for this
propagator is given by C(G) n L2 (G), where C(C) is the set of all
eontinuous functions on G. Hence, the elements of any reproducing kernelHilbert space L~ ( G) are allowed test functions for the propagator given by(32), and therefore, for the propagator given by (30). Therefore, we have
shown the first part of the following Theorem:

THEOREM 4.2..2. -- The propagator t; l ‘, t’ ) in (32) is a propagator for
the type I part of the left regular representation of the general Lie group Gwhich correctly propagates all elemehts of any reproducing kernel Hilbert
space L~ (G) associated with an arbitrary irreducible, square integrable,
unitary representation Ug () l o, f’ G, ( E G.

Proof - To prove the seeond part of Theorem 4.2.2, let U~ , and
~ ~ D(K1/203BE’ be arbitr ary . For any 03C8~(l) E L 2 ( G), associated with U03BE’g(l),
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we can write

Therefore,

for all ~ E D(K1/203BE’) and any 03BE’ E G, i.e. this propagator propagates all
elements of any reproducing kernel Hilbert space L~(G) associated with
an arbitrary irreducible representation !7~ correctly. 0

Hence, we have succeeded in constructing a repr~esentation independent
propagator for a general Lie group.

4.3. Path Integral Formulation of the
Representation Independent Propagator

From (32) it is easily seen that the representation independent propagator
is a weak solution to Schrödinger’s equation, i. e.

Taking in (32) the limit t 2014~ yields the following initial value problem

Remark 4.3.1. - Observe that the coherent state propagator given in (29)
is also a weak solution to the Schrodinger equation (33). However, it

satisfies the initial value problem
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Therefore, we can write

where K~ denotes either K~ or K. Note that the initial conditions, i.e.

either (34) or (35) determine which function is under consideration. ~
We now interpret the Schrodinger equation (36) with the initial

condition (34) as a Schrodinger equation appropriate to d separate
and independent canonical degrees of freedom. Hence, l 1, ... , l d are

viewed as d "coordinates", and we are looking at the irreducible

Schrodinger representation of a special class of d-variable Hamilton

operators, ones where the classical Hamiltonian is restricted to

have the form 7~(~i(p,/),...~(p~)). instead of the most general
form ~-~C ( p 1, ... , pd , l 1, ... , l d ) . In fact the differential operators given in

Lemma 4.1.1 (i) are elements of the right invariant enveloping algebra
of the d-dimensional Schrodinger representation on L2(G). Based on this
interpretation one can give the representation independent propagator the
following standard formal phase-space path integral formulation in which
the integrand assumes the form appropriate to continuous and differentiable
paths

where "pl",...,"pd" denote "momenta" conjugate to the "coordinates"

"l 1 ", ..., "l d". Note that we have used the special form of the Hamiltonian
and that its arguments are given by

The integration over the "coordinates" is restricted to the parameter space
~. If part of 9 is compact the momenta conjugate to the restricted range
or periodic "coordinates" of this part of the group are discrete variables.
For this class of momenta the notation ~ ]~ dp(t) is then properly to be
understood as sums rather than integrals. Before we can turn to a regularized
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lattice prescription for the representation independent propagator, we first
have to spell out what we mean by a Schrodinger representation on L2(G).
Let be a family of symmetric operators with a common dense
invariant domain D on some Hilbert space H satisfying:

1. The following canonical commutation relations (CCR),

2. The operator A = ~~-1 ~(P,~k )2 + (,~~)2] is essentially self-adjoint.
Note that condition 2 above ensures that ~,C~, P,~k ~~-1 is a family of
essentially self-adjoint operators (cf. [21]). Let 03A8 be a dense set of analytic
vectors for A and the family ~,C~, P,ck ~~-1, then we denote by ~ the
closure of 03A8 in the nuclear topology on 03A8 (e.g. [4]). In fact, one can
show that the families of operators and ~,C~ ~ ~-1 form two
separate complete commuting systems of operators, respectively (cf. [4]).
Let us denote by 03A6’ the dual space of 03A6, that is the space of all T03A6-
continuous linear functionals acting on 03A6. Then by the Nuclear Spectral
Theorem there exist common generalized eigenvectors, E ~’
and ~. respectively, such that

normalized such that

where

and giving rise to the resolutions of identity

where
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Remark 4.3.2. - If the spectrum of P~k is discrete then dpk denotes a
pure point measure such that the integration over p~ reduces to summation
over 

On these operators can be represented as

where DS = ~S(G), the set of functions of rapid decrease on G, is chosen
as the common dense invariant domain of these operators. Here is
defined as T°(l) - aln and where is given in (24). It is easily
seen that these operators satisfy the CCR, are symmetric on and
that l has the following generalized eigenfunctions

where V = (~ll , ... , We normalize these functions so that

where K denotes the normalization constant. Therefore, we find for the
normalized generalized eigenfunctions 

We call (40) ad-dimensional Schrodinger representation on L2 (G).
Moreover, the differential operators {k( - i~l, l)}dk=1 can be written as
follows:

LEMMA 4.3.1. - Using the differential operators {-il03B1 }da=1 given in

(40) the right invariant differential operators {k(-i~l, l)}dk=1 defined in
Lemma 4.1.1 (i) can be written as:

where V l = (~i,... ~ 
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Proof. - Since = + = 1, ... , d, the differential
become after substitution of this expression

Using = and the definition 

yields

Since the operators :i~(-i~l, l) are essentially self-adjoint on any

reproducing kernel Hilbert-space L~(G) (cf. Corollary 4.1.2) and since

~y(l) ~ 0 one concludes that

and therefore,

Remark 4.3.3. - This Lemma shows that the differential operators
are elements of the right invariant enveloping algebra

of the d-dimensional Schrodinger representation on L2(G). Q
Adapting methods used in [14] and [ 17] we can give the representation

independent propagator the following regularized lattice prescription.
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PROPOSITION 4.3.2. - Let = ~l / (I + E~2 ) be a sequence of regularized
bounded Hamilton operators on H, where E = (t" - t’)/(N + 1).
Then provided the indicated integrals exist (see below) the representation
independent propagator in (34) can be given the following d-dimensional
lattice phase-space path integral representation:

where lN+1 = l", lo = l’ and the arguments of the Hamiltonian are given
by the following functions:

Remark 4.3.4. - If part of the parameter space ~ is compact then we
denote by 7Z the class of momenta conjugate to the restricted range or
periodic "coordinates". If then dp~ denotes a pure point measure
such that the integration over reduces to summation over the discrete

spectrum of J5;;. 0

Proof - Since the Hamilton operator H is in general an unbounded
operator, we introduce the following sequence of regularized bounded
Hamilton operators on H

Then it is straightforward to show, by using the Spectral Theorem and the
Monotone Convergence Theorem, that for all 03C8 E c H one has

and that on all of H one has
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where E == ( t" - t’ ) / ( ~V + 1 ) . Now in order to obtain the lattice phase-
space path integral in (43) one can proceed as follows. Let be an

arbitrary ONS in ~ c H, then

where (’ ~’) denotes the generalized inner product. Note that the second
line holds true since each ~ G $ gives rise to a linear functional acting on
q. in the following manner == {(~) = ’lj;) for all y E q.. Hence,
one has that t’)x~~~~) = t’)~-1~~~) _

In the third line we have used (44) and Moore’s

Interchange of Limits Theorem (see [9, Lemma 1.7.6]) to justify the

interchange of the limit with the infinite sum. Hence, we find the following
expression for ~(r,~;~):

Inserting the resolution of identity (38) N-times this becomes

where l" = = lo. Therefore, we have to evaluate lj+1|
This can be done as follows:
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where

Substituting the right hand side of (41) into the above expression yields

Now inserting (46) into (45) yields

Equation (47) represents a valid lattice phase-space path integral
representation of the propagator K(l", t"; l’, t’). One can now interpret
the term 1 - as the first order approximation of 
for small E. Hence, provided the indicated integrals (or sums as necessary)
exist one may replace (47) by the more suggestive expression:

which is the desired expression. D
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Remark 4.3.5. - Observe that even though the group manifold is a

curved manifold the regularized lattice expression for the representation
independent propagator - save for the prefactor 1/B/7(~)"/(~) ’ has the
conventional form of a lattice phase-space path integral on a d-dimensional
flat manifold. Also note that the lattice expression for the representation
independent propagator exhibits the correct time reversal symmetry.

Furthermore, we have made no assumptions about the nature of the
physical systems we are considering, other than that their Hamilton operators
be essentially self-adjoint. Hence, one can use (43) in principle to describe
the motion of a general physical system, not just that of a free particle,
on the group manifold of a general Lie group G. In addition, there are
no h2 corrections present in the Lagrangian. Therefore, we have arrived at
an extremely natural path integral formulation for the motion of a general
physical system on the group manifold of a general Lie group. 0

5. EXAMPLE: A REPRESENTATION INDEPENDENT
PROPAGATOR FOR THE AFFINE GROUP

We now introduce a representation independent propagator for the affine
group. The affine group is the group of linear transformations without
reflections on the real line, ~R 3 ~ 2014~p’~2014~, where 0  p  oo and
2014~  q  oo . This group has been used by Klauder [ 15 ] for the coherent
state path integral quantization of one-dimensional systems for which the
canonical momentum p is restricted to be positive for all times. For further
applications of the affine group in quantum physics the reader is referred
to [ 15] and references there in.

5.1. Affine Coherent States

Let us denote by Xl and X2 a representation of the basis of the Lie
algebra associated with the affine group by self-adjoint operators with
common dense invariant domain D on some Hilbert space H. Since X1
and X2 are a representation of the basis of the Lie algebra associated with
the affine group, it follows that these operators satisfy the commutation
relations

Since Xl and X2 are chosen to be self-adjoint they can be exponentiated to
one-parameter unitary subgroups of the affine group. Since the affine group
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is a connected solvable Lie group every group element can be written as the

product of these one-parameter unitary subgroups (cf [3, Theorem 3.5.1 ] ).
With the above parameterization the map:

provides a unitary representation of the affine group on H, for all

(p,q) E P+, where P+ == {(p,9) : 0  p  oo, -oo  q  oo}. The
unitary representations of the affine group have been studied by Aslaksen
and Klauder [1] and Gel’ fand and Neumark [11] and it is known that there
exist only two (faithful) inequivalent irreducible unitary representations for
this group, one for which Xl is a positive self-adjoint operator and one
for which Xl is a negative self-adjoint operator. We denote the irreducible

unitary representation of the affine group corresponding to Xl positive by
and to Xl negative by U9~p,q~, respectively.

The continuous representation theory using the affine group has been
investigated by Aslaksen and Klauder [2] where it was shown that for

~, ~ E 0 the factor ( U9 (P, q ) ~, ~~ , ~ = 1, 2, is square integrable if

and only if ~ E D ( C-1~2 ), where the operator C is given by C = 2~ ~ X1 ~ .
Hence, the irreducible unitary representations of the affine group are square
integrable for a dense set of vectors in H. Moreover, in [2] the following
orthogonality relations have been established for the irreducible unitary
representations of the affine group:

where ~,~ E H, and ~, ~’ E D (C-1~2 ) . Hence, each of the irreducible
unitary representations can be used to define a set of coherent states:

where ~ E == 1. These states give rise to a resolution of

identity and a continuous representation of the Hilbert space H on any one
of the reproducing kernel Hilbert spaces L~(P+) C 

5.2. The Representation Independent Propagator

Using Theorem 2.1 (ii) in [23] we find:
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from which we identify the following 2 x 2 coefficient matrix q))~:

Inverting this 2 x 2 matrix we find:

With these coefficients we find by Lemma 4.1.1 for the differential

operators that describe the action of the affine operators Xl and X2 on any
reproducing kernel Hilbert space L~(P+) the following:

Thus, if we denote the essentially self-adjoint Hamilton
operator of a quantum mechanical system on H then by Theorem 4.2.2 the
representation independent propagator for the affine group is given by:

By Proposition 4.3.2 we can give the representation independent
propagator for the affine group the following regularized lattice phase-space
path integral representation:

where (pN+1,qN+1) = (p",q"), (p0,q0) == (p’,q’), and E == (t" -
t’ ) / ( N + 1). In this expression one can preform the following three

consecutive variable changes. For all j , one first lets x~ + 1 ~ 2 ~ ~j+i/2 +

(qj+1 + + Pj), followed by the substitution ~+1/2 ~
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-2~-+i/2/(~+i +p~ and finally one lets ~-+1/2 ~ ~- pj)1~j+1/2.
Then the resulting regularized phase-space path integral is given, by

Therefore, taking an improper limit by interchanging the operation of
integration with the limit with respect to N we find the following formal
phase-space path integral representation for the representation independent
propagator for the affine group:

where ( ’ ) denotes ). This expression agrees with the one found
in [18] up to a numerical factor M, given by M = (r~, ~Xl~-1~~, which
is used in the normalization of the resolution of identity in the definition
of coherent states for the affine group due to Aslaksen and Klauder [2].
We now formally evaluate the representation independent propagator for
two soluble examples.

5.2.1. The Free Particle

Our first example is that of the free particle where ~(~1,~2) =
X~/(2m). This Hamilton operator is clearly essentially self-adjoint. In

this case the representation independent propagator becomes
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Carrying out the remaining two integrations we obtain as our final result,

Observe that, up to the presence of the delta function b(p" - p’), this
result is in perfect agreement with the usual result for the free particle,
even though we only consider the positive or negative half of phase-space,
i.e. p is constrained to be either positive or negative.

5.2.2. The Hamilton Operator H(X1, X2) = 1 2m X21 + 03C9 X2
The second example we consider is that of the Hamilton operator

~‘~C (X 1, X 2 ) = X~/2m+~X2. One easily shows that this Hamilton operator
is essentially self-adjoint. The representation independent propagator takes
the following form

where T - t" - t’ . The final path integral we have to solve is a Lagrangian
path integral for a quadratic Lagrangian which can be done using extremal
methods; see [22]. The action for this Lagrangian path integral is given by

variation of which yields the equation of motion
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which has the general solution

After imposing the proper boundary conditions, one finds the evaluated
classical action to be

So that our final result for the representation independent propagator with
this Lagrangian becomes:

Observe that the evaluated action functional in the exponent of this

propagator, save for the ( q’ ) 2 ~ , agrees with the
evaluated action functional one obtains for the propagator of the harmonic
oscillator in imaginary time formulation although it is not of the same

"physical origin".

6. CLASSICAL LIMIT OF THE
REPRESENTATION INDEPENDENT PROPAGATOR

Even though the regularized lattice phase-space path integral
representation for the representation independent propagator has been
constructed by interpreting the appropriate Schrodinger equation (36) as
a Schrodinger equation for d separate and independent canonical degrees
of freedom, it should, nevertheless, be true that the classical limit for the
representation independent propagator refers to the degree(s) of freedom
associated with the Lie group G. In particular we will show that this is true
for a general Lie group since the classical equations of motion obtained
from the action functional for the representation independent propagator
imply the classical equations of motion obtained from the most general
classical action functional of the coherent state propagator for G.
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6.1. Classical Limit of Non-Compact Lie groups

The discussion of the classical limit of compact semisimple Lie groups
presented in [23] cannot be generalized to non-compact semisimple
Lie groups, since they do not admit faithful unitary finite-dimensional
representations (cf [3, Corollary 8.1.4]). Hence, we must follow a different
route to achieve a well defined classical limit of the most general action
functional appropriate to a general non-compact Lie group G, given by

where ~(l) = and it is assumed that K1~2~ E D (cf Eq. (15)).
Without loss in generality we can set ~ = then our most

general action functional becomes

where ~(l) = and where it is assumed that ~ E D D D ( K -1 / 2 ) .
In our discussion of the classical limit of the action functional given in

(48) we use an abstract formalism for taking 0 limit developed by
Yaffe [27]. Yaffe [27] considers a family of quantum theories characterized
by some parameter x, such as n, and studies the limit of these theories as x
approaches zero. It is assumed that each theory is defined on some Hilbert
space HX with some Hamilton operator Furthermore, it is assumed that
there exists a Lie group G, with associated Lie algebra L, that has on each
Hilbert space Hx a unitary representation We assume for definiteness

that !7~ is parameterized as

up to some ordering. Then the first assumption, which restricts the choice
of the group, is

Assumption 1. - Each unitary representation of G on Hx is irreducible.
Hence, on each Hilbert space Hx one can define a set of coherent states

= For any operator 0 acting on Hx, we define the upper
symbol 0~() by
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i.e. the upper symbol is a set of coherent state expectation values. The
second assumption restricts the possible fiducial vectors r~X one can choose.
For each value of ~ we require

Assumption 2. - Zero is the only observable whose upper symbol
identically vanishes.

By an observable we mean a family of self-adjoint operators consisting of
one self-adjoint operator acting in each Hilbert space An example in
which assumption 2 is not valid is given by SU(2) coherent states based on
a fiducial vector that is not the highest (or lowest) weight vector, in this case
a unique specification of any observable by its upper symbol may not be
possible (cf. [17, p. 34]). Note that assumption 2 implies that two different
operators cannot have the same upper symbol. Hence, one can uniquely
recover any operator from its symbol. As pointed out in [27, p. 411 ], "this
means that it is sufficient to study the behavior of the symbols of various
operators in order to characterize the theory completely."

Observe that 0 limit of an arbitrary observable does not have to
exist. In order to have some control over 0 limit one introduces the

concept of a classical observable. According to Yaffe [27] an observable
o is called a classical observable if the limits of its coherent state matrix

elements exist,

and are finite for all l, l’ E ~. The set of all classical observables is denoted
by 0c. Clearly the set (9c is a subset of all possible observables, hence
it is possible that measurements using only observables of (9c may fail
to distinguish between different coherent states. Therefore, two different
coherent states, and are called classically equivalent if for all
o E ()c one has

The third assumption states that classically inequivalent coherent states

become orthogonal in 0 limit. In particular,

Assumption 3. - The limit 

exists for alll, l’ satisfies the conditions

(i) &#x3E; 0 aYe classically inequivalent.
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= 0 and , are classically equivalent,
and ,

As shown in [27] assumption 3 implies that classical observables cannot
"move" the coherent states. Hence, any fixed cannot be a classical

observable except !7~ = However, as shown in [27] assumption 3
implies that any X ~ L is an acceptable classical observable. Moreover,
as pointed out in [27], assumption 3 implies that if and are

classically equivalent then

As shown in [27], this fact together with assumption 3 allows one to
establish the following factorization for any pair of classical observables
o and O’:

With these three assumptions one gains some control over 0

limit, however the quantum dynamics is left completely unrestricted. In
order to gain complete control over 0 limit one has to require

Assumption 4. - classical observable.

As shown in [27] this set of assumptions is sufficient to show that a quantum
theory reduces to a classical theory as ;y 2014~ O.

We now discuss the classical limit of the action functional in (48). Since
we are working with Lie groups that have irreducible square integrable
representations assumption 1 is automatically satisfied. We assume that we
have selected the fiducial vector 7y such that assumption 2 is satisfied and
we also assume that assumption 3 is satisfied. To satisfy assumption 4 we
restrict ourselves to Hamilton operators that are arbitrary polynomials of
the generators ~X~~~-1. Then the most general classical action functional
appropriate to the coherent state propagator for G is given by
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where we have used (49) and (20). = 1,..., d,
are real constants.

Extremal variation of this action functional, with respect to the

independent labels lb, holding the end points fixed, yields the equations
of motion

where denotes the partial derivative with respect to the a-th

argument; a = 1, ... , d.

Remark 6.1.1. - Generally the constants are nonzero and are

the vestiges of the coherent state representation induced by ~ that remain
even after the limit ~ -~ 0 has been taken. 0

6.2. Classical Limit of the Representation Independent Propagator

In the case of the representation independent propagator one identifies
the classical action functional as (see Proposition 4.3.2)

Varying this action functional holding the end points fixed yields the

following set of equations of motion
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Substitution of = ~ f-1 into (54), and contraction of both

sides of the resulting relation with ~-1jL‘(y(l)) yields:

where

has been used.

Claim. - The following j relation holds:

Proof - To establish equation (56) it is sufficient to show that

holds. Equation (57) can be rewritten as

which is the expression given in Lemma 3.2.2 (iii), and therefore, establishes
(56). D

If one inserts (56) into (55) one finds

Therefore, we can choose a set of integration constants, ci,..., cd, such that
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Substitution of this form of p~ into (53) and (54), yields the following
set of 2d equations

After differentiation with respect to time these equations take the form

Next contract (60) with and find

Subtracting (63) from (62) yields
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where Lemma 3.2.1 has been used. Among all possible allowed values of
ci,..., cd are those that coincide with ~i,..., vd for an arbitrary fiducial
vector. Hence, for this choice of ci,..., cd the above equations coincide
with the equations of motion obtained from the most general classical action
functional for the coherent propagator for G [see Eq. (51 )] . Therefore, the
set of classical equations of motion obtained from the classical action
functional of the representation independent propagator implies the set of
classical equations of motion obtained from the most general classical action
functional of the coherent state propagator for G. Thus, we find that the set
of solutions of the representation independent classical equations of motion
appropriate to the representation independent propagator for a general Lie
group G with square integrable, irreducible representations includes every
possible solution of the classical equations of motion appropriate to the
most general coherent state propagator for G. We summarize all this in
the following Proposition:

PROPOSITION 6.2.1. - Let G be a real, separable, locally compact,
connected and simply connected Lie group whose unitary irreducible

representations are square integrable. If the fiducial vector satisfies
Assumption 2 then the equations of motion obtained from the action

functional of the representation independent propagator imply the equations
obtained from the most geueral classical action functional for the

coherent state propagator for G.

7. CONCLUSION AND OUTLOOK

In this section, as before, we mean by a general Lie group a real,
separable, locally compact, connected and simply connected Lie group with
irreducible, square integrable unitary representations, unless we explicitly
state otherwise. We have focused our attention in this paper on general
Lie groups since for this case the existence of a resolution of identity
is guarantied in general by (23) and we were able to construct a

representation independent propagator rigorously. It would be interesting
to see if the construction of the representation independent propagator
presented in section 4.4 can be extended to Lie groups that do not posses
square integrable, irreducible representations, such as the Euclidian group.
The obstacle one has to overcome when one considers such groups is

the introduction of a resolution of identity. This problem has recently
been solved by Isham and Klauder [ 13] for the n-dimensional Euclidian

group E(n). In [13] attention is focused on reducible, square integrable
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representations of E(n). In this case it becomes possible to introduce a set
of coherent states, i.e. to establish a resolution of identity, and to introduce
a coherent state propagator.

Therefore, if the problem of introducing coherent states for these groups
can be solved, then one can use the following argument to introduce a
fiducial vector independent propagator for these groups. Denote by U a
generic, continuous, unitary representation of a Lie group G on some
Hilbert space H, which does not need to be a square integrable, irreducible
representation. For definiteness let us assume that we have parameterized
the Lie group G such that the representation U is given by:

for some ordering, where the Xi,..., X d form an integrable, representation
of the associated Lie algebra L of G by essentially self-adjoint operators on
some common dense invariant domain D E H and where l is an element
of a d-dimensional parameter space 9. Let us denote by r~(l) the coherent
states associated with the representation of G, where yy E H is the

fixed, normalized fiducial vector. Let us furthermore assume, that these
states give rise to a resolution of identity

where denotes the normalized, left invariant group measure given by

where denotes the normalization; for the definition of dg(l) see

(26). We can now use this set of coherent states to give a continuous
representation of H. We define the map

Which as we know yields a representation of H by bounded, continuous,
square integrable functions on the closed subspace L~ (G, of

L2(G~ 
We now introduce the fiducial vector independent propagator

KH (t", t"; l’, t’) as follows, it is a single, (possibly generalized) function
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that is independent of any particular choice of the fiducial vector, which,
nevertheless, propagates the correctly, i.e.,

If equation (65) is to hold for arbitrary 7~ we must require that

where is defined in (31).
An analysis of our results presented in section 4 shows that Lemma 4.1.1,

Corollary 4.1.2 hold for reducible, square integrable representations. Even
though we have stated Lemma 4.1.1 and Corollary 4.1.2 for irreducible
representations, this property of the representation is not used in the proofs
of these results (see [23]), hence these results also apply to the case when
one considers reducible representations. Therefore, it is a direct consequence
of Lemma 4.1.1 (i) that for any 03C8 E D

holds independently of 7y. Hence, we find that G~~ intertwines the

representation of the Lie algebra L associated with G on H, with a

subrepresentation of L by right invariant, essentially self-adjoint differential
operators on any one of the reproducing kernel Hilbert spaces L~(?, 

Denote by the essentially self-adjoint Hamilton operator of a
quantum system on H. Then the continuous representation of Schrodinger’s
equation on H, == takes on L(G, the following form

Using (65) we find that the fiducial vector independent propagator KH is
a solution to this Schrodinger equation, i. e.

Therefore, together with equation (66), we find the following initial value
problem
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It was such an initial value problem that we have taken as our starting
point for the path integral formulation of the representation independent
propagator. Hence, we find that one can, using Proposition 4.3.2, introduce
path integral representations for general Lie groups that have reducible
square integrable representations. However, observe that we can only
introduce afiducial vector independent propagator in this case. This program
of has been explicitly carried out for the case of E ( 2 ) by Tulsian and
Klauder [26].

Observe that if one considers groups with reducible, square integrable
representations one has to proceed on a case by case basis since a general
theory in this case is lacking. It would therefore, be of some interest to
see if the theory developed by Duflo and Moore [8] for locally compact
groups with irreducible, square integrable, unitary representations can be
extended to locally compact groups with reducible, square integrable,
unitary representations.

In our opinion another interesting avenue to achieve the path integral
quantization of the form (43) for general Lie groups that do not have
square integrable, irreducible representations would be to start form the

classical mechanics associated with the particular Lie group one considers
and to try to derive the form of the action functional we have arrived at in

Proposition 4.3.2. The quantization would then be achieved by postulating
(43) as the path integral quantization for these kinds of Lie groups.

Furthermore, we believe that the representation independent propagator
holds considerable interest for quantum field theory. We have used in
this paper the word representation independent in a dual meaning, its first
meaning pertained to the fact that the representation independent propagator
is independent of the choice of the fiducial vector and its second meaning to
the fact that this propagator is also independent of the choice of the unitary,
irreducible representation of the Lie group G. In the case of quantum
field theory these two meanings of the word representation independent are
inextricably related, since the dynamics chooses a representation for the
basic kinematical variables (ef. [ 12, pp. 56-57] and [ 17, pp. 82-83]). We
therefore, believe that it would be a worthwhile task to extend our concept
of a representation independent propagator into the realm of quantum field
theory.
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