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ABSTRACT. - The long term perturbation of a Newtonian binary system
by an incident gravitational wave is discussed in connection with the issue
of gravitational ionization. The periodic orbits of the planar tidal equation
are investigated and the conditions for their existence are presented. The
possibility of ionization of a Keplerian orbit via gravitational radiation is
discussed.
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La perturbation a long terme d’un systeme binaire Newtonien
par une onde gravitationelle incidente est examinee et mise en relation avec
1’ ionisation gravitationelle. On etudie les orbites periodiques de 1’ equation
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88 C. CHICONE, B. MASHHOON AND D. G. RETZLOFF

plane des marees et on presente leurs conditions d’ existence. La possibilité
de 1’ ionisation d’ une orbite Keplerienne par radiation gravitationelle est
discutee.

1. INTRODUCTION

A Newtonian two-body system cannot be completely isolated from all
other masses in the universe as a consequence of the universality of
the gravitational interaction. In fact, the attraction of the other masses

would cause the binary system to move through approximately inertial

spacetime. This center-of-mass motion should be distinguished from the
relative motion, which is affected by the gradient of the disturbing forces.
Consider, for instance, the equations of motion for an "isolated" two-body
system in Newtonian mechanics

where Go is Newton’s constant of gravitation and

represents the combined gravitational potential of all other masses mp
at Xp in the universe. Here and throughout this work, the finite size

of astronomical bodies is neglected. If, in the inertial space coordinates

(X 1, X 2 , X 3 ), the binary system is so far away from the other masses

that the relative distance between the masses comprising the binary is very
small compared to the distance of the center of mass of the binary to the
external masses, then, to first order in this small ratio, the equation of
relative motion has the form

where r = (rl, r2, r3) := Xl - X2, r is the length of r, and k =

G0(m1 + m2 ) . Here, the tidal matrix, is given by
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89GRAVITATIONAL IONIZATION

evaluated at the center of mass of the binary system. In Newtonian

mechanics the gravitational potential ~ is a harmonic function; therefore,
the symmetric tidal matrix is trace-free.

It turns out that (2) holds approximately in general relativity as well,
except that Ki~ would be represented by the "electric" components of the
Riemannian curvature of the underlying spacetime projected onto a Fermi
frame along the center-of-mass worldline [9, 10]. That is, the equation
of relative motion can be considered to be the Newton-Jacobi equation
in the sense that once the internal Newtonian attraction is neglected,
equation (2) reduces to the Jacobi equation in Fermi normal coordinates
for the relative motion of two neighboring geodesics in the underlying
spacetime manifold. Thus the spacetime coordinates in (2) refer to a local
Fermi system established along the path of the center of mass of the
system. In our approximate treatment, we neglect relativistic effects in the
binary system. On the other hand, the external influences may now include
gravitational radiation. It should be noted in this connection that classical
celestial mechanics has been mainly concerned with the n-body problem;
however, the "vacuum" between these bodies is expected to abound with
gravitational radiation as well as with other radiation fields. It is therefore
interesting to consider the interaction of gravitational waves with n-body
systems, since it is estimated that half of all stars are members of binary
or multiple systems.

In this paper, attention is focused on a Newtonian binary system that
undergoes perturbation due to an incident gravitational wave. Let the

spacetime metric due to the gravitational wave be given by

where is the Minkowski metric, E is the strength of the perturbation,
0  E ~ 1, and represents the gravitational radiation field. In the

transverse traceless gauge, = 0 and ~ij is a symmetric traceless matrix
that satisfies the wave equation D 2~ij = 0 and the transversality condition

= 0. It turns out that in this gauge,

where +m2)Xcm == mlxl +77~2X2. It is possible to fix the position of
the center of mass (e.g., Xcm == 0) in the approximation under consideration
here, since K2~ is considered only to first order in E. The perturbing field xi~
may be expressed as a Fourier sum of plane monochromatic waves with
wavelengths much larger than the semimajor axis of the binary system.

Vol. 64, n° 1-1996.



90 C. CHICONE, B. MASHHOON AND D. G. RETZLOFF

Such waves could be generated by the motion of masses during the Hubble
expansion, or could be primordial waves left over from the big bang era.
It is therefore important to note that in our analysis there is no need to
specify the initial conditions for the interaction of the waves with the

binary; instead, we concentrate on the "steady-state" situation involving a
dominant plane wave of frequency H incident on the binary. Hence, the
symmetric and traceless tidal matrix in equation (2) is given in Cartesian
coordinates by

where Q, /3, and p are constants, and e is the polar angle from the normal to
the plane of the unperturbed orbit to the propagation vector of the incident
radiation. However, for the sake of simplicity we will explicitly consider
only the case of normal incidence, i.e. e = 0. In this case, the orbital plane
will remain fixed; that is, when the waves are normally incident, the problem
reduces to planar motion under the approximations considered here.

Let the unperturbed Keplerian motion be confined to the 
The transverse nature of the radiation field implies that the orbital plane
will be unchanged under the perturbation of normally incident waves. Thus
in (2), we have r 1 = .r, r2 = ?/, and r3 == 0. The nonzero elements of the
tidal matrix for our single-frequency radiation are

where 6~ and E/3 represent the amplitudes of the two independent linear
polarization states of the low-frequency gravitational wave, and p represents
the constant phase difference between them.
The justification for replacing the actual problem with this rather

simplified nonlinear model is that it becomes amenable to mathematical

analysis. It should also be remarked that within the limitations discussed
in this section-equation (2) for the relative motion holds generally in the
Fermi coordinate system established along the center-of-mass worldline.
Thus, for this system, == where denotes the Riemannian

curvature due to external sources projected onto the frame of the center
of mass. In the Newtonian limit of general relativity, each Ki~ reduces
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91GRAVITATIONAL IONIZATION

to a second partial derivative of the external Newtonian potential ~(X)
evaluated along the path of the center of mass. On the other hand, for a
weak gravitational wave, equation (2) holds to first order in the amplitude of
the gravitational potential. Thus, in general, the matrix is a function
of the proper time along the path of the center of mass. It is always possible
to diagonalize this symmetric matrix; however, its dependence upon time
implies that (2) must then be written in a rotating system of coordinates.
In electrodynamics, the interaction of electromagnetic radiation with a two-
body system constitutes a basic problem (e.g., the scattering and absorption
of light by the Rutherford-B ohr atom). The gravitational analog of this
problem in the classical regime would involve the scattering and absorption
of gravitational radiation by a Keplerian two-body system. The wavelength
of light is much larger than the Bohr radius of the atom; therefore, the
dominant interaction takes place via the electric dipole moment of the

_ 

Htom since electromagnetisim is a spin field. We expect by analogy that
for gravitational radiation with a (reduced) wavelength that is much larger
than the semimajor axis of the Keplerian orbit, the dominant interaction
would involve the mass quadrupole moment of the binary since gravitation
is a spin - 2 field. This approximation corresponds precisely to dropping
higher-order terms in the tidal equation (2).
The reciprocity between emission and absorption of radiation should be

noted. In the quadrupole approximation for the emission of gravitational
radiation, the waves carry away energy and angular momentum but not
linear momentum. The same holds in the inverse process as well, except that
in general the system can gain or lose energy. Moreover, a Newtonian binary
system emits gravitational radiation of frequency H == m = 1, 2, 3 ...,
where 03C9 is the Keplerian frequency of the elliptical orbit. Similarly, resonant
absorption of gravitational waves by an elliptical binary occurs at H == mcv,
m = 1, 2, 3 ..., according to the linear perturbation analysis [ 10] .
A two-body system continuously emits gravitational radiation according

to general relativity. Gravitational energy in the form of radiation is thus
carried away from the system. Hence, the relative orbit evolves in such

away that the semimajor axis of the osculating ellipse monotonically
shrinks. This phenomenon of inward spiraling of the members of the
binary is consistent with the timing observations of the Hulse-Taylor binary
pulsar [7] [ 14] . Direct observational evidence for gravitational radiation
does not exist at present; however, efforts are under way to detect in

the laboratory gravitational waves emitted by astrophysical sources with
E ~ 10-20.

Vol. 64, n° 1-1996.
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In this work, we will ignore the emission of gravitational radiation by
the binary system, and concentrate our attention instead on the absorption
process. The flow of energy between the incident radiation and the binary is
not unidirectional, however. The self-gravitating system can absorb energy
from the radiation field or deposit energy into the wave so as to induce an
amplification of the radiation. These issues were first discussed in connection
with the problem of ionization [ 10] in the context of linear perturbation
analysis that in general breaks down over time. Here we employ the concepts
introduced by Poincare [ 12] for the treatment of nonlinear problems. These
enable us to prove that periodic orbits exist in the perturbed system for
which energy must steadily flow back and forth between the wave and the
binary. It is important to emphasize that such periodic orbits occur near
resonance conditions when certain definite phase relationships are satisfied.
If the binary system monotonically absorbs energy from the wave, then the
semimajor axis of the osculating ellipse will grow with time and the system
eventually ionizes. We provide a qualitative picture for such a process in § 6.
The gravitational quadrupole interaction may be illustrated by considering

the Hamiltonian for the relative motion

where the quadrupole moment per unit mass is defined by Qij = 3rirj -
r203B4ij and in the most general case of a normally incident gravitational
wave packet considered in this paper the matrix KZ~ is a traceless

symmetric matrix of periodic functions. Thus = -K22 = hl(t),
K12 = K21 = h2 (t), and there exist 71 and 7-2 such that hl (t) = 
and h2(t) = ~2(~+~2). Here hl and h2 represent the amplitudes of the
two linearly independent polarization states of the perpendicularly incident
gravitational wave. Now let

denote the Newtonian energy, orbital angular momentum and the Runge-
Lenz vector associated with the relative motion of the system (per
unit reduced mass); then, these otherwise conserved quantities vary
as a consequence of the coupling of the quadrupole moment of the
system to the curvature of the background spacetime. Thus, in this

quadrupole approximation, the Keplerian orbit exchanges energy and

angular momentum with the radiation field. At each instant, the relative
motion can be described by the orbital elements of the osculating
ellipse. This osculating ellipse continuously makes transitions to other

Annales de l’Institut Henri Poincaré - Physique theorique



93GRAVITATIONAL IONIZATION

osculating Keplerian orbits with different energies and angular momenta
as a consequence of interaction with the external wave. It is interesting to
describe the path of the system in the six-dimensional manifold of orbital
elements; in fact, this paper is devoted to the description of periodic paths
in this manifold.

The interaction of gravitational radiation with matter may have played
a significant role in the evolution of the universe. The treatment presented
here is confined, however, to the interaction of an incident wave with a
Newtonian binary system. In particular, we neglect all relativistic effects in
the relative motion of the binary system. Let the system have a Keplerian
frequency 03C9 and semimajor axis a; then, by Kepler’ s third law, 03C92 = k/a3.
Relativistic two-body effects may be neglected provided 1~ « c2a, where c
is the speed of light in vacuum. Moreover, the quadrupole approximation
for the interaction of the system with the gravitational wave is valid if

c. More generally, our approach is sound provided

Furthermore, the requirement that the external wave be a small perturbation
of the system implies that ~ 1/ yE, since the strength of the

interaction is given by a quantity that must be much smaller than
unity. Our objective is to determine the conditions under which periodic
Keplerian motions of the binary are continued to periodic motions under
the interaction. It is an important consequence of our methods, which
are originally due to Poincare [ 12], that the existence of higher-order
perturbing influences on the orbit, i.e. terms of order at least E2, can only
affect the shape of the resulting periodic orbit but not its existence. In

this first treatment of the nonlinear case, we consider only special cases of
the other interesting questions such as gravitational ionization that are
suggested by the electrodynamic analogy discussed in [ 10] . A treatment of
the general problem on the basis of linear perturbation theory is contained
in previous work [ 10] . Superposition of linear perturbations due to the
Fourier components of a pulse of gravitational radiation permits a general
analysis in that case; however, the validity of the treatment is restricted in
time as temporal evolution leads to a breakdown of the linear perturbation
theory. Therefore, the intrinsic nonlinearity of the system must in general
be taken into account for applications in celestial mechanics. In this regard,
we mention that the equations of motion of a binary influenced by the
gravitational attraction of a massive distant third body can also be treated
using the methods developed here; this constitutes a special limiting case
of the three-body problem and is discussed in Appendix B.

Vol. 64, nO 1-1996.
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We will be mainly concerned with the continuation of Keplerian orbits
under perturbation by a resonant gravitational wave. In general, we show
that all but a finite set of such resonant orbits are not continued to periodic
orbits under the influence of the incident wave and that in general all

elements of the finite exceptional set are, in fact, continued.
The plan of this paper is the following. In § 2, we transform the

perturbation problem to Delaunay elements and obtain explicit expressions
for the transformed perturbation in terms of Fourier series with coefficients
that involve the Bessel functions. In § 3, we outline a continuation method
based on the Lyapunov-Schmidt reduction that is adapted from [3]. In § 4,
the results of the continuation theory are applied to the perturbation of
a binary influenced by a normally incident wave. In particular, we find
bifurcation equations for the problem, that is, a system of equations whose
simple zeros correspond to the continuable periodic Keplerian orbits and we
show that these equations indeed have simple zeros. In § 5, we consider the
special case of circularly polarized gravitational waves, a case that is not
covered by the results of § 4. In this case we show that there are periodic
solutions. We also show for sufficiently weak perturbations of Keplerian
ellipses that the semimajor axis of the osculating ellipse remains bounded
for all time. The final section, 3 6, contains a brief discussion of some
additional speculative results on the ionization problem. Some standard
formulas are relegated to Appendix A, and in Appendix B we consider a
special case of the three body problem: A binary influenced by a distant
massive third body.

2. DELAUNAY ELEMENTS AND FOURIER SERIES EXPANSION

In terms of the canonical variables that is

the Hamiltonian for our perturbation problem, with perturbation parameter
E, may be expressed in the following general form

where ~) and ~ are periodic functions with a common period. We will
continue to use this general form in order to show how our theory can

Annales de l’Institut Henri Poincaré - Physique theorique
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be applied. However, for the sinusoidal monochromatic gravitational wave
model we will consider only the case where

The unperturbed Hamiltonian

is called the Kepler Hamiltonian. We will consider only those motions
corresponding to negative energy E = 

Following S. Sternberg [13, Vol. 2, pp. 234-247], we define

and we let a (1 ± e) denote the roots of the quadratic polynomial

so that

Here, a is the semimajor axis and e is the eccentricity of the Keplerian
ellipse with 0  e  1. However, we will only consider the case e &#x3E; 0,
that is noncircular orbits. With this restriction in force, we define ic, the
eccentric anomaly and v, the true anomaly, implicitly by the formulas

and new variables 1! and g by

As proved in [ 13], the change of coordinates

is canonical. Here l and g are "angle variables", defined modulo 27r, while
Land G are "action variables". The new coordinates (L, G, .~, g) are called
the Delaunay elements.

Vol. 64, n° 1-1996.



96 C. CHICONE, B. MASHHOON AND D. G. RETZLOFF

In Delaunay variables, our Hamiltonian (5) is transformed to

where C (resp. S) is the function obtained by expressing r2 cos 2() (resp.
r2 sin 29) in terms of the Delaunay elements. Using the fact that the change
of coordinates is canonical, the differential equations of motion are given
by the Hamiltonian system

where cv := I~2~L3 is the frequency of the elliptical Keplerian orbit. In
order to analyze system ( 10), we must find computable expressions for
the partial derivatives of C and S. This can be done in several ways;
however, for our purposes, the most useful expressions are obtained
from Fourier series expanded as functions of the angle variable .~. The
determination of these series is outlined in Appendix A, and the result
can be expressed as

where

Annales de l’Institut Henri Poincaré - Physique theorique
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3. CONTINUATION THEORY

In order to analyze the continuation (persistence) of periodic solutions of
the Kepler system to system (10), we use a method proposed in [3]. Here,
we outline the main ideas; the reader is referred to [3] for the details.

Consider a system of the form

where u is a coordinate on a manifold M consisting of a cross product
of Euclidean spaces and tori, h is 27T/H periodic in its second variable,
and E is a small parameter. Let t ~ ~(~,~,6) denote the solution of ( 13)
with initial condition u(o, ç, E) == ç, ç E M. Also, we define the mth order
Poincare map by = ~(2m7r/Q~,6); it corresponds to a strobe
that illuminates the orbit after m cycles of the perturbation. Of course, a
fixed point of ç ~ 7~"2 (~, E) corresponds to a periodic orbit of ( 13). If m
is the smallest such integer for which 03BE is a fixed is the initial _

point of a subharmonic of order m.
Suppose that there is a submanifold C M consisting entirely of

fixed points of the unperturbed order m Poincare map, defined by
p~ (~) :== P"2 (~, 0) . Our continuation theory is a method, one among
many, to decide if any of these fixed points survive after perturbation.
More precisely, we say a point z E .~, and therefore the unperturbed
periodic orbit of ( 13) with initial point z, is continuable (or that it persists)
if there is a continuous curve E ~ 7( E) in M such that 7(0) = z and
7~(~(6),6) ~ 7(E). Here, 7(E) E M is the initial point of a periodic
solution of ( 13).

In order to apply the method of [3], namely Lyapunov-Schmidt reduction
to the Implicit Function Theorem, the fixed-point manifold (resonance
manifold) ,~ must satisfy a nondegeneracy condition relative to the

unperturbed Poincare map. To specify this condition, consider z E .~
and the derivative Dpm(z) viewed as a linear transformation of the tangent
space TzM. The base point stays fixed because p"~ is the identity on JS.
Moreover, every vector in TzM that is tangent to the submanifold is fixed

by Dpm(z), or, as we will say, every such vector is in the kernel of the
infinitesimal displacement D ( z ) = I. The manifold .~ is called

normally nondegenerate if the kernel of the infinitesimal displacement
is exactly the tangent space c TzM. Equivalently, Z is normally
nondegenerate, if for each z E .~, the dimension of the kernel of the

infinitesimal displacement at z is equal to the dimension of the manifold Z.
Suppose .~ has dimension A and that it is a normally nondegenerate

submanifold of M. In this case the range of the infinitesimal displacement

Vol. 64, n° 1-1996.
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at each point in .~ has codimension A. Thus, for z E .~, there is a vector
space complement S ( z ), to the range of P(~). We let s(z) denote the
projection of TzM to S ( z ) . By choosing local coordinates, we note that
both ,~ and S ( z ) may be identified with 

Let z and consider the curve in M given by E H E) . This
curve passes through z at E = 0. Its tangent vector at E = 0, which may be
identified with the partial derivative 7~(~0), is in TzM. We define the
bifurcation function B to be the map, from ,~ to the complement S of the
range of the infinitesimal displacement, given by

In locai coordinates ,t3 : 1R.ð. -t 1R.ð.. We will say z E .~ is a simple zero
of the bifurcation function provided ,t3 ( z ) = 0 and the derivative 
is invertible.
A result in [3] is the following continuation theorem:

THEOREM 3. l. - If ,~ is a normally nondegenerate fixed-point submanifold
of M for system ( 13) and if z E .~ is a simple zero of the associated
bifurcation function, then the unperturbed periodic orbit of ( 13) with initial
point z is continuable.

To use Theorem 3.1 as a practical tool, we must be able to compute
~m(z, 0). Fortunately, this partial derivative can usually be computed. In
fact, if 0 = O( E), then

Thus, if t ~ W (t,) is the solution of the second variational initial value

problem

then

In effect, W(t) == ~cE (t, z, 0) with = 0 because = z.

In our gravitational radiation model, it seems appropriate that the

frequency of the gravitational wave is independent of the amplitude of
the wave. Thus, we will assume below that H does not depend on E. This
simplifies the expression for P~ (z, 0) by removing the "detuning" .

Annales de l’Institut Henri Poincaré - Physique theorique
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4. CONTINUATION OF KEPLER ORBITS

To apply Theorem 3.1 to our perturbation problem (10), we must define
a normally nondegenerate fixed-point manifold. For this, we consider the
Kepler orbits that are in resonance with the periodic perturbation.

If there are fixed relatively prime positive integers m and n and a fixed
value of w, the frequency of the Keplerian orbit, such that

then the unperturbed solution of ( 10) starting is given by

where t = t - to and to is an integration constant that denotes the starting
instant of time. A detailed analysis shows that t~ can be set equal to zero
here without loss of generality. Since .~ is defined modulo 27r, this solution
is periodic of period 27r/~. Moreover, the mth order unperturbed Poincare
map is defined by

If we define the three-dimensional manifold

and recall that l and g are defined modulo 27r, then it follows immediately
that .~L is fixed by p. To check that ,~L is normally nondegenerate, we
compute

and we note that the infinitesimal displacement has a three-dimensional
kernel that is spanned by the usual basis vectors

1-1996.
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Moreover, the range of the infinitesimal displacement is complemented by
the span of the vectors

To compute the bifurcation function associated with ( 10), we must
compute the partial derivative on the manifold ,~L and
then project the result into the complement of the range of the infinitesimal
displacement. To do this, we simply solve the variational initial value

problem

with zero initial values and then project the solution computed at

t == m27r/H into the complement of the range of the infinitesimal

displacement. From this procedure, we obtain the following bifurcation
function

where

and

Using the resonance relation, we have

Annales de l’Institut Henri Poincare - Physique " theorique "
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and, after changing the variable to (j = 03A9t/m + l/n, we obtain

Using the fact that the last integrand is periodic with period 27r as a function
of 3" and substituting 4&#x3E; and ~ given in (6), we find

To compute Z, we substitute the Fourier series ( 11 ) for C and S into the
last expression for I and use trigonometric relations together with the fact
that m and n are relatively prime, to conclude that Z = 0 unless n = 1. Of
course, there may be continuable orbits for n &#x3E; 1, but they are not detected
by our first order method. In case n = 1, that is for the (m : ?~) = (m : 1)
resonance, we find that

This result can be rewritten as

It is possible to express equation ( 15) in a more compact form, in the usual
manner, by defining

so that

Vol. 64, n° 1-1996.
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and

The simple zeros of the bifurcation function are then the same as the
simple zeros of

To obtain explicit formulas for the partial derivatives of the functions
and with respect to G, we assume that G &#x3E; 0 so that

In case G  0, the partial derivative has the opposite sign and the subsequent
analysis is similar. We use (32), (33), (34) (from Appendix A), and ( 12)
to obtain

The simple zeros of the function 13 given by (14) correspond to the
continuable periodic orbits. Equivalently, the continuable periodic orbits
correspond to the simple solutions of the system of equations given by
(17). In order to find the simple zeros of (17), we will use the following
proposition:

PROPOSITION 4.1. - 0 1/31 but
I sin 03C1|  1) and if the system of equations (17) has a solution, then

is zero.

Annales de l’Institut Henri Poincaré - Physique theorique
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Proof - If ( 17) has a solution and equation ( 19) does not vanish, then,
since the first factor of equation ( 19) is not zero, we have

This implies that

and, since the third equation of ( 17) is zero, that

in contradiction to the fact that ( 19) is not zero. 0

Proposition 4.1 reduces the search for solutions to several cases. Just
note that as soon as one of the factors of (19) vanishes, the value of e
and hence the values of

are fixed. Thus, equations ( 17) reduce to solvable trigonometric equations.
It is important to note that Proposition 4.1 does not cover the interesting
case of circular polarization, which is therefore deferred to ~ 5.
To study the zeros of ( 19) we will use the following proposition.
PROPOSITION 4.2. - For the ( 1 : 1 ) resonance, the functions A1 + B~ and

A1 - B1 appearing in equations ( 17) and viewed as functions of e are both
negative on the interval 0  e  1. The functions and 
viewed as functions of e, each have exactly one simple zero on the interval
and their zeros are distinct. For the (m : 1) resonance with m &#x3E; l, the
range of the function viewed as afunction ofe on
the interval 0  e  1, contains the interval [-1, 1].

We will outline the proof of the proposition. Some of the
computations were checked using a computer algebra system.

Consider the case m = 1. We will use the following elementary lemma
[4, Lemma 3.5] ] to show that the function f defined by

is negative on the interval 7o:={e:0el}.
Vol. 64, n° 1-1996.
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LEMMA 4.3. - Suppose f is a smooth function defined on an interval

[a, b) with the additional property that there ’ is a , number E &#x3E; 0 such that

f (~) f’ (~) &#x3E; 0 for a 1  x  a + E. If there are smooth functions p, q, and 1
r defined on (a, b) such that p(x)r(x) &#x3E; 0 and 1

on the ’ interval (a, 1 then strictly monotone on [a, b). In particular,
has the same sign on (a, b) that it does on (a, a + E).

The function f defined by (20) satisfies a differential equation of the
form (21 ) with x == e, w :== ~1-e~ and 0

To test the sign of p ( e ) r ( e ) , we change the variable to  and note that
0  w  1. Let

Clearly, p* is positive on 0  w  1. The second factor of r* is easily
shown to be positive on the same interval. For example, the second factor
is positive 0 and has no roots in the interval. The fact that there

are no roots can be checked by computing a Sturm sequence (cf. [6]). This

proves p(e)r(e) &#x3E; 0 for e E Io.
To complete the proof of this case, it remains only to show that there is

some E &#x3E; 0 such that f(e)  0 and f’(e)  0 on the interval 0  e  E.

To do this, we simply note that the Taylor series of f and f ’ at e = 0

are given by

The fact that A1 + Bl is negative on the interval 10 can be proved in
a similar manner.

We must show that has exactly one simple root on the interval

7o. To do this it suffices to prove that the function given by

has exactly one simple zero on Io. Equivalently, using the fact that J2( e)
does not vanish on Io, it suffices to show that the function

Annales de l’Institut Poincaré - Physique theorique



105GRAVITATIONAL IONIZATION

has the same property. This fact follows from the expression (18) for

~A1/~G, the recurrence formula

that is a simple consequence of equation (32) of Appendix A, and the
connection between e and G.

The fact that fo has exactly one simple zero is a consequence of the

following three propositions: (a) The function fl(e) :== (6 - e2)~(2e2 - 3)
is monotone decreasing on To. (b) The function f2(e) :=== eJl(e)/.IZ(c) is

monotone decreasing on 10. (c) The function fo has a zero in 10.
Statement (a) is immediate: If is negative on the interval. Statement (b)

follows from the product representation of the Bessel function J" given
by [1] ]

where jv,s denotes the sth zero of Jv and the fact that the zeros are

interlaced as follows:

Statement (c) follows from two facts: fo(~) = 2 and /o(l)  0.

The first fact is immediate from the above product representation or from
the Taylor series for the Bessel functions at e = 0. To obtain the inequality,
we use the product representation of the Bessel functions to deduce

Since j2,s &#x3E; J’i,5 &#x3E; 1 for all s, the quotient of the two products is less
than unity, as required.
The fact that has a unique simple zero is proved using a similar

analysis. Just as before, it suffices to show that the following function has
exactly one simple zero on To:

Both terms are monotone decreasing on 10 with /(0) = 3 and /(1)  0.
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We claim the zeros of and do not occur at the same

point. After division by nonzero factors and the substitution m = 1 in (18),
it suffices to show that the following functions do not have a common
zero on jfo:

If the functions do have a common zero, then the function

has at least one zero on 7o. To prove the claim, we show that f is negative
on 7o. -

Using the recurrence formulas for Bessel’s functions, we find that

To prove this function is negative on 10 we will apply Lemma 4.3. We find
that  satisfies a differential equation of the specified form with

Using Sturm sequences, it can be proved that p(e)r(e) &#x3E; 0 for e E Io.
Moreover, we find that

This completes the proof of the claim.
In case m &#x3E; 1, it suffices to consider the range of the function F," given

by e )2014~ (9~4~/9e)/(~.B~/9e). A computation shows that the Taylor series
of both the numerator and the denominator of F", is given by -5e + O(e2)
in case m = 2 and, in case m &#x3E; 2, by

It follows that Fr,.z ( e ~ = 1.
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We claim that e has at least one zero on 7o. If not, then
is a monotone function of e. A computation shows that has a

removable singularity at e = 0 and that

If m &#x3E; 2, then B~ is increasing for 0  e « 1. But, from the definition of
Bm, we have = 0, in contradiction. For m = 2, we find that

and B2 decreases for 0  e « 1. But, B2 is negative for 0 « e  1.

To see this just note that near e = 1, the sign of B2 is determined by
- J2 (2e) . By standard properties of the Bessel functions (cf. [1]), 
is positive on the interval (0, j~ 1)’ where denotes the sth zero of J.
Since v  j’ , we have  0 for 0 « e  1. Again, since

B2 (e) == 0, we have a contradiction. This proves the claim.
Suppose for the moment that &#x3E; on the interval

0  e  1 and consider the first zero e* of e ~ It follows

that  0 while &#x3E; 0 on the interval 0  e  e * .

Thus, we have and the range of Fm contains the
interval (201400,1], as required.
To complete the proof, it suffices to show that the function given by

for m &#x3E; 1 is positive on the interval 0  e  1. This fact follows from

Lemma 4.3. The Taylor series of at e = 0 is given by

Thus, it follows that Gm (e )G (e) &#x3E; 0 for 0  e « 1. We also find that

there are functions and such that &#x3E; 0 and

on the interval 0  e  1. In fact,
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(To verify that satisfies the second order differential equation with
these coefficients, we compute the derivatives of Gm and then convert all
the expressions to the variable w . ) Finally, to show &#x3E; 0, it

suffices to show that the inequality holds for 0  w  1. To do this, view

p~ and r~ as polynomials in m and note that all their coefficients are

positive functions of w. D

4.1. THE ( 1:1 ) RESONANCE. - The fundamental physical result of this
section is the following proposition: Among the periodic Keplerian orbits
in ( 1 : 1 ) resonance with an incident gravitational wave, there are generally
a (nonzero) finite number of continuable periodic motions. In fact, the

frequency of the gravitational wave fixes the semimajor axis, a, while the
amplitudes and the phase shift, a, /3, p, of the wave fix the eccentricity
of the unperturbed Keplerian orbits that are excited by the perturbation.
The inclination of the major axis and the angular position on the ellipse
that complete the set of initial conditions for a continuable orbit on the
excited ellipse are given by formulas presented below. However, two facts
complicate the mathematical analysis: there are exceptional choices of the
wave amplitudes a and /3 such that none of the periodic orbits in ( 1 : 1 )
resonance with the incident gravitational wave are continuable and there
are zeros of the bifurcation function that are not simple.
The precise mathematical result that we will prove requires a genericity

assumption. For this we will say that a property of the zero set of ( 17) is
generic relative to the parameter vector (a, ,~, p) E 1R3, if it holds for an
open and dense subset of 1R3.

PROPOSITION 4.4. - If m = 1, then, generically relative to the parameters
(03B1,03B2,03C1), the zero set of system (17) is a nonempty finite set consisting
entirely of simple zeros. If m = 1, a2 + /32 ~ 0, and a/3 sin p = 0, then
system (17) has a nonzero finite number of zeros which are all simple.

Proof. - The first generic assumption is 0, the second generic
assumption is that a2 + /32 7~ 0. (Of course, if a2 + {32 = 0, then there is
no perturbation of the Keplerian orbits.) According to Proposition 4.2, we
have 0 for 0  e  1. Thus, if system ( 17) has a solution, then,
according to Proposition 4.1, we must have

Define
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and note that, after a simple algebraic manipulation and after taking into
account the obvious fact that the partial derivatives with respect to G can
be replaced with no loss of generality by partial derivatives with respect to
the eccentricity e, the last condition is equivalent to the requirement that

Also, taking into account the fact that £ &#x3E; 0 and .F &#x3E; 0, our assumption
that a 2 + {32 I: 0 implies 0  ~  1.

To find the solutions of system ( 17), suppose for the moment that the
equation

has a solution. For this value of e the third equation of system ( 17) vanishes
_ provided sin(2g + £ + r) and sin(2g - £ + cr) are both equal to one or both

equal to minus one. In either case, cos(2g + £ + T and + ~-~
both vanish. Thus, for all integers and .J~ such that

or such that

the fixed value of e together with the (nonzero) finite number of

simultaneous solutions of these last equations with the property that
0   27T give a set of solutions of system ( 17). A similar result
is valid in case

To determine the simplicity of these solutions, we must compute the
Jacobian of system ( 17) with respect to the variables (G,~,~) at the given
solution. This Jacobian is easily computed by expanding along the first
column of the Jacobian matrix. Up to a nonzero constant multiple, we find
the value of the Jacobian to be
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In particular, using the fact that e is a monotone function of G, it follows that
the solution (G, .~, g) of system (17) is simple provided the corresponding
solution e of equation (23), respectively (24), is simple.
To finish the proof, we must determine the existence and simplicity of

the solutions of equations (23) and (24).
If either a == 0, /3 == 0, or sin p = 0, then ~ = 0 and both equations (23)

and (24) have unique simple solutions by Proposition 4.2. This proves the
second statement of the proposition.

Since the left-hand sides of equations (23) and (24) are both analytic
functions of e, there are at most a finite number of solutions on the interval
0  e  1. Moreover, since the map (a, ,~, p) t2014~ ~(a,/3,/)) is regular on
an open and dense subset of 1R3, if some of the solutions of one of the

equations are not simple, then there is an arbitrarily small perturbation of
the triplet (a, ,~, p) such that the perturbed equations have a finite number
of simple zeros.
The existence part of the first statement of the proposition is a

consequence of the following facts. 1 (a generic assumption),
then equation (24) has at least one zero. To see this, we note that the
function e ~B1/~e has value -3 at e = 0 and has limit oo as e ~ 1-
while the function e has value -3 at e = 0 and has a finite
value at e == 1. As long 1, then the function

has a negative value at e = 0 and has limit oo as e -7 1 . 0

The proposition does not give a complete description of the zero set of
system ( 17). However, since this description is reduced to an investigation
of equations (23) and (24) that are algebraic combinations of Bessel’s
functions, numerical approximations suggest the following scenario. If

/~ ~ 1, then the function

has exactly one simple zero on the interval 0el.If/~==l, then
(25) vanishes at e = 0 and increases monotonically to ex) as e 2014~ 1- . If

~  0, then the function

has exactly one simple zero on the interval 0  e  1. There is a number

/’1;* ~ 0.036 such that if 0  /’1;  /’1;*, then (26) has exactly two simple
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zeros, while if "" &#x3E; ""*, then (26) has no zeros. If "" == ~*, then (26) has
exactly one zero which is not simple.

Remark 4.5. - In case (3 = 0, that is the wave is plane polarized in a very
special direction, it appears that the zeros of ( 19) are all near e = 1. The
smallest occurs for the (m : 1) == (1 : 1) resonance in case == 0.

Its root is larger than e = 0.68. The root is larger for the higher order
resonances. This suggests that only some "comets" could remain periodic
after perturbation by a gravitational wave with this particular polarization.

4.2. THE (m : 1 ) RESONANCE m &#x3E; 1. - For the (m : 1 ) resonance we will
prove that there are perturbed periodic solutions for the generic 0152, /3 and
p. This is the content of the next proposition.

PROPOSITION 4.6. - If m &#x3E; 1, then generically, relative to the parameters
a, /3 and p, system (17) has at least one simple zero.

tn , 03C1 and 03C1 .nnh than  ~ U T et g and

£ denote a solution of the equations

and note that with this choice of g and f, system ( 17) has a solution

provided G, equivalently e, is chosen such that

Equivalently, as in Proposition (4.4), there is a solution provided

Since  1, an application of Proposition (4.2) shows that (27) has at
least one solution. Moreover, since ~4.~ 2014 Bm is not the zero function, it

has only a finite number of zeros for 0  e  1. Also, its zeros do not

depend on the choice of the parameters a, ,~ and p. Thus, if necessary, after
a perturbation of the parameters we can be sure that our solution of (27) is
not a zero of J3~ and that it is a simple zero of the left hand side
of (27). As in Proposition (4.4), it follows that the corresponding choice of
(~, .~, g) is a simple zero of system (17). 0

5. CIRCULARLY POLARIZED WAVES

In this section we consider the equations of motion (2) for the case of
a circularly polarized incident wave. This corresponds to the special case
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where, in the components of the tidal matrix K in (3), we take a == 03B2
and p = d=7r/2. The minus sign corresponds to a right circularly polarized
wave, while the plus sign corresponds to a left circularly polarized wave.
We note that this is the main case excluded from the analysis of the previous
section. There, the bifurcation function does not have simple zeros for the
bifurcation problem corresponding to circular polarization.
The equations of motion for the right circularly polarized wave have

the form

This system can be treated in a similar manner as the analogous system
that arises in Hill’s lunar theory (cf. [8] [12] [13]). The key idea is to view
the system in a new Cartesian coordinate system that rotates relative to the
inertial system with half the frequency of the gravitational wave. This factor
of 1/2 is due to the fact that the wave has helicity +2. In these rotating
coordinates, that we again call x and ~/, we obtain the following system

We note that the replacements t 2014~ 2014~ and H -t -0 leave the system
invariant. Thus, it suffices to consider the equations of motion for either
state of circular polarization.
A remarkable fact, also utilized by Hill, is that system (28) is equivalent

to a Hamiltonian system with Hamiltonian

where X := ~ - H7//2 and Y := ?/ + H~/2. This Hamiltonian is given
in polar coordinates bv

where pT = (~X -~- ~Y) /r and pe = and in Delaunay elements by
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Figure 1. - Orbits of a Poincare map for the Hamiltonian system with Hamiltonian (29). The
parameters are a = 1, n = 1, A- = 1, E = 0 (upper panel), E = .026 (lower panel), and
the energy is ~(pr,J~,r,9) = ~(0,1,1,0).
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The Delaunay form of the Hamiltonian is expressed in action-angle
variables and is in the correct form to apply the Kolmogorov-Arnold-
Moser (KAM) theory (see for example [2] [5]). Here, the Hamiltonian
is degenerate. But, as pointed out in Sternberg [ 13, Vol. 2, p. 257], the
Hamiltonian system with Hamiltonian H2 has the same trajectories as the
original system, only the speed along trajectories is changed. Moreover, the
unperturbed part of H2 satisfies the nondegeneracy assumption for the KAM
theorem its Hessian, with respect to the actions, has a nonzero determinant.
Thus, the perturbed trajectory remains bounded in time, being trapped
between two-dimensional invariant tori in the three-dimensional energy
surfaces of our two-degree of freedom Hamiltonian. Thus, sufficiently
weak circularly polarized gravitational waves do not "ionize" the Keplerian
ellipses; that is, the osculating semimajor axes do not become unbounded.
This is illustrated in Fig. 1, where "phase portraits" for a typical Poincare
map for the Hamiltonian system corresponding to (29) are depicted. After
an energy Ho is fixed, each orbit on the graph is produced by first choosing
an initial point r) in the depicted plane and then by marking the position
of the coordinates of the Hamiltonian orbit, with initial condition

(p~r), 9 = 0, and with pe the implicit solution of = Ho,
at each time when 8(t) is a multiple of 27r and 8(t)B(0) &#x3E; 0. In the actual

computation, B is reset to zero each time a crossing is marked. The figure
contrasts the foliation by invariant tori for the unperturbed system, where
there appears to be an incidental resonance of order two and one of order

three, with the existence of several invariant tori, as well as a strongly
stochastic layer, for the perturbed Poincare map.
We mention that the existence of periodic solutions of the equations of

motion in the rotating coordinate system (these correspond to periodic or
quasiperiodic motions of the original system) can be proved along the lines
of Poincare’s periodic solutions of the first and the second kind for the

restricted three-body problem.
The continuation theory for the periodic solutions of the first kind does

not depend on the perturbation terms, only on the Floquet multipliers of the
"circular" periodic orbits of the Kepler problem in the rotating coordinate
system (see [ 11 ] [ 13] ). The unperturbed orbits that continue are given by
pe = C, pr = 0, r = C2/1~ for a fixed constant C.
The continuation theory for the elliptical orbits, periodic orbits of the

second kind, can be completed along the lines attributed to Poincare and
subsequent authors as outlined in [13, Vol. 2, p. 274]. However, these
can also be found using the continuation theory of § 3. In the following
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brief outline of the procedure, we will use the Delaunay formulation of
the equations of motion.

After isoenergetic reduction, by implicitly solving for the angular
momentum G in the perturbed Hamiltonian as a power series in E, and

reformulation of the reduced system as a system of differential equations
with the timelike independent variable g, one obtains a system of two
differential equations that are 7r-periodic in g. The continuation theory of
§ 3 can be applied to this reduced system.

Here, the Poincare section is given by the submanifold defined by g = 0,
and the return map is an iterate of the strobe after each g interval of length 7r.
An (m : yz) = (m : 1) resonant unperturbed orbit corresponds to an invariant
one dimensional torus in the Poincare section. All such tori are normally
nondegenerate due to the fact that the periods of the unperturbed orbits,
in the reduced unperturbed system, change monotonically with L (this is

- equivalent lo the twist condition for the Poincare map). The corresponding
bifurcation function maps the angular variable £ along the unperturbed orbit
to the average of the first order part of the reduced differential equation
for the action L over the unperturbed resonant orbit with initial value

~. In fact, the function is given (up to a nonzero constant multiple) by
£ )2014~ (Am (e) - where and B~ are defined in ( 12).
This function has simple zeros (for almost all values of the eccentricity).
Hence, the unperturbed resonant orbits have continuations. In particular,
our method produces a periodic orbit of the form g H (L(g, E), ~(~ E)) for
the reduced system with independent variable g.

Using the fact that G is implicitly given as a function of the form

we see that G is also periodic in g. Finally, to obtain g as a function of
time, we use the first order differential equation

This last equation, at least for sufficiently small E, has solutions g (t) such
that, for some period T(E) &#x3E; 0, its solution satisfies = ~(~) 201427r.
Since g is an angular variable, the corresponding function

produces a periodic solution of the original perturbation problem in the
rotating coordinate system. These solutions are analogous to Poincare’s
periodic solutions of the second kind.
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6. SPECULATIONS, CONJECTURES AND NUMERICS

Will a Keplerian binary perturbed by an incident gravitational wave
ionize? To make this question precise, we consider the unperturbed system
to be a Keplerian ellipse, that is, the eccentricity e of the unperturbed orbit
satisfies 0  e  1; equivalently, the energy of the unperturbed system
defined by Hamiltonian (7) is negative. The corresponding perturbed orbit
(the Hamiltonian trajectory given by (5)) generally does not lie on an

ellipse. However, we define its osculating conic section at the instant the
perturbed motion reaches the state (p~., pe, r, 8) to be the conic obtained
as the Keplerian orbit with this initial data, that is the Keplerian motion
that would be obtained if the perturbation were "turned off ’ at this instant
of time. To ionize, the flow of energy between the binary and the wave
must turn unidirectional in a time averaged sense in the course of the
perturbation such that the binary would steadily absorb energy; in time,
the binary system would be permanently disrupted and the two bodies
would eventually be infinitely far apart from each other. On the other hand,
the basic equation of motion (2) breaks down once the semimajor axis
of the osculating ellipse becomes comparable to the (reduced) wavelength
of the incident gravitational wave. To study the route to ionization, we
therefore introduce the notion of dissociation. We say the Keplerian ellipse
determined by the initial data 8 ) at time to dissociates under the
influence of the perturbation if at some later time the osculating conic along
the perturbed orbit is a hyperbola. Equivalently, if one wishes to remove the
geometric language of this definition, the requirement for dissociation may
be recast as follows: the Keplerian energy r(t), ~)), where
H is given by (7), defined along the perturbed orbit becomes positive in
the course of time.

The ionization question probably does not have a simple answer.

However, two facts are clear. If the strength of the perturbation is sufficiently
small, there are Keplerian binaries that do not ionize. Independent of the
strength of the perturbation, there are Keplerian binaries that do dissociate.
The first fact is proved in this paper: some of the resonant Keplerian orbits
continue to periodic orbits of the perturbed system. We also recall that
in the case of sufficiently weak circularly polarized incident gravitational
waves, as discussed in § 5, none of the Keplerian orbits ionize. On the
other hand, to see that dissociation is possible and to speculate on the fate
of all orbits, we must review the geometry of our problem.

Recall that Hamiltonian (5) defines a 2~-degree of freedom Hamiltonian
system. This system is equivalent to the three-degree of freedom
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Hamiltonian system given by

where J is a "fictitious" action variable conjugate to the "time" s. Note here
that the phase space of (30) is six dimensional and that the five dimensional
submanifold P given by

separates the phase space. This submanifold corresponds to the parabolic
Kepler orbits while a Keplerian binary corresponds to an initial point in
the region of the six dimensional phase space given by (), r)  0.

Dissociation occurs provided the perturbed orbit of the Keplerian binary
eventually crosses the manifold 7~.
To determine that some perturbed orbits do in fact cross the manifold

~, in both directions, we simply compute the derivative of H along the
perturbed orbit to obtain

This derivative may be interpreted as a measure of the cosine of the angle
between the perturbed Hamiltonian velocity field and the normal to the
submanifold ~P. It is apparent that there are open sets on P where H &#x3E; 0.

Thus, there are open subsets (obtained by reversing the flow on the boundary
set) of the region H  0 such that every point of the subset corresponds to
a Keplerian ellipse that dissociates. However, we emphasize the fact that
time, represented by s in our three-degree of freedom system, is one of the
variables under consideration when these open sets are determined. Thus,
the initial data for a Keplerian ellipse that dissociates include an initial
time t = to. We do not know, from this analysis, how far back in time the
reversed orbits remain in the region where H  0.

A more sophisticated analysis might be based on the diffusion properties
of the orbits of 7~*. The geometric picture that is believed to hold for

the dynamics of a nearly integrable Hamiltonian system with at least three
degrees of freedom is easy to describe informally: there is a dense set of
invariant tori coexisting with a dense set of orbits some of which are dense
in their respective energy surfaces (see [2] [5]).
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Figure 2. - Projections into (pr, r) plane of part of one orbit, approximately 5000 iterates in each
panel, of the Poincare map for the Hamiltonian system with Hamiltonian (5). The parameters
are 0152 = /3 = 2, ~; = 1, p = 0, and E in the panels from left to right is 0.0, 0.001, 0.002
and 0 .00 25 . The initial values are = ( . 5 , 1, 1, 0 ) . In this case, 03A9 is chosen

3.897) so that the unperturbed Keplerian ellipse has frequency approximately 1/6th
the frequency of the incident gravitational wave. The region bounded by the branches of the
curve given by rpr = 21~ shown in the panels corresponds to elliptical motion.

For the Hamiltonian (30), it is easy to see that each five dimensional

energy surface intersects T~. In fact, each energy surface intersects the
subsets of P defined by H &#x3E; 0 and H  0. Thus, in the situation of the
conjectured dynamics, for a sufficiently small perturbation strength, some
of the orbits not on invariant tori ionize while a large subset of the orbits on
invariant tori do not. Of course, some of the invariant tori of the perturbed
system might intersect 7~; under our definition, the corresponding orbits
will dissociate even though these same orbits will repeatedly return to the
region where their osculating conics are ellipses.
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We note that the usual theory that is used to prove the existence
of invariant tori for nearly integrable Hamiltonian systems, namely the
KAM theory, is not directly applicable to the Hamiltonian given by (30)
because the unperturbed system does not meet the required nondegeneracy
conditions. In fact, this Hamiltonian is degenerate and isoenergetically
degenerate (cf. [2, p. 408]). In particular, these facts are evident from the
Delaunay action-angle coordinates for (30), where we see that the three-
dimensional unperturbed invariant tori given by fixing J, L, and G do not
even have dense trajectories because g == 0. To obtain "nondegenerate" tori,
one must consider the two dimensional tori given by fixing J, L, G, and g
while leaving ~ and s free. Some of these tori may survive perturbation and,
given their dimensions, it is possible that some of the perturbed tori are
"whiskered": they have stable and unstable manifolds (each with dimension
at most three). The existence of these invariant manifolds together with
the stable and unstable manifolds associated with periodic solutions (one
dimensional invariant tori) and the intersections among them2014is likely
responsible for the diffusion of some of the orbits not in the union of these
invariant sets and the invariant tori.
We end this section with a short description of some of the numerical

experiments performed on the Hamiltonian system (5) given by

where ~ and ~ are given by equation (6). The results of a typical experiment
that suggests the possibility of dissociation for an elliptical Keplerian orbit
with eccentricity e = 0.5 are depicted in Fig. 2. To obtain the figure, the
above 2 ~-degree of freedom Hamiltonian system is integrated numerically,
and the values of the solution are projected into the (pr, r)-plane after each
time interval of length The figure suggests that dissociation will
occur for values of E that exceed E ~ 0.002.

To gain some insight into the absorption of gravitational waves by a
Newtonian binary, we have also tested the "rate of dissociation", defined
to be inversely proportional to the number of iterates of the Poincare map
required before the osculating conic of the perturbed ellipse becomes a
hyperbola, by numerical integration of the Hamiltonian system for various
values of the frequency S2 and phase shift p of the incident wave. We assume
here that a == /3; moreover, the initial elliptical motion is counterclockwise.
Although these experiments are somewhat difficult to interpret, one fact
seems to emerge regarding the sensitivity of the rate of dissociation to
the polarization of the wave. For fixed H, the maximal dissociation rate
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is in the vicinity of p = -1["/2 while the minimal dissociation rate is in
the vicinity of p = 7r/2. This rate also depends on H, but in a seemingly
unpredictable manner.

7. APPENDIX A: C AND S IN TERMS

OF DELAUNAY ELEMENTS

The purpose of this appendix is to express C = r2 cos 28 and

S = r2 sin 28 in terms of Delaunay elements. It follows from the relation
(9 = v -f - g that

Moreover,

these relations follow from (9), and the fact that by definition v ~ u as
e -+ 0 (cf. [13, Vol. 1, p. 100]). Therefore,

There are classical expansions for cos j ic and sin j in Fourier series
whose coefficients are expressible in terms of the Bessel function Jv of
order v. Here, this Bessel function is most conveniently defined by

Following, for example, J. Kovalevsky [8, p. 49], one finds that
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and, for j &#x3E; 1

Using these expansions, we obtain the Fourier series given in ( 11 ) where

We note that the functions C and v are analytic and 27r periodic in the
angle variables ~ and g. Moreover, partial derivatives with respect to the
Delaunay elements can be obtained by differentiation of their Fourier series
term by term.
To simplify the expressions for the Fourier coefficients computed above,

we will use the following elementary identities for the Bessel functions
[8, p. 48] :

and Bessel’s equation

The final expressions for Av and -S~ given in ( 12) are obtained from (31 )
using (32)-(34); in fact, the formula for Av is obtained by standard methods
using (32), and the formula for Bv is derived from the original expressions
(31) and (33) after noticing that Bv is proportional to and using
Bessel’s equation (34).
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8. APPENDIX B: A BINARY INFLUENCED
BY A DISTANT MASSIVE THIRD BODY

The purpose of this appendix is to explore the possibility of applying
our results to the three body problem. For a binary system influenced by a
distant massive third body, our "tidal" approach results in a limiting case
of the celebrated problem of three bodies and the question is whether the
continuation theory of § 3 would be applicable in this case. The existence
of periodic orbits in the three-body problem has been established in the
classical work of Poincare [ 12] .
We study the effect of a massive body, metaphorically the Sun, on a

binary, metaphorically the Earth-Moon system, where the Sun is viewed
as giving rise to a periodic perturbation of the Earth-Moon orbit by tidal
forces. To derive the equations of motion that will be considered in this
appendix, we will model the Earth-Moon-Sun system according to the

following scenario. The motion of the Sun is neglected due to its great
mass, its gravitational attraction brings about the motion of the Earth-
Moon system as a whole on an almost Keplerian orbit about the Sun and
its tidal influence perturbs the orbit of the Moon about the Earth. It is

this latter motion that constitutes the lunar problem under investigation
here.

To obtain the mathematical model, let us consider the equations of motion
of ml and m2 the Earth and Moon in our approximation, respectively
as given by ( 1 ), with a single perturbing body, namely the Sun, with
potential

It is useful to transform the equations of motion of rrzl and m2 from
and X2(t) to the relative coordinates r == Xl - X2 and the center-

of-mass coordinates Xcm = + + rrz2). In terms of
these new coordinates, the solar gravitational attraction involves the relative
coordinates rand R = Let us further assume that ~, = 1,
where rand R denote the magnitudes of the corresponding vectors, and
consider the expansion of the solar influence in these equations in terms
of Using the fact that
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where ~ is a constant parameter with |~|  1, the equations of motion
reduce to

where we have introduced the "tidal matrix" Ki~ such that

We consider the external body (the Sun) to be so massive »

mi,m2) that it is essentially unaffected by the presence of m 1 and m2
(the Earth and Moon, respectively). Thus, we can take Xø = 0 and
therefore the Sun remains fixed at the origin of the inertial coordinate

system under consideration. Neglecting terms of order r.2/~2 in (36), this
equation reduces to the Newtonian two-body equation for the relative motion
of the center-of-mass about the Sun. We take this orbit to be slightly elliptic
(for example, for the Earth-Moon orbit about the Sun, the eccentricity ei
is approximately 0.017). The resulting expression for R can be substituted
into (37) to give the equations describing the dynamics of the Earth-Moon
system in the presence of the Sun. We further assume that the relative orbit
as well as the center-of-mass motion occurs in the equatorial plane of the
Sun. This should be a reasonable approximation as the Earth-Moon orbital
plane makes an angle of approximately 5° with the ecliptic (the ecliptic is
essentially the plane of the Earth’s orbit around the Sun) while the ecliptic
makes an angle of approximately 7° with the equatorial plane of the Sun.
It is clear that this "tidal" approach to the three-body problem is somewhat
different from the standard "restricted" approach; in the latter case, the
mass of the Moon is effectively set equal to zero.
The Earth-Moon orbit about the Sun has a small eccentricity; therefore,

the tidal matrix in (37) will be determined to first order in the eccentricity.
To this end, let 02 = (with ao being the semimajor axis of
the Earth-Moon orbit around the Sun) and note that the eccentric anomaly
is  ~ Ot + el sin the true anomaly is v ~ Ot + 2el sin 03A9t, and
R ~ ao(1-e1cos03A9t). Using R1 = Rcosv and R2 = Rsinv, the
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Cartesian components of the tidal matrix are given by

As the tidal matrix is traceless and symmetric, the above equations determine
all of its elements.

Using (37) and (39) we can write the associated Hamiltonian for this
system. Because the motion is taken to be in the equatorial plane, polar
coordinates are convenient. In these coordinates the Hamiltonian is

Upon expressing the Hamiltonian equations in terms of intrinsic

dimensionless quantities, it becomes clear that the strength of the interaction
between the binary and the third body is 02 /W2 ~ 1, but the square root
of this perturbation parameter also occurs in the harmonic terms that render
the Hamiltonian (40) explicitly time-dependent. In particular, the period of
the harmonic terms becomes unbounded as the perturbation parameter goes
to zero. Therefore, the continuation method of § 3 is not directly applicable
in this case; in fact, the resolution of this problem is due to Hill (cf. [8]
[12]). In Hill’s approach, the equation of relative motion (37) is referred
to a Cartesian system of coordinates r’ that rotates with frequency H with
respect to the inertial system. Let ri == where the nonzero elements

of the orthogonal matrix S are given by

then, the equations of motion in the new system are (r~’ == r)
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where K’ = i.e.

and K13 = f~23 = 0. The system (41) is autonomous for el = 0. In this
case, periodic solutions exist as originally demonstrated by Hill and Poincare
(cf. [ 12]). The continuation of such solutions using el, 0  el ~ 1, as the
expansion parameter can be proved, using the Implicit Function Theorem,
as originally conceived by Poincare (cf. [11] ] [8] [ 12] ) for the restricted

three-body problem. Of course, the method of § 3 is also applicable by
following the ideas for isoenergetic reduction as discussed in § 5.

_ 
_ _ _ 

_ 201420142014 REFERENCED _ _ 
_

[1] M. ABRAMOWITZ and I. STEGUN, Handbook of Mathematical Functions, National Bureau
of Standards, Washington DC, 1968.

[2] V. I. ARNOLD, Mathematical Methods of Classical Mechanics, Grad. Texts Math., Vol. 60,
Springer-Verlag, 1978.

[3] C. CHICONE, A Geometric Approach to Regular Perturbation Theory with an Application
to Hydrodynamics, Trans. AMS, Vol. 347, 1995, pp. 4559-4598.

[4] C. CHICONE and M. JACOBS, Bifurcation of Limit Cycles from Quadratic Isochrones, J. of
Diff. Eqs., Vol. 91, 1991, pp. 268-326.

[5] Dynamical Systems III, Ency. Math. Sci., Vol. 3, V. I. ARNOLD, Editor, Springer-Verlag,
1988.

[6] P. HENRICI, Applied and Computational Complex Analysis, Vol. 1, Wiley, New York, 1974.
[7] R. A. HULSE and J. H. TAYLOR, Discovery of a Pulsar in a Binary System, Astrophys. J.,

Vol. 195, 1975, L51-53.
[8] J. KOVALEVSKY, Introduction to Celestial Mechanics, Astrophysics and Space Science

Library, Vol. 7, Springer-Verlag, 1967.

[9] B. MASHHOON, Tidal Radiation, Astrophys. J., Vol. 216, 1977, pp. 591-609.
[10] B. MASHHOON, On Tidal Resonance, Astrophys. J., Vol. 223, 1978, pp. 285-298.
[11] K. R. MEYER and G. R. HALL, Introduction to Hamiltonian Dynamical Systems and the

N-Body Problem, Applied Mathematical Sciences, Vol. 90, Springer-Verlag, 1992.
[12] H. POINCARÉ, Les Méthodes Nouvelles de la Mécanique Céleste, Vols. 1-3, Gauthier-Villars,

Paris, 1892-99.

[13] S. STERNBERG, Celestial Mechanics, Vols. 1-2, W. A. BENJAMIN, Inc., New York, 1969.
[14] J. H. TAYLOR, A. WOLSZCZAN, T. DAMOUR and J. M. WEISBERG, Experimental Constraints

on Strong-Field Relativistic Gravity, Nature, Vol. 355, 1992, pp. 132-136.

(Manuscript received September 5, 1995.)

Vol. 64, n ° 1-1996.


