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On Lichtenstein’s analysis of rotating newtonian stars
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Vol. 60, n° 4, 1994, Physique thearique

ABSTRACT. - Euler’s equation of a rigidly rotating body is investigated.
L. Lichtenstein’s analysis of the existence problem of rotating stars is

reconsidered with modern mathematical methods. Using the implicit func-
tion theorem, it is discussed under which circumstances there exists a

solution of Euler’s equation in the neighbourhood of a given one. The
given solution must fulfill certain Holder conditions and certain symmetry
conditions. A criterion is derived which can be used to determine whether

the implicit function theorem may be applied or not. The criterion is

evaluated in the case of a static starting solution. This yields an existence
theorem for slowly rotating stars.

RESUME. - L’equation d’Euler d’un corps en rotation rigide est 1’objet
de l’étude. L’analyse de L. Lichtenstein sur Ie probleme de 1’existence des
etoiles en rotation est reconsideree avec des methodes mathematiques
modernes. En utilisant Ie theoreme des fonctions implicites on discute dans
quelles circonstances il y a des solutions dans la proximite d’une solution
donnée. La solution donnee doit satisfaire a certaines conditions Holder

et a certaines conditions de symetrie. Un critere est donne, qu’on peut
utiliser pour determiner si Ie theoreme des fonctions implicites peut etre
applique, ou non. Le critere est evalue pour une solution de depart
statique. Ceci produit un theoreme d’existence pour des etoiles en rotation
lente.
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458 U. HEILIG

0. INTRODUCTION

In Newtonian gravitational theory rotating stars are usually described
by matter densities p which are solutions of Euler’s equation. This equation
is a nonlinear integro-differential equation which cannot be solved in

general, and few is known about existence theorems. Some authors ([ 1 ],
[2], [3]) used variational methods in Sobolev spaces to prove the existence
of a special class of rotating stars. But they had to restrict the equation
of state and, therefore, the matter the star can consist of. In these papers,
a certain behaviour of the equation of state p ( p) is required for p -+ 0
and p -~ oo . Especially, the density must vanish if the pressure vanishes.
Thus, a star whose density doesn’t vanish on its surface is not treated by
these authors. In the present paper, a method due to Liapounoff [4] and
Poincare [5] will be used to treat the problem of existence. These authors
assumed that there is a given solution p of Euler’s equation for a star
which rotates rigidly with angular velocity In order to solve Euler’s

equation for an angular velocity cv in the neighbourhood of they
defined a variation of the matter density p. A function ( determines this
variation. Then Euler’s equation is written in terms of 03C9 and 03B6. The zeros
(cc~, 0 of this equation determine a matter density p~ which is a solution
of Euler’s equation of a body, rotating rigidly with the angular velocity cv.
However, Liapounoff and Poincare only regarded the very special equation
of state p = const. Furthermore, they didn’t really solve Euler’s equation
but only regarded an expansion series up to second order. Later,
Liapounoff [6] showed under which circumstances the series converges in
the case p = const, i. e. under which circumstances there is a deformation 03B603C9
and a corresponding density for angular velocities cv which are suffi-
ciently close to Lichtenstein improved the work of Liapounoff [7]
and extended this method to much more general equations of state [8].
Lichtenstein’s method has the advantage that in the inhomogeneous case
p 7~ the equation of state p ( p) is not explicitly needed to determine
whether these solutions do exist or not.

This paper focuses on a reconsideration of Lichtenstein’s analysis of the
inhomogeneous case in terms of modern analysis. Following Lichtenstein’s
idea, the variation of the density p is defined in section (2), i. e. it is
defined how the function ( determines a variation of the density p. Then
Euler’s equation is rewritten in terms of 03C9 and 03B6. This equation can be
regarded as an operator T which maps a scalar 03C9 and a function ( of the
Banach space Bi to the Banach space B2. The Banach space B1 and B2
are introduced in section (3). The zeros of the operator T are the solutions
of Euler’s equation.
The partial derivative D~ Q of the operator T with respect to ç is

determined in section (4). Because p is assumed to be a solution of Euler’s

l’Institut Henri Poincaré - Physique theorique



459ON LICHTENSTEIN’S ANALYSIS OF ROTATING NEWTONIAN STARS

equation of a star which rotates with angular velocity 03C90, it holds that
0)==0. If the partial derivative 0) : B1 -~ B2 is a bijective

linear operator, the implicit function theorem [9] guarantees the existence
of a ~ &#x3E; 0 such that for all there exists with

~)==0. Lichtenstein proved the convergence of an iteration in order
to show the existence of these zeros. It is interesting that the iteration
which is usually used to prove the implicit function theorem is the same
as Lichtenstein’s iteration; in other words, Lichtenstein has proven the
implicit function theorem in a special case.

In section (5) a criterion is derived to determine whether the partial
derivative D~ 0) is bijective and the implicit function theorem may
be applied or not, or, in other words, under which circumstances solutions
of Euler’s equation in the neighbourhood of the given one exist. The result
is proposition (5 . 3). Unfortunately, it is hard to verify this criterion. Thus,
no general existence theorem can be presented. But if the given solution p
is a solution of the static Euler equation, p is spherical [ 10], and for a

spherical solution the criterion of section (5) can be verified. This yields
an existence theorem (6 .1 ) of slowly rotating stars.

In appendix (A) some properties of the Newtonian potential are pre-
sented which are used in this paper. Finally, in appendix (B) some relations
are shown, which are needed to prove that the operator T is continuously
differentiable with respect to , according to the norm of the Banach
space B2.
Some possible extensions of the results of this paper are presented in

the following. Euler’s equation of a differentially rotating body is similar
to Euler’s equation of a rigidly rotating body. Thus, the existence theorem
of section (6) can be extended to the case of a differentially rotating star.
Therefore, differentially rotating stars exist if the angular velocity 03C9 (R) is
sufficiently small and sufficiently smooth, i. e. if |03C9 (R) | and |~R cv (R) are
sufficiently small. Here, the function cv (R) is the angular velocity of points
whose distance to the axis is R.
The variation of the solution p can also be used to change the equation

of state. Let {~(p); t E [0, 1]} be a set of equations of state and po a
solution of Euler’s equation with the equation of state po. If the function
pt (p (x)): (t, x) E [0, 1] X 1R3 -~ fulfills certain smoothness conditions, then
the implicit function theorem can be usued to find solutions of Euler’s
equation with an equation of state pt for sufficiently small t,

1. FORMULATION OF THE PROBLEM

Euler’s equation of a rigidly rotaing body is

Vol. 60, n° 4-1994.



460 U. HEILIG

Here

denotes the gravitational potential (1) of the matter density is the

angular velocity of the rotation and eR (x) the unit vector which is orthog-
onal to the axis and directed outside. It is assumed that the fluid is

barotropic, i. e. that the pressure p = p (p) is a given function of the density.
Then, equation ( 1.1 ) can easily be integrated. The result is

where A (p) = and ~, is an appropriate constant.
Jo s

It is assumed that a solution p : T~R3 ~ R+ of Euler’s equation ( 1 . 2)
with the angular velocity cvo is given. The bounded body of the star is
called T and the surface of the star aT. This solution is assumed to have
the following properties: p (x) is Holder continuously differentiable with
the Holder exponent (2) 0  v  1. Furthermore p (x) has three linearly
independent symmetry planes which intersect at one point. This intersec-
tion point is the origin of the coordinate system, and the z-axis is the axis
of the rigid rotation. These three symmetry planes imply Vp(0)==0. The
surfaces p = const are assumed to be a set of smoothly deformed sphere
surfaces which intersect the positive z-axis at one point. These p = const
surfaces will now be used to introduce a radial coordinate. Any point
x E T lies on a surface p = This surface intersects the positive z-axis
at a point xz. The length r of the vector xz will be the radial coordinate
of the point x and the corresponding surface p = const will be denoted

This radial function is assumed to be a norm of the points x E T,
i. e. there exist two constants d1 and d2, such that

Now we can regard p as a function depending only on r. Thus,
p(~)==p(~(~)). The function p (r) is assumed to be monotonically decreas-
ing. The sum of gravitational and centrifugal force

denotes the usual euclidian norm in fR3.
(2) In other words, p is continuously differentiable and the derivatives ax~ p fulfill the

following Holder condition with an appropriate constant C : 
I

l’Institut Henri Poincaré - Physique théorique’



461ON LICHTENSTEIN’S ANALYSIS OF ROTATING NEWTONIAN STARS

fulfills the following inequality for all ~’== 1, 2, 3, all and two appropri-
ate constants Cl and c2 .

In order to solve Euler’s equation ( 1. 2) for an angular velocity 
a variation of the density p will be defined. Let n (x) be the normal vector
which is orthogonal to the surface at the point x and points towards
the outside of For any smooth and sufficiently small (3) function
~ : with’ (0) = 0, the following coordinate transformation is defined.

If g~ can be inverted, p~ (x) : = p (~ ~ M) is a new distribution of matter.
This new matter density is a solution of Euler’s equation (2. 2), if for all

-

Since p~ (g~ (x)) = p (x) and p~ (0) = p (0) the evaluation of this equation at
the points g~ (x) yields for all x ~ T

0 can be regarded as an operator which maps the scalar úJ and
the function’: to the function Q: The zeros of this

operator are the solutions of Euler’s equation. One zero is known.

Because p is a solution of Euler’s equation with angular velocity it

holds Suppose that two Banach spaces B1 and B~ can
be found such that ~x~r(~0 is a continuously
differentiable operator. If, furthermore, the partial derivative

D. 0): B1 1 -+ B2 is bijective, then the implicit function theorem [9]
can be used to guarantee the existence of a ~&#x3E;0 such that for all

cc~© -~- ~) there exists exactly one with ~)=0. The
corresponding matter density is a solution of Euler’s equation with

angular velocity (D.

{3) "Sufficiently small" will be defined in the next section.

Vol. 60, n° 4-1994.
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2. THE BANACH SPACES

Define the Banach space

f is continuous, f=O(~x~) for 
f is continuously differentiable for all x E TB{ 0}

~i: - / For all v E [R3 with = 1 there exists lim V f’ 
t -~ 0 +

y 

f is symmetric relative to the three symmetry planes of T
with the norm

It should o be remarked, that the gradient V f ’ of a function f~B1 might be
discontinuous at the point 

PROPOSITION 2 . 1. - There , Z  1 such that for 1 with
’ coordinate transformation

is bijective and for all x E TB{ 0} continuously differentiable. There holds
the inequality

The Jacobi matrix fulfills the following j inequality for all

Furthermore, the matter density p~ (x): = p (g~ 1 (x)) is continuously differenti-
able for all x E T~ and fulfills

Proof. - The existence and the differentiability 1 and the inequal-
are easily derived using the inverse function

theorem. Applying the chain rule yields the continuous differentiability of
p~ for all Due to Vp(0)==0 and the Holder continuity it
holds that ~V p (x)~ = (9 for x ~ 0. Furthermore, because

With this proposition, the function 7B(D, ~) (x) of equation ( 1. 3) is well
defined for all 03B6~B1 with ~03B6~B1~Z. The results of potential theory listed
in the appendix (A) show that ~) (x) lies in the Banach space

B : - f is continuously differentiable, 0394 f=(9 O (~x~) for x 0, }2 } f is symmetric relative to the three symmetry planes of T

Poincaré - Physique theorique
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with the norm

3. DETERMINATION OF THE DERIVATIVE D~ T (c~, ~)

To determine the partial derivative

define the set of coordinate transformations

and the functions

If the partial derivative D~ ~) h exists at all, then

Here the gradient V f consists of the partial derivatives with respect to
the coordinates x1, x2 and x3. It holds that

To determine 3, y 0 x), define

and

It holds that

Vol. 60, n° 4-1994.
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and since ~ + ~ (x) = p (x)),

With

it follows that

and

Thus,

To determine ’ the integral f2, the shell will be " parametrized 0 by
two coordinates u and 0 ~p which parameterize " the surface " ~7~ and 0 a radial
coordinate - re[0, . u, ~p) then

Because " the integral J~ does not depend 0 on the parameter t, it

holds that

The equation

Annales de l’Institut Henri Poincaré - Physique theorique
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leads to

where ~(~’) denotes the infinitesimal surface element of 
Finally, it can be seen that

where

The results of potential theory which are listed in the appendix (A)
show that for all 03B6~ HI with (See proposition 2 .1 )

is a bounded linear operator. To guarantee that ~) is continuously
differentiable with respect to , and that D~ Q is the partial derivative,
the following points must be proven:

1. For all h~B1 it holds that

2. For all hEBl with and all 8&#x3E;0, there exists a 8 &#x3E; 0 so that
for and 

The proofs of these points are in appendix (B).

4. EXAMINATION OF THE DERIVATIVE 0)

To apply the implicit function theorem, the partial derivative D~ 0)
must be a bijective operator which maps the Banach space Hi onto the
Banach space B2. It is often difficult to show whether an operator is

bijective or not. In this section, a simple criterion will be derived which

Vol. 60, n° 4-1994.
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can be used to determine whether the partial derivative

is bijective or not. Here

is the normal component of the sum of gravitational and
centrifugal force. In the following, the abbreviation

will be used.

DEFINITION AND PROPOSITION 4 . 1. - Let (1) be the Banach space of
the continuous functions f : T -~ IR which are symmetric relative to the three
symmetry planes of T. Then, the operator

is compact.

Proof - First, for every continuous function h (x) the function

is continously differentiable for all x~TB~T and for
x -~ 0. Because it was assumed that

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’



467ON LICHTENSTEIN’S ANALYSIS OF ROTATING NEWTONIAN STARS

the function can be extended continuously to ~-=0. It

should be noted that n (x) is orthogonal to the surfaces

An operator is called compact if, for every bounded sequence hi (i E ~),
there exists a convergent subsequence of the sequence Applying the
Arzela-Ascoli theorem (4) it remains to be proven that for every bounded
sequence hi the sequence [K hi] (x) is equicontinuous, i. e. that for every
e&#x3E;0 there exists a 03B4&#x3E;0 such that for every i~N and all xl, xo with

~ ~ x, - xo ~ ~  ~ it holds that

It only will be shown that the sequence withY q 
~’ (x)

is equicontinuous. The proof that

is equicontinuous is similar.
Due to equation (A. 3) there is a constant C3 such that V Fi fulfills

Since hi is a bounded sequence, there exists a constant M such that

For all E &#x3E; 0 there exists such that for all 
2

it holds that

(4) See [ 11 ], theorem 67 . 2.

Vol. 60, n° 4-1994.
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For all x with ~x ~&#x3E;0394 2, there is a constant M’ such that x II M’
for all So for all x 2 with ~x1~ II x 2 &#x3E;0394 2 and ~x1- x211  ~ M’ it
holds that

Choose ~~inf~2014, then this inequality holds for all in T
- 

2 
q Y 1 ~

PROPOSITION 4.2. - The operator

is bijective if the operator

is bijective.

Proof - Assume that D~ T (cvo, 0) is not injective. Then there exists a
h~B1 with

Since B1 (T), it is obvious that h is in the kernel of 1- K, a contradic-
tion to the assumption.
To prove that D~ 0) is surjective, choose any gEB2. The inequality
1 can be used to show that Because 1- K was

assumed to be surjective, there exists a continuous function h with

If it can be shown that then and

©) h. For every continuous h the function [~h] (x) is Holder

continuous. Because ~ is Holder continuous, it follows that h is Holder

continuous. Because was assumed to be Holder continuous, it holds
that K h~B1 for any Holder continuous function h.
With proposition 4 . 2 and the fact that for any compact operator K the

operator 1- K is bijective if and only if it is injective [12], it is sufficient
to prove that 1- K is injective in order to prove that the implicit function
theorem may be applied to the operator T(cv, ~).

Annales de l’lnstitut Poincaré - Physique theorique
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PROPOSITION 4.3. - Assume that

if and only if h = 0, where p (x) is a solution of Euler’s equation (2 .1 ) which
has the properties mentioned in section ( 1 ). ?’hen, there exists a ~ &#x3E; O, such
that for every ro E (coo - ð, cvo + b) there exists a Cro E B1 with = 0.
The matter density (x) = p (g~~l (x)) is a solution of Euler’s equation of a
rigidly rotating body with the angular velocity 03C9 and the equation o,f’ state
p ( p) . Because (0) = 0, all stars have the same density at the center
(x = 0).

5. SLOWLY ROTATING STARS

The foliowing proposition is an application of proposition (4. 3).

PROPOSITION 5 . 1. - Let p (p) be an equation of state with a pp (p)  0
such that the corresponding spherical solution p : B|T| (0) c fR3 -+ of the
static Euler equation

is Holder continuously differentiable. Here r (x)=~x~ is the usual radial

coordinate, and (0) is the ball with radius |T|. Assume furthermore, that
p (x) = p (r) is monotonically decreasing. Then for all sufficiently small angu-
lar velocities cc~ there exists a solution T c (R3 ~ (R + of Euler’s equation

with the same ’ equation of state p (p) and the angular velocity 0. Furthermore,
it holds that p~, (0) = P (0).

Because " p (x) is a spherical matter density, n (x) = x ~x~and 0 the function

03A8 (x)=03A8 {r) has the simple " form

Since there are constants Cl and c2 such that

Because the density p is spherical, the three symmetry planes can be
chosen arbitrarily. We choose the planes x2=0, and ~3=0. Thus,

Vol. 60, n° 4-1994.
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p (x) has the properties which are mentioned in section ( 1 ). According to
proposition (4 . 3) it is sufficient to prove that (1- ~ h = 0 if and only if
h=o.

Define the unbounded linear operator

Note that ~ maps a subset CO (7) of the Hilbert space L2 (1) into the
Hilbert space L2 (T) and K maps the Banach space C (T) into itself.
Because for any continuous function/it holds that 11111",=0 if and only

= / | f I 2 d3 x = 0, the kernel of the operator 1- K consist of all

which are symmetric relative to the planes x2 = 0
and x3=0. Since any function f~L2(T) can be expanded with respect to
an orthonormal basis, the analysis of the operator 1- K’ in the Hilbert
space L2 ( T) has an advantage over the analysis of the operator 1- K in
the Banach space C~(7).
Choose any h (r, u, ~p) in the kernel of 1- K’. h can be expanded into

spherical harmonics Ylm (u, i. e. that

with the continuous functions

Furthermore, 20142014201420142014 can be expanded into spherical harmonics.

where r = inf { r (x), r (x’)} and r&#x3E;= sup {r (x), r (~’)}.
If the continuous function h is in the kernel of 1- K’, then for all l, m,

and all it holds that

Annales de l’lnstitut Henri Poincaré - Physique theorique
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Inserting (5 . 2) and (5. 3) into equation (5.4) yields

For all /&#x3E; 1 equation (5 . 5) yields 

Proof. - Assume that is solution of equation (5.5) with /&#x3E;1.
Then

where p’ : According to p’~0 it follows that

i 
Using the inequalities - ~1 for all r’~[0, r] and ~1 for all r’~[r, | T|]

r ~

yields

Vol. 60, n° 4-1994.
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where ~hlm 1100 : = su { |hlm r I; r E 0 I TIJ}. Because  1 it followsrm ( ) ~~ 
2l+ 1

that hlm = o.
For l = 0 equation (5 . S) yields hoo = o.

Proof - Inserting l = 0 into equation (5.5) yields

First, it holds that hoo (0) = O. Define

and

With a contradiction it will be shown that R= |T| so that 
Assume that R  Then, for all R _ r _ ~ 7~ it holds that

With equation (5 . 1 ) and it holds that

Thus,

Choose so that for all holds that

Henri Poincaré - Physique theorique
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Because m(r) is monotonically increasing, it follows for all that

Since hoo (r) = 0 for all R~, this inequality also holds for all r ~ ~~, ~].

Thus, the inequality ) ~oo (~) !~ ’ su p { ~o } holds for all

This yields hoo = 0 for all re[0, with contradiction
to R : 

Because the spherical harmonics ~p) are linear combinations of
the functions cos 03C5, (sin u sin 03C6) and (sin u cos it is proven so far that

any solution of equation (5. 5) must have the form

h (r, u, (r) cos u + h2 (r) sin 03C5 sin 03C6+h3 (r) sin u cos cp.
But the functions cos u, (sin u sin (~) and (sin u cos ~p) are antisymmetric
relative to the symmetry planes z = 0, ~=0, or ~-=0. So (1- K} h = 0 if
and only if A=0. To complete the analysis of the operator I2014A", it is
noted without proof that const is the only solution of equation (5.5)
for 1= 1.

APPENDIX

A. PROPERTIES OF THE NEWTONIAN POTENTIAL

The proofs of the facts mentioned in this section can be found in books
about elliptic partial differential equations.

Let T~R3 be a bounded domain with a smooth surface aT. Then the
Newtonian potential 

.

of a bounded function/: is a continuously differentiable function.
Furthermore, there exist constants C1 and C2 such that for all x~R3 the
following inequalities hold:

Furthermore, for all 0  v  1 and all Ro &#x3E; 0, there exist constants C3 (v, Ro)
such that for all and or x 1,

x2 E the partial derivatives fulfill the inequality 
.

Vol. 60, n° 4-1994.
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If the function f is Holder continuous with the Holder exponent v, i. e.
if there is a constant M with

then there exist the second derivatives of the Newtonian potential U.
Furthermore, for all R0&#x3E;0 there exist constants C4 (v), Ro),
and Ro) such that for all xl, x2 E 1~3 with and xl,

or xl, x2 E the following estimates hold:

In addition, for all x E T it holds that

Let S be a bounded and smooth surface. Then, the Newtonian surface
potential

is a Holder continuous function. V(x) is even analytic for all For
all there exist constants D1 and D2 (v, Ro) such that for all xl,
x2 E 1R3 with" xl - x2 ~~  Ro the following estimates hold:

If, furthermore, the function f is Holder continuous, then for appropriate
constants D3, ..., D6 the following inequalities hold:

The following proposition is not common.

PROPOSITION A . 1. - Let T be a bounded domain with three linearly
independent symmetry planes which intersect at the point x =~ 0. Let f : T --&#x3E; IR
be a continuous and bounded function which is symmetric relative to the
three symmetry planes of T. I, f ’ f , fulfills I f (x)| c 11 for a constant c,
then there exists a constant El such that the gradient of the Newtonian
potential

fulfills

Annales de l’Institut Henri Poincaré - Physique theorique
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Furthermore, for all 0  v  1 , constant E2 (v) such that for all
v E 11~3 and all t E [ - 1, 1] it holds that

Proof - Since there are three linearly independent symmetry planes
which intersect at the point jc=0, it holds So an upper
bound for

must be found. This integral can be estimated similarly as

II V U(x) II. To shorten this paper, only the estimate

will be proven.
With equation (A. 3) it can easily be seen that there exists a constant m

such that

holds for all x with ~x II &#x3E; . Without loss of generality it can be assumed
9

that (5) (o) c T. Choose any x E B1/9 (o) and define E : _ fi then
(x) c B~ (0) and

where

e) B~ (x) denotes the ball of radius r with center x.

Vol. 60,n" 4-1994.
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In the following, these integrals will be estimated. With

II V K(x, x’)~~4 ~x-x’~3 and I f |~ c ~ for (0) it follows that

for a Oe(0,l). and
it holds that

Because the function ln x is bounded for all 1 ), there exists a
constant with

Choose large enough; then T ~ I (0) and it holds that

Annales de l’lnstitut Henri Poincaré - Physique - theorique
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Furthermore, there exists a constant N~3 with

Choose £2 ~ J3 (~~1+~2+~3)}, then for all it holds

that

It must be noted that all constants in this section depend on the volume
of the body T, its surface aT and the greatest circuit of the surface. In
this paper occurs a whole set T~ of such bodies. But since ~ was restricted

Vol. 60, n° 4-1994.
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by ( ~ ( I B 1 __ Z (see proposition (2 .1 )), an upper bound of the volume of
all bodies 7~, all surfaces ~7~, and the greatest circuit of all surfaces can
be found.

B. THE REMAINING PROOFS OF SECTION (3)

Because

only depends quadratically on OJ and ~, it easy to see that it continuously
differentiable with respect to ( and that its derivative has the form

It remains to be proven that the Newtonian potential

is continuously differentiable with respect to ( and that its derivative has
the form

B.I. PRELIMINARIES

In this section some propositions are presented to prove that ~ (~) is

continuously differentiable.

coordinate transformations

Annales de ’ l’Institut Henri Poincare - Physique " theorique "
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for i --+ oo the relations

2. The Jacobi-matrices Dgi fulfill

this proposition can be proven by straightforward 0 calculations.

PROPOSITION B . 2. - Let , convergent sequence in
Let ~(~):=~-+~ (x) h (x) be the set of coordinate transforma-

tions gi: 1 T -+ To. For any hEB1 define , the sequences

Then all converge uniformly for all x ~ Ti and all h E B 1 wzth

~h~~1. With proposition (A. 1) (B. 1) the

sequences ~Fi(gi(x)) ~x~ converge uniformly for all XE T and all h~B1 wzth

This proof is too long to be given in every detail. The main
tool for the proof is that any equicontinuous sequence which converges
pointwise on a dense subset, converges uniformly (6).

Equation (A. 3) shows that the sequence is equicontinuous for
all /! with Because it converges on a dense subset, it converges

uniformly. So it is sufficient to prove, that20142014* converges uniformly in a
ball ~2 (0)- Choose ~&#x3E;0 such that (for all sufficiently large ~

(~) ~ [11], proposition 67.4.
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then

where

and

With proposition (A .1 ) the first integral converges uniformly to 0 in
BR/2 (0). To estimate the second part, define

The second partial derivatives of Gi converge uniformly to 0 in BR/2 (o).
Since ~ G. (0) = converges uniformly to 0 in B (0). Because ~h ILx&#x3E;( ) ~ g Y R/2 ( )

and II V h 1100 can be estimated by 1, the convergence is uniform for all
h E B1 with ~ h ~B1~ 1. 0

PROPOSITION B . 3. - Let I I f - f ~B1 ~ o be a convergent sequence in

BZ (o) c Bi . Let = x + n (x) f (x) be the set of coordinate transforma-
tions T ~ Ti, g : T ~ To. For any hE B1 with ~ h II ~ 1 define the sequences

Then all ~Fi(x) ~x~ converge uniformly for all x E U Ti and all h~B1 withi

~h II - _ 1.. With proposition ( B . 1 ) it follows that the sequences ~ Fi(g i(x)) ~x~
converge uniformly for all x E T and all hE B1 with II h II ~ 1.

The proof of this proposition is very similar to the proof of proposi-
tion (B . 2).
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B . 2. C (Q IS DIFFERENTIABLE

Choose ( and h such that for all sufficiently small t it holds that

~+~e~(0). Define the coordinate transformations

with Jacobi matrices

Let

then ~ (~ + th) (x) = f (t, gt (x)) and

It will now be shown that in the norm ~ . ~~Bz

and

Addition of equation (B .1 ) and equation (B . 2) yields the desired result

To prove equation (B .1 ), the uniform convergence of

and of

has to be shown. 
’

Because T is a bounded domain and the equations f ’ (0, gt (0) = 0 and
V/(0, ~o(0))==0 hold for the integration of equation (B.4) yields

Vol. 60, n° 4-1994.
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equation (B. 3). Equation (B. 4) can be proven in the following way:
Using sum convention, it holds that

where

With the continuity of and the equation ~f(0,0)=0 it

follows that converges uniformly to so the

first part converges uniformly to

Now the second part will be estimated. There exists a @e(0, 1 ) such that

Because x) is Holder continuous, there is a constant M such
that

With the estimate h it follows that

converges uniformly to

Powcarc - Physique theorique
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The first step to prove equation (B. 2) is to prove the uniform conver-
gence of

In section (3) it was shown that

Thus, for all x there exists a Oe(0, 1 ) with

This yields

With the propositions (B .. 2) and (B.3) this sum converges uniformly to 0.
The integration of equation (B. 5) yields the uniform convergence
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This equation and the continuity of x) lead to the uniform conver-
gence of

It holds that

With equation (B . 5) and ~(1+Z) it follows that the first part

converges uniformly to 0. Proposition (A . 1 ) and the properties of the
Newtonian potential (A. 7) imply that there is a constant M such that for
v with ~v~ = 1 it holds that

Thus, the second part can be estimated as follows:

This completes the proof of equation (B. 2).

B . 3. THE CONTINUITY OF THE DERIVATIVE

In this section it will be shown that the map

is continuous. Here BZ) denotes the space of all bounded linear

With the propositions (B . 2) and (B . 3) it follows that the map

Annales , de l’Institut Henri Poincaré - Physique , théorique _
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is continuous. It remains to prove 
’ the continuity of the map 0

Choose any with and any sequence ÇliEN) which
converges to " i. e. that I ~ ~~ -- ~ ~ ~B 1---a 0 for i --~ oo . Define the functions

With the inequalities (A. 4) and (A. 5) it follows that the sequences fj (03B6i, x)
and x) are equicontinuous. Because they converge pointwise on a
dense subset of a ball which contains all g~i (7~ they converge uniformly (7)
to Because 0)=0, an integration yields the
uniform convergence of

Since

the uniform convergence of

and of

remain to be proven in order to prove equation (B. 8).
The uniform convergence ~-) and the differentiability of~(~ ~)

lead to equation (B.9). Equation (B. 10) will be proven in components. It

Q 5~ [11], proposition 67.4.
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holds that

Because fj(03B6, x) is differentiable, there is a constant A such that

Furthermore, , all a xl [ h (x) n . x )] are bounded fun ctions and 
’f’ (03B6i, g03B6i(x)) ~x~ con-

verges uniformly to . Thus,

converges uniformly to O. Because all I h ~, !N! f, are bounded functions,
the estimate

leads to the uniform convergence of
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