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ABSTRACT. - We consider the dynamical system composed of a rigid
extended charged particle and the electromagnetic field (Pauli-Fierz
model); the particle is also constrained on a plane and subjected to a
central potential. For this system, we prove a Nekhoroshev-type theorem
according to which the purely mechanical circular motions of the particle
are stable up to times growing exponentially with the ratio of the radius
of the particle to its "classical radius", provided the frequency of révolution
of the particle is large enough. The order of magnitude of such a frequency
is the same as that of the radiationless motions already discussed by Bohm
and Weinstein in the context of the reduced Abraham-Lorentz-Dirac

équation for the électron. From the purely mathematical point of view,
the présent result constitutes a nontrivial extension of Nekhoroshev-type
results to a certain class of infinité dimensional systems.

RÉSUMÉ. - Nous considérons le système dynamique formé d’une parti-
cule chargée rigide étendue et du champ électromagnétique (modèle de
Pauli-Fierz), la particule se déplaçant dans un plan et étant soumise aussi
à un potentiel central. Pour ce système nous démontrons un théorème de
type Nekhoroshev qui assure que les mouvements circulaires purement
mécaniques sont stables sur des temps qui croissent exponentiellement
avec le rapport du rayon de la particule à son « rayon classique », pourvu
que la fréquence de révolution soit assez grande. L’ordre de grandeur de
cette fréquence est le même que celui dans le mouvement sans radiation
discuté par Bohm et Weinstein dans le contexte de l’équation réduite de
Abraham-Lorentz-Dirac pour l’électron. D’un point de vue purement
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340 D. BAMBUSI

mathématique, ce résultat constitue une extension non triviale du théorème
de Nekhoroshev à une classe de systèmes en dimension infinie.

1. INTRODUCTION

In this paper, following ([ 1 ], [2]), we continue the study of the interaction
between the classical electromagnetic field and matter, as described by the
nonrelativistic Pauli-Fierz [3] [or Abraham ([4], [5])] model: namely, the
coupled system composed of an extended rigid charged particle (whose
rotational degrees of freedom are neglected ) obeying Newton équation
with the Lorentz force, and of the electromagnetic field, satisfying Maxwell
équations with a current due to the particle’s motion; the point of view is
that of the theory of dynamical systems (see [6]), in which the Cauchy
problem for the complète system is studied. Hère we concentrate on the
problem of the radiation emitted by the charged particle in an external
central field of forces, and in particular on the possible existence of

radiationless motions; some results in the spirit of Nekhoroshev’s theorem
for infinité dimensional systems are obtained.
Problems of this type were studied long ago using what might be

called standard radiation theory ([7], [8]), namely the procédure originally
developed in order to calculate the radiation emitted by antennas; such a
theory is essentially characterized by the fact that the current is prescribed
a priori, so that the difficulty due to the radiation reaction on the current
is eliminated, and the problem is essentially reduced to the linear one of
describing the field "created by a given current"; in particular, use is made
of the retarded potentials, which corresponds to a situation with initially
(or asymptotically) vanishing fields; moreover, the so called dipole approx-
imation is often made.

With such a procédure one finds that a point-like particle radiates
energy with a rate proportional to the square of the instantaneous acceler-
ation (Larmor formula), and thus should fall onto the center of attraction
(see e. g. [7], p. 274, problem 1 ). However, it is quite well known that
classical radiation theory predicts the possibility of a différent behaviour
in the case of an extended particle, and in fact the possibility of periodic
radiationless motions was pointed out by many authors ([9], [ 10]) (see
also [11]). In particular Schott [9] studied the motion of a rigid uniformly
charged sphère, and showed that periodic radiationless motions can exist,
but only if the radius a of the sphère and the frequency 0) of the motion
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341A NEKHOROSHEV-TYPE THEOREM FOR THE PAULI-FIERZ MODEL

are related by where n is any positive integer number (c being
the speed of light).
An intermediate treatment of the radiation problem is that of the

classical work of Bohm and Weinstein [10]. Indeed thèse authors intend
to take into account the rôle of the radiation reaction; but, due to the
difficulty of a rigorous treatment of the complète nonlinear system, they
limit themselves to the study of a reduced équation for an extended rigid
charged particle, which is obtained in some approximations. Within such
a framework, they concentrate on the problem of the motion of a "free"
particle, subjected only to "its own" field, and obtain the result that there
exist spécial conditions under which periodic motions of the particle are
possible. Such conditions connect the shape of the particle, its mass m, its
charge eo, and the frequency 03C9 of the periodic motion. In particular, for
a uniformly charged sphère of radius a, the frequency of the periodic
oscillation can assume only one value (o)~=2~/~~); moreover, such
motions can exist only if the équation tg (2 (2 is satisfied, where
â is the so called "classical radius" J: = of the particle.

In the présent paper, we take into full account the rôle of the radiation
reaction, by studying the Cauchy problem for the complète nonlinear
coupled system describing particle and field. In particular, we study the
motion of a particle in an external central field of forces, and prove the
stability in Nekhoroshev sensé of some purely mechanical circular motions.
The main idea is to make use of two known facts, namely: on the one
hand, the exchange of energy between the particle and the field is restricted
essentially to a small range of frequencies around the instantaneous angular
frequency 03C9 of the motion; on the other hand, as shown in [1] ]
(theorem 2.4), the rate of energy exchange of the field modes decreases
exponentially with their frequency. Thus, one can conjecture that the

particle will not be able to radiate, and therefore to fall towards the
center, within accessible times (as in Nekhoroshev theorem), provided 03C9 is
sufficiently large; in fact, we show that the circular orbits are stable in
Nekhoroshev sensé, if co&#x3E; Precisely, we assume the charge distribution
of the particle to be given by a gaussian; moreover, we consider the
particle to be constrained on a plane, and subjected to a central potential
of the form a with positive a. Then we prove that, if the ratio is

large, where a is hère the dispersion of the gaussian describing the charge
distribution of the particle, and â the classical radius, there exists an open
set of initial data such that the particle’s motion remains close to a uniform
circular motion up to times which increase exponentially with a power of
the above ratio. The result is obtained for parameters b in the
interval - 2  b  2, satisfying the technical condition that b+2 should
be diophantine. Moreover, we find that the allowed set of initial data is
characterized by the fact that the frequency co of the corresponding circular
orbits is larger than 
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342 D. BAMBUSI

Such a result is qualitatively in agreement with that of Schott recalled
above, but is hère deduced as a rigorous theorem for the nonlinear coupled
system composed of particle and field. Bohm and Weinstein’s oscillations
are instead a différent phenomenon; in fact, their condition on the shape
of the particle excludes the case of an analytical exponentially localized
form factor, which is essential for our proof. However, we point out that
the order of magnitude of the frequencies of the periodic motions is the
same in ail thèse works.

For what concerns the mathematical aspects of the problem, the proof
of the theorem given hère is based on the rigorous methods of classical
perturbation theory for infinité dimensional systems, and in our opinion
might constitute in itself an interesting contribution in such a domain. In
fact, while perturbation theory of finite dimensional systems is now quite
well developed, the corresponding theory for infinité dimensional systems
is still very incomplète ; indeed almost ail known results refer to the
extension of KAM theorem to infinité systems with discrète spectrum
([12]-[18]), while very little is known for systems with a continuous spec-
trum ([19], [20]), and in général on the possibility of extending Nekhoro-
shev theory to infinité dimensional systems [21] (see also [22]). The présent
result is a Nekhoroshev type theorem for a systems of partial differential
équations with continuous spectrum; we think that this is the first example
of a new class of systems that can be studied studied using perturbation
theory [23].
Our theorem is an improvement of a result recently obtained by Benettin

Galgani and Giorgilli (BGG) in [24], for the case of finite dimensional
systems. They proved that if a Hamiltonian system is composed of two
subsystems, one of which has motions characterized by frequencies much
higher than the other one, then there is essentially no exchange of energy
between the two subsystems, up to times growing exponentially with the
ratio of the two characteristic frequencies. Their estimâtes dépend strongly
on the number of degrees of freedom of the high frequency system, but
the dependence on the dimension of the low frequency system turns out
to be very good, since use is made of a diophantine condition with an
exponent completely independent of the dimension of the low frequency
system.
The idea of the présent paper is to consider the purely mechanical

system as the high frequency one, and the free field as the low frequency
system. A first improvement of BGG’s theorem which is needed to obtain
our result consists in eliminating completely the dependence of their
estimâtes on the dimension of the low frequency system. This can be
obtained using techniques borrowed from complex analysis in Banach
spaces, which allow to deal with the variables defining the state of the
low frequency system as a single object. In such a way one obtains a

Annales de l’Institut Poincaré - Physique théorique
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result of BGG kind, but valid also in the case of an infinité dimensional
low frequency system [for example a system whose unperturbed dynamics
is given by finite différence équations ([ 19], [20]).

However, the above preliminary result is not enough to deal with the
Pauli-Fierz model, because the high frequency degrees of freedom of the
field are to be taken into account. On the other hand, such degrees of
freedom are essentially isolated, due to the analyticity of the form factor,
and this suggests the idea of dealing with the whole electromagnetic field
as if it were a low frequency system. This is actually obtained using
techniques similar to those currently used for systems with short range
interaction [ 18], however, also thèse techniques require some extensions
that we will discuss in section 3.
The paper is organized as follows. In section 2 we recall the model

and state our result in a somehow simplified way. In section 3 we
outline the main ideas of the proof. The formai scheme of proof is given
in section 4. The analytic scheme needed to exploit the particular
structure of the interaction and to obtain estimâtes independent of
the dimension of the low frequency system is given in section 5, together
with the main steps of the proof and with the most général formul-
ation of our result (thm. 5.3). The technical part of the proof is finally
given in section 6.

2. STATEMENT OF THE RESULTS

As usual in dealing with the Pauli-Fierz model, we work in the Coulomb
gauge, so that the only dynamically relevant unknown for the field is the
vector potential A, with the constraint div A = 0. Fix a cartesian coordinate
system x2, x3) with the origin coinciding with the center of attraction
of the particle. Let (r, 8) dénote the polar coordinates of the particle in
the plane x3 = 0 where we assume it is constrained, and let q = q (r, 8)
dénote its cartesian coordinates. The charge density at je is given by
eo p (x - q), where the "form factor" p is an assigned normalized L1
function while eo is the total charge of the particle; the Hamiltonian of
the system is given by [ 1 ], [3], [7],
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where

hère E = (E1, E2, E3) is the momentum conjugate to A=(A1, A2, A3), j9
is the momentum conjugate to r, M is the momentum conjugate to 8, and
V (r) is an external potential. Thé momentum E coincides, up to a factor,
with the electric field ; the momentum p coïncides with radial component
of the total momentum of the particle.

In order to simplify the statement of the theorem we will assume that
V has the form

the most général assumptions on the potential under which our theorem
holds will be given at the beginning of section 3.
We will consider the function space H~s} = H~s } (rR 3, rR 3), ~~0 which is

defined as the completion of C~ (the lower index c stands for "compactly
supported") vector fields with vanishing divergence in the norm

(we recall that, with respect to such a norm, }

is a Hilbert space and that, by the Sobolev inequality, one has that 
is continuously imbedded in L6 [25], [26]).
As proved in [1] thé appropriate phase space for the system is

where the Cauchy problem for the équations of motion of (2 .1 ) is well

posed provided 03C1 ~ L 1 n In fact, we shall need much more smoothness
of p, in order to prove our result. The précise requirement needed for the
charge distribution will be given in section 5 [cf (5.26)]; hère, just to fix
ideas, we take p to be a gaussian

Consider now the "mechanical" case (with e0=0), in which there is no
interaction between the particle and the electromagnetic field. We fix our
attention on the uniform circular motions; they exist with any angular
frequency 03C9, if b~0,2; correspondingly, the radius r and the angular
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momentum Mare given as functions of 03C9 by where

(while obviously the radial component p of the momentum is zero). For
the complete system (e0 ~ 0) we can prove the following.
THEOREM 2. 1. - Consider the dynamical system described by Hamil

tonian (2. 1), (2. 2), in the phase space F [cf eq. (2. 3)]. Let the parameter b
of the external potential be in the range - 2  b  2, b ~ 0 and satisfy the
diophantine condition

for some positive v’. For a given 00, define the pure numbers El’ E2, according
to

where a is the dispersion of p [cf (2 . 4)], and a : = is the "classical
radius" of the particle. Then there exist strictly positive numerical
constants E*, kl, ... , k6 which depend only on b, with the following prop-
erty: if [rc(03C9)/a]~27, and

where

then, for , initial data (Eo, Ao, Po, Mo, 90) E F satisfying .

one ’ has, along à the corresponding à solution the problem, the bounds
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for all times t with

This result can also be stated informally in the following way. If (i ) the
ratio of the so called classical radius of the particle, i. e., to its
"true radius" a is small, and (ii) the révolution time of the particle is
small compared to the time taken by light to cross the particle, then, given
initial data near those allowing the purely mechanical circular motion, up
to times exponentially long with 1/~ one has that ( 1 ) the motion of the

~ 

particle remains close to a uniform circular motion, and (2) the energy
radiated by the particle is small compared to its mechanical energy; by
the way, this implies that the mean power radiated by the particle is

exponentially small with 1/8.
This theorem makes précise the idea that in some situations the interac-

tion with the electromagnetic field just perturb a little the purely mechani-
cal motions. From this point of view, the présent result is closely related
to classical radiation theory according to which radiation reaction is

neglected; in particular, it makes précise its range of validity (at least for
the study of radiationless periodic motions). By the way, as far as we
know the radiation emitted by an extended particle was calculated (using
classical radiation theory) only in the work by Schott, who, as recalled in
the introduction, found that radiationless motions are very spécial, since
they must have a frequency which is exactly an integer multiple of the
inverse of the time taken by light to cross the particle. The présent précise
treatment which takes into account also the radiation reaction, shows
that, provided the coupling is small Schott’s result is essentially
correct; however it shows that the only important property of essentially
radiationless motions is the order of magnitude of their frequency and
not its précise value. Concerning the phenomenon discovered by Bohm
and Weinstein, it is clear that it is quite différent from the one analyzed
hère ; in fact thèse authors study the case in which the motions of the
charged particle are significantly différent from the purely mechanical
ones. So it is not astonishing that their phenomenon appears only in the
case of strong coupling has to be significantly différent from zéro),
and is thus somehow complementary to the one found hère.
Another comment concerns the order of magnitude of the frequency of

the radiationless motions found in classical electrodynamics (those of
Schott, those of Bohm and Weinstein, and the présent ones). Indeed, such
a frequency has to be larger than so that the corresponding motions
appear as a little awkward physically: in fact, orbits of this kind, satisfying
also the condition that no points of the particle move with velocity larger
than c, have the property that their radius should be smaller than the
radius of the particle.
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A last comment concerns the nonrelativistic character of the Pauli-Fierz .

model, and the possibility of a relativistic extension of the présent result.
A study of the fully covariant model of a rigid électron (see [27], [28])
from the dynamical point of view would be very interesting, but we think
that it would be rather difficult. However, we point out that the présent
result can be extended quite easily, as a corollary of the général
theorem 5 . 3, to the semirelativistic model described by the Hamiltonian

with Ar and Ao given by équation (2.2), and b in a suitable range. In
such a model the particle’s position q = q (r, e) satisfies the équation

where the Lorentz force FL is calculated as in the nonrelativistic case, i. e.,

using a non covariant définition of rigid charge distribution: we recall that
in this case the k-th component of FL is given by

The interest of such a non covariant model rests on the fact that it présents
some features characteristic of relativistic théories, as typically the fact
that c is a limit velocity.

3. PRELIMINARIES AND SCHEME OF THE PROOF

First we specify the général properties of the potential V (r) which are
required in order to prove our theorem. The point is that we apply classical
perturbation theory considering the purely mechanical system as a high
frequency one. So, since we are interested in the neighbourhood of a
circular orbit, we have to require that such an orbit exists and that it has
good properties from the point of view of perturbation theory.

Formally we assume that there exists a positive M~ such that the corre-
sponding effective potential

Vol. 60, n° 3-1994.
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has at least one strict minimum rc. Then, we dénote by 03C9r the frequency
of the small oscillations in the radial direction

and by the frequency of révolution of the particle ; we
assume also that is a diophantine number.
By the way, in case V (r) = a rb/b it turns out that IDr = co b + 2. A

further assumption, that will be formulated in a quantitative way in the
statements of the forthcoming theorems and proposition, is that both co
and IDr have to be large.
We corne now to perturbation theory; since we are interested in a

neighbourhood of a circular orbit it is useful to make the following
canonical coordinate transformation

(the transformation on the field variables is introduced for future conven-
ience). In terms of the new variables, the phase space turns out to be

(TC dénotes the complexification of the torus); as usual, we consider also
complex values of M and 8. For simplicity, we shall drop the tilde from F.
A relevant domain of the new variables, which is invariant under the
Hamiltonian flow, is the one which corresponds to real values of the

original variables; by abuse of language, we will simply qualify such a
domain as "real".

Then, we expand the Hamiltonian in powers of rc, ç, M and in Fourier
séries in e; omitting constant terms and tildes, it takes the form

where

and Hint is a function which (in the case where will be given
explicitly in section 6. Actually, all thefollowing developments do not depend
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on the explicit lorm of the interaction but on some of its properties
that will be stated in the hypotheses of the forthcoming theorems and
propositions.

Then, we aim to proceed as in référence [24], considering hw as describing
a high frequency system interacting with the "low" frequency system
described by h, and obtaining a normal form theorem which can be used
in order to bound the time derivatives of the actions M and 71:~. However,
as pointed out in the introduction, h describes a system of oscillators
(think of the Fourier transform of the fields) whose frequencies belong to
an unbounded set. So we need to take into account the fact that, due to
the spécial form of the interaction, there exists a cutoff frequency, such
that the oscillators with higher frequency do not interact with the rest of
the system (see [1]). This information will be inserted in the perturbation
scheme by identifying the spécial class of the functions which enter in a
relevant way in the perturbation procédure, and introducing a suitable
weighted norm for thèse functions. This is quite usual in dealing with
system with short range interaction (see e. g. [ 15], [ 18]), however the exten-
sion of such a method to the présent case is non-trivial, since it turns out
that h, do not belong to the above class and, in particular, has an infinité
norm. This problem can be overcome since (see sect. 4) h does not enter
directly in the perturbation procédure : the only relevant quantity is the
Poisson bracket of h with any function of the above class, and the norm
of such a Poisson bracket can be estimated.

Using the above procédure, one succeeds in obtaining a normal form
theorem. In order to deduce, as in Nekhoroshev theorem, bounds on the
variations of the actions up to exponentially long times, one has to ensure
that ail the variables do not leave the domain where the above theorem
holds. This is a crucial point, since the normal form theorem gives no
information on the time évolution of the field variables E and A. So, their
motion can be controlled only throught energy conservation. This means
that we are forced to choose the domains for thèse variables to be sphères
in the space of states with finite energy.

In section 4 we will recall the formai procédure used to normalize the
Hamiltonian, referring to [24] for further détails. Then, in section 5 we
shall define the class of functions entering the perturbation procédure, the
corresponding domains, and the norms.

4. FORMAL THEORY

Our perturbative scheme is based on the idea that M, ç and 03C0 are
infinitésimal together with the interaction while co is large. Since ail
thèse quantities are not dimensionally homogeneous, it seems difficult to
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identify a priori one dimensionless perturbative parameter; therefore we
shall work without specifying what we mean by perturbative order, but
acting as if it were a well defined concept; the developments of the next
section will show that the présent formai theory is cohérent and can be
made rigorous. Moreover, it will turn out that there is a natural perturba-
tive parameter, which is essentially the ratio of the size of to the size
of hO) plus the ratio of the cutoff frequency to the angular frequency of
the mechanical motion.

First, we recall that, according to the algebraic approach of [29], a near
to identity canonical transformation can be defined as follows. Consider
a séquence of functions {~s}s~1 on the phase space, and define a corre-
sponding linear operator Tx acting on functions by

where

Letting this operator act on the coordinates (with respect to an arbitrary
canonical basis), we obtain a transformation of the phase space syntheti-
cally written as

This transformation turns out to be canonical, and the following identity
holds [29] :

So, we look for a finite generating séquence such that the
transformed Hamiltonian turns out to be in normal form up to a small
remainder i. e. of the form

where Z is such that {03C0’ 03BE’, Z } = {M’, Z } == 0, with the standard notation
for Poisson brackets. In order to write down the équations for x, we first
décompose the interaction in the form

with H~ of order l (some other requirements on this décomposition will
be specified in the next section); furthermore, we dénote hs,

~ s&#x3E;_o

with Zs of order s, and assume
sO sO s= 1

that and are of order s, s + 1 and s + l respectively. So, equating
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terms of the same order in (4. 3), we obtain for xs and ZS the following
équations :

with

Thèse équations can be solved recursively provided irrational, thus
obtaining the generating séquence x.

5. ANALYTIC THEORY

In order to make rigorous the procédure of the previous section we
need to exploit the particular structure of the interaction between matter
and electromagnetic field. The point is that the interaction is described by
a function in which the field variables enter only through expressions
of the form

where 03C6 is a smooth function; so, the high frequency Fourier components
of the field are always multiplied by a small coefficient. Before entering
into détails, let us explain the idea of the scheme we are going to build
up. First, we need to identify the class of functions whose size have to be
controlled in order to ensure the convergence of all the séries and to get
quantitative estimâtes. It is clear that such a class has to be invariant
under Poisson bracket, and under the opération of calculating the Poisson
bracket with h which are the opérations involved in the recursion described
in the previous section; thus, denoting by ~ this class of functions, it has
to satisfy

If ~ is analytical (in a suitable sensé), then this class is obtained simply as
the algebra generated by Hint under the opérations (5.2), and obviously
coïncides with the set of the polynomials in quantities of the form (5 .1 ),
with coefficients which are functions of ail the dynamical variables apart
from E and A.
We corne now to the formai définitions. We begin by specifying the

smoothness properties needed for ~ (which will be proved to be implied
by simple assumptions on the charge distribution, see lemma 6 .11 ). To
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this end, we introduce the function space which is defined as
the dual of H~’~ } (closure of C~ in the norm of H~~); we assume that
the application

where

is well defined and analytic in a neighbourhood of the origin. A function
having this property will be called An example
of H{ 1/2 }- H{ - 1/2 }-analytic function is given by any analytical (in the usual
sensé) function from R3 to [R3, which decays exponentially at infinity. By
the way, a more natural requirement would involve the use of the

space dual to H~1/2}, but we made our différent choice in order to simplify
the identification of H{ 1/2 t H{ - 1/2 }-analytic functions. We also point out
that, if we were interested in the study of the interaction of the electro-
magnetic field with matter in a bounded domain of ~3, then the above
définition could have been substituted by the simple requirement of ordi-
nary analyticity of 03C6.

Consider now a linear functional B on H{ 1/2} of the form

with a ~ which is and its multilinear

generalization, g (E, A)

where ~ Bk is of thé form (5 . 4) and 0 Wk is either A or E.
Then, we give ~ thé following j

DEFINITION. - (Class cC) an analytical functional 1: F ~ C is said to be
if it is of the form

with the coefficients fmlnx(E, A) of the form (5.5).
We point out that the above définition makes sensé also for functions

taking values in Fréchet spaces [take the coefficients of

équation (5 . 5) to be éléments of such a space]; we shall use it also in this
context.

In order to specify the norms we shall use, it is necessary to premise
the définition of the domains where perturbation theory will be

developed. This is given through a fixed vector of positive quantities
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where d  1 is a real parameter, a a parameter having the dimension of a
length (e. g. the radius of the particle), and

(TC being the complexification of the torus). We shall also dénote by

a typical action which will enter in the perturbative developments.
The size of a function f : ~ C will be measured using a

norm Nd, x ( . ) which dépends on R, on d and on a further positive
parameter K. This norm is defined according to the following procédure.

If ()) is a H{ 1/2 t H{ - 1/2 }-analytic function, we put [cf eq. (5 . 3)]

A) is a function of the form (5 . 5), we put

where 03C6j are defined by

Finally, if fis a function of class ~, we write it in the form (5.6), and put

We point out that

It is useful to introduce also another norm which measures the size of

the Hamiltonian vector field associated to a function of class G. In order
to do that, first notice that the définition of the norm N ( . ) makes
sensé also for functions which take values in the space of H{ -1/2 t

analytic functions. In fact, in this case one can write the décomposition
(5 . 5), (5 . 6) with the coefficients which are H{ 1/2 tH{ -1/2 }-analytic
functions, and therefore, substitute in définition (5.8) ~(~...~J~ to

obtaining the wanted quantity. Then, we define the
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gradient with respect to E of a function f of class , by

where dE f ( y) is the differential of f at y with respect to the variable E
(all other variables being considered as parameters). It is easy to see that,

then is a function for any y E F,
and that it is of class G. So, we can define and
introduce the norm

We point out that the following estimate holds :

(for the proof see sect. 6).
Using thèse définition and notations we can state a proposition concern-

ing the behaviour of the séries defining the transformation Tx.
PROPOSITION 5 .1. - generating with

for some ’ positive ’ 1 C and d  1/2; assume ’

Then, the trans, f ’ormation y = T x ( y’) [cf (4 .1 ), (4 . 2)] analytically maps 
in a ~ OR~ 2d~ moreover, one has

The proof is deferred to the technical section 6.
We are interested in the use of the particular generating sequence defined

by equations (4. 5), (4. 6); therefore we must show that the norms of such
a xs satisfy an inequality of the kind of (5.12). This is ensured by

PROPOSITION 5.2. - Consider an Hamiltonian of the form (3.2), with
Hint E and decompose Hint according to
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where HS has the property that there exist positive constants K &#x3E;__ l, ~ , Y
such that

and

Assume also that there exists a non increasing sequence of positive
numbers as, (s _&#x3E;_ 1 ), such that

Then,lor each natural integer r, there exists a generating sequence {~s}rs=1
which solves system (4 . 5); moreover, for any 0  d  1 the estimate

holds, with

The proof will be given in section 6. We point out that the proof of
this proposition is quite délicate, since it is hère that the problem of the
infinité norm of h causes significant troubles.

This proposition together with proposition 5.1 allows the use of the
above generating séquence in order to transform the Hamiltonian. Then
we have to estimate the norm of the transformation (cf eq. (5.14)) and
the norm of the remainder ~). Finally, we choose the order of
normalization r with the aim of minimizing the remainder and bounding
the diffusion of the actions up to exponentially long times. So we get

THEOREM 5 . 3. - In the same of proposition 5.2, and with
the additional assumption that there exists positive constants v, and F’,
such that

define
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and assume a/so

Consider a ’ solution of the Cauchy problem for system (3 . 2) with real initial
data ’ (Eo, Ao, , , 60) such that

where ’ 1 (71:, ~) : = is the radial action ; then, for ’ with

one has that the solution y (t) _ (E (t), A (t), ~ (t), ~ (t), M (t), 9 (t)) exists
and belongs to OR, 3/4; moreover one has the bounds

Hère we used the obvious notation 1 (t) : = 1 (vr (~), ~ (t)). We point out that
(as will be proved in section 6) the right hand side of the first two

équations of (5 . 23) is automatically positive.
In order to obtain theorem 2.1 from theorem 5 . 3 we shall proceed as

follows (for more détails see sect. 6). First we consider Hamiltonian (2.1)
in the case and perform the development of Hint in powers
and Fourier séries in the variables 1t, ç, M, 8. Then, we prove that, if the
charge distribution is such that the application Pz [cf eq. (5 . 3)] is analytic,
and, if

then it turns out that Hint is of class Subsequently, we identify the
dominant part of the interaction, and estimate its in

terms of Ri, R2, R3, R4. Then we specialize to the case of small
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initial data for the field and choose R1 in order to satisfy équation (5 . 22);
it turns out that a good choice is

Subsequently we insert this expression in the above norm, and divide it

by 03C9 A obtaining a good estimate for Then we put

and choose R2 in order to minimize our estimate of ~ /(~ (0). The next
step is the évaluation of for the case

which is done by Sobolev embedding theorem. Finally, we and
insert aIl thèse estimâtes in the expression of Jl and in the bounds (5.25),
obtaining theorem 2.1.

6. TECHNICAL LEMMAS AND PROOFS

In this section we shall dénote by  a space which is either C or the
space of functions; correspondingly the symbol
" . will mean 1 . | or ~
Moreover, in order to simplify the proofs, it is useful to define the

Poisson brackets of a C..valued function f’ with an -valued function f
To this end we put

it is easy to verify that, if vn is any basis of ~, and are the

corresponding components of _ f’, then

LEMMA 6 . 1. - Let f, l’E8, with f : dR, d ~  and f’ : aR, ~ Ca be
two functions depending only on E and A; then
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Proof - We consider the case where f dépends only on A, and /’ on
E, from which the général case follows easily. Write/,/’ in the form (5 . 5):

then

and there follows

The modulus of the intégral is less than and therefore the

norm of (6.4) is less than

which coïncides with the r.h.s. of (6. 3). Hère we used the inequality

LEMMA 6 . 2. - Let f, f ’ E G, with f : AR, d ~ f/ and f ’ : OR, d+d’ ~ C~ be
two functions depending only on M and 8; then

Proof - Write
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then, the l.h.s. of (6. 6) is less than

which, using again inequality (6. 5) and the trivial inequality

is easily seen to be smaller than the r.h.s. of (6. 6).

LEMMA

Moreover, if then

Proof - Equation (6.8) is obtained by a straightforward calculation
from the results of lemmas 6. 1, 6. 2. In order to obtain (6. 9) it is enough
to remark that

and so on. Then, applying the very définition of N~ ( . ), one immediately
obtains (6.9). 0

We point out that using a technique which is almost identical to that
used for the proofs of the above lemmas, it is easy to prove équation (5 .11 )

LEMMA 6 . 4. - Let  be an then
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Proof - First notice that the differential ~ of the application
(see (5. 3)) at z is given by

and therefore, using Cauchy inequality [30],

On the other hand, we have

In order to get the thesis we have to prove a similar relation for the norm
H{ -i/2} To this end, consider the following set

which is dense in H~1/2}. For/in such a set, we have

where the last equality is due to (6 .11 ). It follows that

which, together with (6. .11 ), proves the thesis, 0

LEMMA 6 . 5. - then

Proof - We shall consider only the case where f dépends only on A.
Write

then, we have

But
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so there follows

where ail scalar products are taken in L2. Then, the I.h.s. of (6.12) is less
than

which, using inequality (6.5) and lemma b . 4, is seen to be less than the
r.h.s. of (6. .12). 0

LEMMA 6 . 6. - Let {~l }l~ 1 be a generating sequence with

and let g be E, A, 1t, ç, 8 or a generic function o, f ’ class 8; then for the
r-th term (r &#x3E;_ 1 ) of the sequence Txg [cf (4 . 1 )] one has

where Al is a constant determined by the condition

Moreover, concerning the ‘ gradient norm" N° . ( . ) of the r-th terms ofTx h
and of T x f (for a function  f : dR, d --+ C), we have

Proof - Exploiting the results of lemmas 6. 3, 6. 5, the proof becomes
a little variant of the proof of lemma 10 . 3 of référence [24], and therefore
is omitted. 0

Proof of Proposition 5 .1. - First notice that
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Using the result of lemma 6. 6, it is immédiate to obtain

The l.h.s. of this relation is surely less than if

which is evidenced by equation (5. 13). The other inequalities (5. 14) can
be proved in the same way. 0

LEMMA 6.7. - Let be defined by (4. 6), assume that the diophantine
condition (5. 17) holds, and that (5.15) is satisfied ; then, the homological
equation (4. 5) has solutions xs, ZS satisfying

Proof - The proof is a straightforward generalization of the usual
one. D

5.2. - First we transform (4.6), putting it in the
more suitable form

For the proof of the équivalence of (6.17) and (4.6) see référence [24]
(p. 593). Then, following référence [24], we introduce the séquence

and look for séquences {~.}?~~ ~ such that
one has

with
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Using the results of lemmas 6 . 3, 6.5, and 6 . 7 it is easy to see that the
above séquences can be defined by:

and

with

This séquence coincides with that defined by équations ( 11. 9), ( 11.10) of
référence [24], and therefore can be estimated in the same way (p. 595-
596 of that paper), obtaining the bound

LEMMA 6 . 8. - For any positive d  1/2, and ’ ~~ 1, we have

Proof - The proof is identical to that of lemma 11. 3 of reference [24],
and therefore is omitted. D

LEMMA 6.9. - Under the hypotheses of proposition 5.1, assume also
that the sequence as (cf. (5. .17)) has the form as = v/((s + 2) K)2; define J..l

according to (5 . 20) and assume (5 . 21 ); then there exists a real analytical
canonical transformation Txfrom AR,2d to OR, a which puts the Hamiltonian
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into normal form up to some ’ optimal order rapt. Moreover,for this transform-
ation, one ’ has the bounds

where 1 (7C, 03BE): = is the radial action.

Proof - The proof of this lemma can be obtained easily by exploiting
the results of lemmas 6.6, 6. 8, and of proposition 5.2, and following
closely the proof of theorems 7.1, 7. 3 of référence [24]: it is a long but
straightforward calculation which is omitted; we just recall that équation
(5 . 21 ) ensures that ropt~ 1 and that the transformation Tx converges. 0

Proof of Theorem 5 . 3. - Fix d =1 /4; then we prove that the r.h.s. of
the first two équations of (5 . 23) are positive. In fact, this is surely true if

But the r.h.s. is smaller than ~,1~2/4 (see the définition of and moreover,
due to (5.21) this is always less than the l.h.s.
We corne to the bounds (5.25). Just calculating the Poisson brackets

of I’ and M’ with the remainder, using the définition of T [cf (5.24)], and
observing that

(and similarly for M), and using (6.21), one obtains that bounds (5 . 25)
hold for a time which is the minimum between T and the escape time of
the variables from the domain 3/4. We shall prove that this escape time
is larger than T.
Dénote by TE, TA, T ç’ TM the escape times of E, A, jr, ç, M

respectively, and assume for simplicity that they are différent (the case of
some equalities is essentially identical to this one). Then, one has to

distinguish two cases:
1 ) the smallest escape time is T ç or TM,
2) the smallest escape time is TE or TA.
Consider first case 1 ); we shall give the détails of the proof only in the

subcase where T 1t  T ç’ TM, the proof being similar in the other subcases.
Assume that  T, and notice that, for real initial data, we have
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and therefore

Let9&#x3E;0be such that

[this 9 exists in virtue of (5.23)]. Then, by virtue of the continuity in time
(cf theorem 2.1 of référence [1]), there exists a t1 less than T1t

such that

but, at time 11 inequality (5.24) still holds, and this, together with (6.22)
and (5 . 25), implies

which is a contradiction.

Consider now case 2), in the subcase We proceed in way similar
to case 1 ) . be such that

then there exists a time t 1  T E such that

but at time t1 we are still in the considered domain, and inequalities (5 . 25)
still hold. Then, by energy conservation there follows

In the following lemmas we shall make use of real variables 03C0,  defined
by

When we pass from the variables ~, ~ to the variable 1t, ç, the norm of a
function changes according to
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LEMMA 6 . 10. - A, 1Î:, ~, M, be a function 01 the form

and let f (E, A, 71:, ç, M, 6) be the transformed funçtion under the canonical
transformation

then, we have

Proof - See reference [24], proof of lemma 9 . 1. D

The following lemma essentially shows that, if 1 p 10"  oo, then Hint is of
class ~.

LEMMA 6. Il. - Let p be a function such that the application p2 cf.

equation (5 . 3) can be extended to a complex analytic mapping on the strip
1 Im zk 1  2 a for some positive cr, and assume |1 p 10" [cf. (5 . 26)] is finite. Fix rc
and define

assume also that there exists Ci &#x3E; 1 such that

Consider the functional

with

and decompose it in the form
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with

Then, we have

Proof - First notice that, according to the définition of q, one has

and therefore, by the exponential estimate of the Fourier coefficients of
an analytic function and by Cauchy inequality, writing

one has

From this one has

which is less than the r.h.s. of (6.29).

LEMMA 6.12. - Let
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then we have ’

Proof - First calculate, for Im zk|  2 a,

and then notice that, by Sobolev embedding theorem,

for some numerical K 1.

LEMMA 6.13. 2014 In terms , the variables E, , 1t, , M, 6, the

quantity Hint has the form

Proof - A trivial calculation. 0

Proolof theorem 2.1. - Consider the function

where (Aa)o is the first term of the development of A8 according to (6.27).
Function (6.31) will turn out to be the dominant part of We fix j~,
R1, R3 according to (5.27), (5 . 28), and notice that, since (Ae)o is linear
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in A, we can put

with Ao independent of R 1. Then we calculate

as a function of R2, and minimize it over R2, obtaining

where k~, A;g are dimensionless constants depending only on b. In what
follows k9, ... will always dénote numerical constants with the above
properties.

Using lemmas 6 .11, 6.12 one can estimate Ao obtaining (keep in mind
that we have performed the transformation (3 .1 ))

Substituting in (6.32), and choosing o : = ~ we get

where

is the ratio of the classical radius of the particle to its true radius. It is

now easy (but long) to évaluâtes [using (6 . 30), (6 . 24), (5 .11 )]; then,
with the choice

we obtain the statement of theorem 2.1. D
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