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Distribution of resonances for the Neumann problem
in linear elasticity outside a ball

P. STEFANOV and G. VODEV

Institute of Mathematics, Bulgarian Academy of Sciences,
1090 Sofia, Bulgaria

Ann. Henri Poincaré,

Vol. 60,n"3, 1994, Physique théorique

ABSTRACT. - For the Neumann problem in linear elasticity outside a
ball in R3 existence of a séquence of résonances converging exponentially
fast to the real axis is proven. It is also shown that there are no other
résonances below some cubic parabola.

RÉSUMÉ. - Pour le problème de Neumann en élasticité linéaire dans
l’extérieur d’une boule de R3 nous prouvons l’existence d’une suite de
résonances qui convergent exponentiellement vite vers l’axe réel. Nous

prouvons aussi qu’il n’y a pas d’autres résonances sous une certaine
parabole cubique.

1. INTRODUCTION

The aim of this work is to study the location of the résonances for the
elasticity operator the exterior in R3 of
a bail with Neumann boundary conditions. It is well known that for the
Neumann problem in linear elasticity there are Rayleigh surface waves
moving along the boundary (see e.g. [R], [A], [CP], [G], [T]) and as a
conséquence, according to [IN], [K] the local energy for the corresponding
elastic wave équation does not decay exponentially. This implies that we
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304 P. STEFANOV AND G. VODEV

can expect résonances near the real axis. Let us recall that for the Laplace
operator with Dirichlet or Neumann boundary condition in the exterior
of a convex (or more generally a non-trapping) obstacle résonances are
separated from the real axis by a strip (see [LP]). We show that there
exists a séquence of résonances of H converging exponentially fast to the
real axis. This séquence consists of zéros of a déterminant found by
Ikehata and Nakamura [IN] in their study of the local energy nondecay.
We show that thèse zéros are in fact résonances and we prove the exponen-
tial decay of their imaginary parts. A similar séquence has been shown to
exists in the case of R2 in [P]. Next, we show that there are no other
résonances below some cubic parabola Ci&#x3E;0. Recall
that in the case of the Laplace operator in the exterior of a nontrapping
obstacle with analytic boundary ail the résonances are situated above such
a parabola (see [BLR]).

2. NOTATIONS AND MAIN RESULT

Dénote by B = ~ x E R3; ~ x ~ _ r ~ a bail in R3 and consider the elasticity
operator where u2, u3) is a vector-
valued function in Here 03BB and  are the Lamé constants and
we assume that

The Neumann boundary condition for the elasticity problem requires that
the normal components of the stress tensor vanish

where n3) is the outer normal to ôSZ and

(J.. 1) = A (div u) +  + 

is the stress tensor. Since the boundary condition (2) is coercive (e. g.
see [T], the proof there works under the conditions ( 1 ) as well ), the

operator H defined on the set {u~ C~0 (Q; C3); û satisfies (2)} has a self-
adjoint non-négative extension in C3) which we will dénote again
by H. For any z with .3 z  0 the résolvent R (z) _ (H - z2) -1 is well defined
as a holomorphic function of z. It is known (see e. g. [V], [IS]) that the
cutoff résolvent being an arbitrary cutoff C~0-function
equal to 1 near the boundary, admits a meromorphic extension to the entire
complex plane with possible poles in the upper half-plane {z~C; 3z&#x3E;0}.

DEFINITION 1. - The poles of Rx (z) are called resonances of H.

Annales de l’Institut Poincaré - Physique théorique



305DISTRIBUTION OF RESONANCES FOR THE NEUMANN PROBLEM

We refer to [SZ] for a definition of the multiplicity of a resonance. Our
main theorem studies the distribution of resonances near the real axis.

THEOREM 1. - Assume ( 1 ). Then for the resonances of the operator H
defined above we have:

(a) There exist two sequences of resonances { zn ~ ~ 1, { - Zn }:= 1, of the
form zn = do n + dl + O (n -1 ), where do, dl ER, such that

with some C&#x3E;O, 1&#x3E;0.
Here do = CR/r, where CR is the Rayleigh speed given by CR = 1/2 ao, ao
being the unique root of the Rayleigh function [see (28)] in (0, 1 ). Moreover,
the multiplicity of zn is 2 n + 1.

(b) For any C1  3l/2 2-4/3 Q~1 r- 2/3 (here - al is the first zero of the
Airy function) there exists a constant C2, such that there are no other
resonances in the domain .3 z  C1 I z + C2.
Remark. - Theorem 1 indicates that the leading term of the resonances

zn is CR where 03C9n = (n (n + 1 ))1/2/r is the n-th eigenvalue of the square
root of the Laplace-Beltrami operator on Sr and moreover zn and 03C9n have
the same multiplicities.

3. REDUCTION OF THE PROBLEM

First we are going to make some reduction of the problem which is
more or less standard. Without loss of generality we may assume that
r = l, i.e. that B is the unit ball. We will show that instead of studying the
poles of Rx (z) we can consider the poles of the following boundary value
problem

and N is the operator given by the left-
hand side of (2). Assume 3z0 and It is easy to see that

(3) is uniquely solvable in L2 (Q) (the solution in fact belongs to H2).
Indeed, it can be verified that (see e.g. [IN])

--1 1

where cijkl 
= 03B4kl+ (03B4ik 03B4jl + is the elastic tensor, 03C4l = ed - nl n,

ej, l =1, 2, 3 being the unit vectors e 1= (1, 0, 0), etc. Hence the matrix

03A3 cijkl n j nl is invertible. Let us look for a solution to the equation N; = g
j, 1

(which is not unique). We can set ;=0 on ôSZ and then the equation

Vol. 60, n° 3-1994.



306 P. STEFANOV AND G. VODEV

détermines uniquely the normal derivative of v as an élément of
It is known [RS] that there exists a function v~H2 (03A9) with the

so prescribed normal derivative and the support of v can be made arbitrary
close to the boundary. Let us dénote the operator H2 (Q)
by V (with some fixed choice of the extension map). Now, let
us look for a solution to (3) of the form w=M+r. Since N~=~, û solves
the problem

Note that the right-hand-side of the équation above is in L 2 (0). The
solution Mis given by û = R (z) (d* + z2) v (recall that 3z0). Therefore, if
we dénote by S (z) the operator solving the problem (3) for 3z0 
w=S(z)g), we get

Since the range of V above is in a set of functions with uniformly bounded
supports close to the boundary, we can replace R (z) above by R (z) x.
Therefore we see that

with suitable x. Hence ~ S (z) admits a meromorphic extension in C and
the poles of x S (z) are among those of Rx (z). In order to prove the inverse,
let us consider the problem

where f~L2comp(03A9). Given a function f~L2(03A9) dénote by T the

function f continued as zéro in Let us look for a solution of

(5) of the form M==~+~ where Ro(z)=(-A*-~)~ being
the free résolvent in the entire space R3. For w we get

Therefore, w = - S (z) NRo (z) T J, thus

Here N : H2 (R3) ~ (ôSZ). Since x Ro (z) x is an entire function of z,
we see from above that any resonance is a pole of x S (z), too. Moreover,
it can be seen that the multiplici.ties of the pales of ~ S (z) and Rx (z)
coincide. Therefore, combining (4) and (6) we have proven the following.

PROPOSITION 1. - The resonances ofH coincide (with multiplicities) with
the poles of the operator x S (z) : (ôS2) ~ L2 (n).

Annales de l’Institut Henri Poincaré - Physique théorique
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In order to find the poles of x S (z), of the problem (3), we will
solve (3) explicitly in terms of spécial functions. Our analysis hère is close
to that of [IN] and we will keep some of the notations from there (see
also [MF]).

Let (r, 8, p) be the polar coordinates in R3. Dénote by n, mEZ+,
~7 ~ ~ Ferrer’s function defined by .

Set

where cos(p,sm8sm(p,cose). Define the vector spherical
harmonies Cnm (m, nEZ +, o=c, o) by

It is known [MF] that C m form an orthogonal base in L2 (S2).
Denote by h1n(z)=(03C0/2z)1/2H(1)n+1/2(z) the spherical Hankel function of
first order and dénote by the functions

Then it can be easily seen that the following lemma holds (see e.g. [MF]).
LEMMA 1. - (i ) L~ mn (x, k), M~ mn (.x, k), Na mn (x, k) solve the Helmholtz

equation

solve ’ the equation

In order to solve (3) let us note that any can be written in
the form

We are looking for a solution to the problem (A*+z~)~=0 (3z0), such
that Let us search that solution in the form

where

Vol. 60, n° 3-1994.
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(see Lemma 1 ) and will dépend on z. Going back to the
définition (7) of k), Ma mn (x, K), K) we see that

where

with div O. Hère we have made use of the fact that

The following lemma has been proven in [Gr] (see also [IN]).

with ~, Â satis,f’ying ’ the equations

Then the boundary condition N; = g on the boundary can be rewritten as
follows (here k, K are the same as in Lemma 1 ):

Since in ( 10) we have represented in the form required by Lemma 2,
we can use ( 13) to compute the boundary conditions for Let us

compute the left-hand-side of ( 13) We will omit
the calculations which are tedious but elementary and will présent only
the final results. For the first and the second term in ( 13) we get

The third and the fourth term in ( 13) for

(12)] become

Finally, for the third and the fourth term in ( 13) for

Annales de l’Institut Henri Poincaré - Physique théorique .
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we get

Combining the equalities above we see that the equality 
on S2 (8), (9)] is équivalent to the linear system

where T (n, z) is a (3 x 3) matrix with éléments

Note that the submatrix {Tij}2i, j=1 has been found by Ikehata and
Nakamura [IN]. We will show that the résonances of H coincide with the
union U of the zéros of det T (n, z), n =1, 2, ... (except z=0). First, note
that

where The coefficients 

b03C3 mn, c03C3 mn obtained by solving ( 14) are meromorphic functions of z with
possible poles in U. The corresponding solution given by (9) with so
computed b03C3 mn, Camn has the same property. Moreover, for 3z0,

because of the exponential decay ~~(Kf). There-
fore, Therefore, S (z) gis given by (9) with a03C3 mn, b03C3 mn, c03C3 mn
obtained by solving (14) at least for any g with finite Fourier expansion (8).
In the sequel we will overcome the question whether the séries (9) is

convergent with c03C3 mn computed as above. We will show that
in fact it suffices to work with finite sums in (8),(9).
Assume that Zo is a résonance. Then, according to Proposition 1 for

some and go E we have for I z - z0 | 1

It follows immediately that then

if s&#x3E;0 is small enough. Therefore, a pole at z=Zo for all g
sufficiently close to go. Since the finite linear combinations of

Vol. 60, n° 3-1994.
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C03C3nm form a dense set in we see that Zo is a pole of
any solution; = S (z) g corresponding to some g with finite Fourier expan-
sion. Since for such v we have already se en that they are holomorphic
outside U, we conclude that Zo E U.

Conversely, let This means that z=Zo is a zéro of
for some n. Let us first

assume that Zo is a zéro of (K) - K (/~/ (K) (recall that K = - ll-l/2 z).
Then from ( 14) we see that

therefore has a pole at It is easy to show that this implies
the existence of a pole of x S (z) Cnm = X (x) b03C3 mn (z) Ma mn (x, K) at z = zo as
well. Therefore, Zo is a résonance. Secondly, let Zo be not a zéro of

/~(K)-K(/~/(K), but Then A~(zo)==0. Then by solving ( 14)
with 1, for Camn we get

Since Zo is not a zéro of the denominator, we see that c~ mn (z) has a pole
at z==Zo’ This leads easily to the conclusion that Zo is a pole of

too, Zo is a résonance. As for z = 0 we note that in [IS] it is
proven that z=O is not a résonance. Therefore, we have proven the
following.

PROPOSITION 2. - Resonances of H coincide with the union of the zeros
of the functions and hnl ~ (K) - K (hnl ~)’ (K),
n = 1, 2, ... Moreover, then the Zo has M//c
2no+ 1.

4. THE ZEROS OF On AND 

Let us proceed with the study of the zéros of the functions given in
Proposition 2. We are interested only in the zéros lying in a région below
some cubic parabola of the type 3zC~z~~+C~ Ci&#x3E;0, It is known
that /~(2014z), n = 1, 2, ... do not vanish in such a région provided that
Cl, C2 are suitable chosen, so do not have zéros z there.
We will use this observation latter. The same is true for the function

/~(K)-K(/~/(K) as proven by Tokita [To]. In fact, the zéros of thèse
functions are connected with the résonances of the exterior problem for the
Helmholtz équation in Q with Dirichlet and Robin boundary conditions,
respectively. This leads to another proof of the absence of zéros of thèse
functions below some cubic parabola. Therefore, what we have to study
is the distribution of the zéros of 

Annales de l’Institut Henri Poincaré - Physique théorique
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be a séquence of distinct zéros of the family 
n =1, 2, ..., lying below some parabola Ci&#x3E;0. Since
the domain 3z~0 is free of poles, for some séquence n~ we have

Since any On has a finite number of zéros, we have nj ~ oo . Our strategy
below is to use the results of Olver [01], [02], [03] on the asymptotics

and its derivatives as v -~ oo, which lead to similar asymptotics
for /~((~+1/2)~). For a similar approach, see also [To], [IN]. Thèse
asymptotics are différent when a belongs to différent sets in C and that is
why we will consider several cases below. So, we are interested in the
quantity 1/2).

Case A. - Let be unbounded. By choosing a subsequence we may
assume that 1 ~ oo . The same holds for the corresponding séquences
k~, Kj. Let us set for convenience

As noted above, and do not vanish in the région ( 16) if
C2 are properly chosen, so we may divide by h,~,l ~ (k) freely.

Note that On (z) can be rewritten in the form:

We are going to study the limit as v ~ oo (recall ( 17)) by using
the asymptotics of found by Olver [01], [02], [03]. Let us set

Then we see that the équation ~n (z) = 0 in the région we are interested in
is équivalent to

Vol. 60, n° 3-1994.
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We get from [03, pp. 374-380] that for |arg a|03C0 we have

and the remainder is uniform with respect to a in any region |a|~ 1 + E,

!arg~~7t-8. In fact, (20) is fulfilled in a larger région (a complément of
an eye-shaped domain K, see [03, p. 380]) and (21) follows from (20) and
from the differential équation satisfied by namely

Let us apply thèse results to our case. Without loss of generality
we may assume that Set 

1/2)) ( 18)] . Since oo ,

|bj| ~ ~, |arg aj|~03C0/2, for any ~&#x3E;0 we get

and the same remains true if a~ is replaced by Passing to the limit
in ( 19), we get -(~+2~)/~=0, which is a contradiction

to (1).
Case B. - Let be bounded. By choosing a subsequence we can

assume that

with some â E C, bEC. Obviously, bj/aj=/= /(03BB+2 ). By divid-

ing ( 16) by Vj and using (23) we see that

where Therefore 3~=0, bER. Without loss of

generality we may assume that We will consider several possibilities
for â (and b) because of the fact that asymptotics of the type (20), (21 )
look différent when a is close to a=1 and when a belongs to a neighbor-
hood in C of the intervals (0, 1 - E) and ( 1 + E, (0), respectively.

Case ~1. - Let 0~1, so 0  b  1 as well. In this case our analysis
is close to that of Ikehata and Nakamura [IN]. Consider (19). According

Annales de l’Institut Poincaré - Physique théorique
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to [01], [02], [03] we have

and the remainder is uniform in a provided that a belongs to some

complex neighborhood of â. In fact, the asymptotics (25), (26) hold for a
belonging to an eye-shaped domain K containing the open interval ( -1, 1 )
(see [03, pp. 374-380]). Since 0ã1, for j sufficiently large aj belong to
the domain K and so do because /j~/(~+2~)l.
Therefore, we can apply (25), (26) to ( 19) to get

where R (a) is the Rayleigh function

It is known and can be easily seen that in the interval 0~1 there is
exactly one simple zéro a = ao of R (a). Therefore, if such a séquence of
poles exists then we must have It is not hard to prove that such a

séquence does exist (see also [IN], where this séquence appears in the
proof of a non-decaying property of the local energy for the elastic wave
équation). Indeed, let us look for zéros of ~n of the type Set

Then we can write the équation X~(v~~)==0 in the form

f(a, s) = 0, where f(a, s) = R (a) + (9 (s) uniformly in a in a neighborhood
of ao because of the limit

(compare with (27)). Applying the implicit function theorem to f(a, s) in
a neighborhood of a = ao, we see that f(a, s) = 0 has a root of the type
a (s) = ao + O (s) which is unique because (29) can be differentiated term-
wise. We can use theasymptotics in [03] in order to calculate the
next terms in (25), (26). The calculations show that they are real. Thus
it can be proven that the zéro a (s) admits a full expansion
a (s) = ao + sa~l~ + s2 a~2~ + ... modulo with real ~. This shows
that there exists a séquence of résonances with asymptotics
zn = ndo + d 1 + n -1 d2 + ..., with real. Without loss
of generality we can assume ~=1,2,... In the next section we will prove
that zn decays exponentially in n.

Vol. 60, n° 3-1994.
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Case B2. - Let In this case we need the behaviour of 
near ~==0. Let us note that the asymptotics (25), (26) remain true near
a = 0 with little modifications, namely

where the remainders are uniform in a in a complex neighborhood of
~=0. Therefore, we get as above that (29) holds uniformly if a is as above.
Since R (0) = 0, the expansion (29) is not sufficient to get a contradiction.
Let us compute the second term in (29). Using Olver’s expansions [01],
we see that

uniformly near a=0, which is a refinement of (30), (31). Using these
formulae one can see that in (29) we actually have

where R (a) = a2 Ri (a), Q (a) = a2 Q1 1 (a), R 1 (0) = - 2 + 2 + 2 J..l)  0 and

R 1 (a), Q1 (a) are analytic near Therefore, it follows from the

assumption ~n~ (Vj J..l1/2 a~) = 0 that

Since and we see that the right hand side above
vanishes as j ~ oo and since aj ~ 0, we get R1 (0) = 0, which is a contradic-
tion. Therefore, a cannot be zéro.

Case B3. - Let ~=1. According to [01], [02], [03] the asymptotics
(20), (25) are not valid in a neighborhood of a =1. In this case they have
a more complicated form including the Airy function. Let Ai (z) be the
Airy function and set Recall that Ai _ (z) has zéros
of the type where 0(Xi(X2 ... Following [01], [02], [03],
introduce the function ç = ç (a) by the equality

where ’ thé branches take ’ their principal values when z E (0, 1 oo )
and o are 

~ continuous elsewhere. We refer to [03, pp. 420-421] ] for more

Annales de l’Institut Henri Poincaré - Physique " théorique
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détails. It appears that ç is a holomorphic function of a within |arg a 1  1t
so in particular this is true near a =1. According to [02, p. 338, p. 342]
(see also [03]), the following asymptotic formulae hold for 

where

and A,(0, B,(Q, C,(0, D s (Ç) are recursively defined functions,
Ao = Do =1. In order to get a limit similar to (20), (25) in a neighborhood
of a = 1, let us note that from (32), (33) it follows that

In the case we study we have 1 by (24). We will
show that under thèse conditions

Let us note that because of the analyticity of ç near a =1 we have for
large y

Moreover, we have ç = 21/3 (1 - a) + 9 (|1-a 12), therefore by (24)

Assume first that v~ ~ 1 - a~ (  C  oo . Then

therefore we can arrange the inequality

Vol. 60, n° 3-1994.
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(recall that e" i/3 is the first zero of Ai_ (z)) provided that C3 and
therefore C1 and C2 [see (16)] are suitably chosen. To this end it suffices
to pick C3  2-4/3 31/2 a 1, i.e. [see (24)]

By (36) inequality (38) means that the séquence forms a bounded

set away from the zéros of Ai _ (z). Therefore Ai~ (v~ ~3 ~~) is
bounded and (35) trivially holds in this case.
Assume next that v~ ) 1 " ~ is unbounded. Without loss of generality

we may assume that v~ 1 - ~. ) -~ oo . Let Then by (36) and (37)

because of the assumptions 1 ~ oo, aJ -~ 1. Therefore

for large j. Thus we can apply the well-known

asymptotic formula (see e.g. [03])

that in our case gives

with ~1~2 taking its principal branch as ~&#x3E;0. Since çj ~ 0, we get (35) in
this case as well.

Let us observe that the term ((1- a2)/(4 ~))1~2 in (34) remains bounded
as ~ 1. Therefore by (35) we get that the first term in the expansion

vanishes. Moreover, if we go back to (32), (33),
we see that (35) justifies the choice of the first term in (34). Thus

Since

we get

under thé assumptions 1 and 0 (16) with suitably chosen Cl, C2. We
note that thé result is thé same ’ as if we ~ set formally a =1 in (20) or (25).

Annales de l’Institut Henri Poincaré - Physique ~ théorique 
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The reason for this is the condition ( 16). By (22) we also get

Since ~J=1, for (hn~ ~)’ (k)/h~1 ~ (k), we have (2 5), (26)
with a replaced by b. Taking the limita-~ oo in ( 19)], we
get similarly to (27)

which leads to contradiction.

Case B4. - Let J&#x3E; 1. Then we can apply (20), (21 ) to handle the terms
(/~/(K)//~(K), (/~)"(K)//~(K) in ( 19). The asymptotics of

(~~(~)/~)(~ dépends on ~=A~+2~)J. If b &#x3E; 1,
then we can use (20), (21 ) with b instead of a and from ( 19) we get

which is impossible when b &#x3E; 1. For b  1 we can use (25), (26) to estimate 
(hnl ~)’ (k)/h,~,1 ~ (k), (~))"(~/~’(~. We get

which cannot hold because ~~1, b ~ 1. It remains to consider the case

b =1. Then, according to (39), (40) we have

Taking the limit in (19) we get (2 - â2)2 = 0, therefore â2 = 2. The equalities
â2 = 2, b2 =1 imply jLt/(~+2~)=l/2, ~=0. Since we have assumed

A -# 0, this leads to a contradiction.
Therefore we proved all the assertions of Theorem 1 except that for the

exponential decay which will be considered in the next section.

5. THE EXPONENTIAL DECAY

In this section we show that for the séquence 
found to exists in Case Bl, Section 4, we have

Let us set as above s = v -1 1 (recall ( 17)). Then zn are solutions to the
équation ~n (z) = 0 which can be rewritten in the form f(a, s) = 0 after

setting a = K/v = - z ~, -1 ~2 v -1, /=-~/(~+2~)~~(~v~). By (29),
f(a, s) = R (a) + (9 (s) which implies the existence of a root of f(a, s) in

Vol. 60, n° 3-1994.
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(0, 1). We wish to show that with some C&#x3E;0, 1’&#x3E;0. To
this end we will representfin the form f=f1+if2 with f1, f2 analytic near

a = ao, f i = ~ f, ~=3/ for a E R, and we will show that f2 admits an
estimate of the type 

Let us set uv(z)=zh(1)n (z)=zh(1)v-1/2(z) (recall ( 17)). Then uv satisfies the
équation

Set

Note that 03C8v are analytic functions in CB{ 0 } and 0 llv = Rwv, 03C8v =wv
for z real.

LEMMA 3. - For any b 1 E (o, 1/2) there exists §2&#x3E;0, such that in the 
’ set

wehave

with some C&#x3E;0, 1’&#x3E;0.

Proof - Suppose for a moment that zER. Then by (42)

Therefore, for B)~ we get

hence

This shows that

Hère we can put Suppose now that zeA, L~. z is not

necessarily real. Then (44) remains true and for any z~A we will regard

J dy in (44) as an intégral over thé path [1-Õl/2, Rz] U [Rz, z]. Let us
choose 82 small enough to ensure -iA c K, where K is thé eye-shaped
domain [02], [03] in which thé asymptotics (25), (26) hold. By thèse
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asymptotics we have for w~

uniformly in zeA. Therefore

Thus in particular for z~A and v sufficiently large we have |~C.
Moreover for real zEA we have ~~(vz) 2014830. Hence

where the last inequality holds with y =8183/2 for 03B4203B4103B43/(4C). Com-
paring this result with (44), we see that

A similar estimate holds for ~~ (v z) because of the differential

equation (43) satisfied by ~r" (v z). This completes the proof of the lemma.

As noted above, by settingf(a, s) _ -  03BB+2  a4 n( 1/2 03BD a), s =1 /v, we

can write the equation in the form f(a, s) = o, where

f(a,s)=R(a)+O(s). Let us represent f as f = fl + if2, where

1 _ 1 _

.h = - (.Î (Z) +.Î (Z))~ .ÎZ - . CÎ (Z) -.Î (Z)). In particular, . fi = ~..h .ÎZ =.3 .Î as
2 2i

aER. Let us note that Lemma 3 and ( 19) together imply that for s

sufficiently small

For f1 (a, s) we have

for s in some neighborhood of the origin. The last inequality in (46) holds
because the asymptotics (~~(v~), (~~)"(v~) can be differen-
tiated termwise, therefore can be estimated from above by C s
and by the second inequality of Lemma 3 the same holds for By the

implicit function theorem there exist al (s), a (s), such that

Vol. 60, n° 3-1994.
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We wish to estimate s a (s). To this end we are going to apply the
Rouché theorem for the pair fl, Set

with y the same as in (45). Then in U
we have

with some co&#x3E; o. Indeed, since f1 (al (s), s)=0, we have

Hère Taking advantage of the inequality
R’(ao)&#x3E;0,(46),(47),weget

therefore (48) holds with co = R’ (ao)/2 for s sufficiently small. By (48) we
see that on au we have

Thus according to (45) we get

Choosing M large enough we get

Since f i has a root a1 (s) in U, by the Rouché theorem f = fl + if2 must
have a root in U as well. Therefore

and since (s) is real, we get

This shows that we have a similar estimate for because
The proof of (41 ) is complète. This complètes the proof

of Theorem 1.
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