
ANNALES DE L’I. H. P., SECTION A

LEON S. FARHY
Distribution near the real axis of scattering poles
generated by a non-hyperbolic periodic ray
Annales de l’I. H. P., section A, tome 60, no 3 (1994), p. 291-302
<http://www.numdam.org/item?id=AIHPA_1994__60_3_291_0>

© Gauthier-Villars, 1994, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1994__60_3_291_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


291

Distribution near the real axis of scattering poles
generated by a non-hyperbolic periodic ray

Leon S. FARHY (1)
Section of functional and real analysis,

Department of Mathematics, Sofia University,
5 James Bourchier Blvd., 1126 Sofia, Bulgaria

Ann. Henri Poincaré, ,

Vol. 60,n"3, 1994, Physique théorique

ABSTRACT. - We prove lower bounds in small neighborhoods of the
real axis on the number of scattering poles for a trapping obstacle with
unique periodic non-hyperbolic ray. The periodic ray is such that all

eigenvalues of the corresponding Poincaré map are equal to one.

RÉSUMÉ. - Nous prouvons une borne inférieure pour le nombre de

pôles de diffusion dans un petit voisinage de l’axe réel pour un piège avec
un seul rayon périodique non hyperbolique. Ce rayon périodique est tel
que les valeurs propres de l’application de Poincaré correspondante sont
toutes égales à un.

1. INTRODUCTION

In this note we consider scattering by two disjoint convex obstacles Q1
and Q2’ which admit only one periodic ray, such that all eigenvalues of
the corresponding Poincaré map are equal to one.

(1) Grants MM1/91 and MM3/91.
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292 L. S. FARHY

Dénote by S (z) the scattering matrix [6] for the following acoustic
boundary value problem:

3

where Q= ~3"’{ Ql U Q2 ~, 0 = ~ and is smooth. It is well
~=1

known [6] that S (z) is an operator valued function, meromorphic in the
whole plane and analytic We define the scattering
poles to be the poles of S (z).
We consider the same geometric situation as in [4], where M. Ikawa

proved that if [3 &#x3E; 0 is sufficiently small, then for every oc &#x3E; o, the régions

contain an infinité number of poles of S (z) (Theorem 2 from [4]).
The purpose of this work is to obtain information about the density of

the scattering poles in any of the régions 13. To our best knowledge,
there are only two works, which consider a unique periodic ray, such that
all eigenvalues of the corresponding Poincaré map are equal to one. The
first one is the above mentioned work of Ikawa [4]. The second one [5] is
also by Ikawa and it refers to a spécial case of two convex obstacles in f~2.
This work shows, that for such a spécial obstacle, the poles of the
scattering matrix near the real axis accumulate to the "pseudo-poles"
(q E ~, where d is the distance between the two bodies. The result
of the présent work shows that there are too many poles of S (z) near the
"pseudo-poles", in contrast to the case of two disjoint strictly convex
bodies ([2], [3]), for which, roughly speaking, one pseudo-pole [1] ] corre-
spond to one actual scattering pole.

In the work of Sjôstrand and Zworski [8] it is shown how some knowl-
edge about the singularities of the trace distribution [ 1 ], allows us to

obtain lower bounds on the number of poles in logarithmic neighborhoods
1 Z I} of the real axis. Their result proves in some

cases, for which it is possible to investigate the singularities of the trace,
a weaker version of the Modified Lax and Phillips Conjecture.
Our method is based on a careful study of the singularities of a spécifie

représentation of the trace [4]. After that we use a suitable formulation of
part of the result from [8] in order to count the poles of S (z) in the

régions 
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293DISTRIBUTION OF SCATTERING POLES

The paper is organized as follows. In Section 2 we describe the geo-
metry of the scattering obstacle and formulate the main theorem. We
also state some preliminary notations used in the sequel and prove a
modified version of the result from [8]. Section 3 is devoted to the inves-
tigation of the singularities of the trace and in Section 4 we prove the
main theorem.

2. MAIN THEOREM, PRELIMINARY NOTATIONS
AND RESULTS

We consider the same geometry as in [4]. Namely, let Q1 and Q2 be
convex sets in 1R3 with sufficiently smooth boundaries r land r 2. Let

1, 2 be such points that d = ~ al - a2 ~ = dist Q2). We suppose
that the principal curvatures l = 1, 2 of at x~0393j satisfy forj= 1,2
the estimâtes

for some C&#x3E;O and oo&#x3E;~~4.
We shall use the following counting function

where l, 2, ... are the poles of the scattering matrix associated
with ( 1. 1 ). ,

Now we state the main result of this work.

THEOREM 2. 1. - Suppose that the principal curvatures of r 1 and r 2
satisfy (2. 1). Then there exists Bo &#x3E; 0 such that for any B and (3’ such that
0  ~i  (3’  (3o and any a &#x3E; 0 the following estimate holds :

where the constant p 13’ is positive and independent of r.

Remark 2 . 2. - Note that for any v&#x3E;O we may choose so small
that the order §===2 ( 1-1 /s) - ~i’ ( 1 + 2/s) of the lower bound satisfies the
estimâtes :

Note also, that if the "flatness" of the bodies near the periodic ray
increases (s ~ 00), and P’ ~ 0, then 8 tends to 2.

Vol. 60, n° 3-1994.
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A starting § point for thé proof of Theorem 2.1 is the trace ’ formula  of
Bardos-Guillot-Ralston [1] and o Melrose " [7].
u (t) = TrL2 (cos t cos t à ,

which holds in the sensé of distributions. Here 0394 is the Dirichlet Laplacian
in L2 (S2) and Do is the selfadjoint Laplacian in L 2 (~3). We shall apply
u (t) to functions in order to study the behaviour
of cp u (~,) ~ 1 for A ~ oo .

In what follows we fix a function ( - 1, 1), such that:

and we pose (t) = Po (t - g)).
Let A be the set of all scattering poles. We define (see [8])

In the rest of this section we follow [8], in order to prove

PROPOSITION 2 . 3. - Let g &#x3E; 0 and l&#x3E;y&#x3E;0. Then for any r &#x3E; 2 and

2014 1 ~A;e[R we have:

where ’ a&#x3E;k, b, p &#x3E; 3, o 1 1) and ’ p &#x3E; (3 - k)/(g - y) are arbitrary and the ’

positive ’ constants C, Ca, k, Cb and ’ Cp, 0 do not depend on y, g and r.

Proof - First we note that (see (3) and 0 (4) from [8]) :

where CMl &#x3E; 0 is independent of g and y. Using (2 . 5) we get for y  1

Annales de l’Institut Poincaré - Physique théorique
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Then following [8] we get for any kE  and M 1 &#x3E; k + 1:

where is independent of y, g and A.
We introduce a measure and a maximal function 03C8 for 8&#x3E;0

(see [8]):

Note that Il (r) = (9 (r3) and since B)/ (t) = y sup e~03C3 Po (y [’t + i (J]) 1 the func-

tion is independent of g. The properties of found in [8] ((6)
from [8]) remain valid:

where Y + (r) dénotes the Heaviside function supported on and 

Using the définition (2 . 4) and (2 . 6) we get for p &#x3E; (3 - k)/(g - y)

With the help of (2 . 7) we estimate the first intégral for A&#x3E; 0 and 0  y  1 :

where Then we get for any
M2&#x3E;4 and 

Vol. 60, n° 3-1994.
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where CM2 is independent of y, g and A. Hence from (2. 8) and (2. 9) we
get for any M 1 &#x3E; k + 1 and M2 &#x3E; 4:

where and CM2 are independent of y, g and X Thus,
for -1 and r &#x3E; 1, we have:

’t]).
Using again the bound on the counting measure and (2. 7) we get for

1 ) and for any M3 &#x3E;4

where CM3, 03B4 is independent of y, g and r. Since an analogous estimate

holds for the intégral 100 B)/ (r - r) M ~ we get:

where is independent of y, rand g and Mg &#x3E; 4, § e (0, 1 ) are arbitrary.
Using (2 . 10), (2 . 11 ) and (2 . 7) we obtain:

where the positive constant C dépends only on (po. The last inequality
complètes the proof. 0

For the particular case considered in the présent work we shall use the

following corollary from Proposition 2 . 3 (we pose k = - 3/2, ~=1,

~=4,8=3/4,p=5/~).

Annales de l’Institut Henri Poincaré - Physique théorique
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COROLLARY 2.4. - Let 10g~R be # arbitrary. Then for any l&#x3E;y&#x3E;0 1

and r&#x3E; 2 we have ’ the estimate :

where C and C’are positive constantS which do not depend on g, r and ’Y.

3. SINGULARITIES OF THE TRACE

We denote for simplicity

This section is devoted 0 to thé proof of thé following:

PROPOSITION 3 .1. - There ’ exist constants Il, l’ &#x3E; 0 ’ such that for l &#x3E;- l’,
any integer q &#x3E; 0 and any 8&#x3E;0 ’ we have ’

H ere , Co &#x3E; 0 is independent of q, A, l and , E and , Cg &#x3E; 0 is independent q ,
and ’ A.

Proof - First we recall some ~ results by Ikawa [4]. Note that from (2 . 2)
it follows that

In the sequel we suppose that the coordinate system is such that

al = (0, 0, 0) and a2 = (0, 0, a~. In [4] it is proved (3 . 8) from [4]) that
if the kernel distribution E (t, x, of is

given by

where S2 is the unit sphère in fR3 and u (t, je, k, 00) is a solution of (1.1)
for /M = co (x) (co (x) E C~0 (Q) and 03C9 (x) = 1 on supp w).

In [4], a geometric optics approximation of u is built, by means of
which it is shown (see Lemma 3 . 2 from [4]) that for some N~4 and l’ &#x3E; 0
we have for any l &#x3E; l’:

Vol. 60,n’3-1994.
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where the constant is independent of  and q. For I + and I _ we

have (see (3.22) from [4]) for any integer q and for any l &#x3E; l’

where C is a constant independent of  and q; 
03C6r (je, co) and vr, j (t, x, co) are phase functions and solutions of transport
équations, appearing in the asymptotic solution M~. In what follows we
fix N = 4.
We dénote

and state Proposition 3.3 from [4]:

PROPOSITION 3.2.

where ’ Il , constant, c~ ~ (x3, t) are determined by ~2 q , and , v2 and , they
satisfy

where , C is independent of q and especially

for some , fixed non zero , constant c determined by the shape of the obstacle
near ~i and a2 .
From Proposition 3 . 2, (3 .1 ) and o (3 . 2), we get:

Hère I~s=0 and we use the notations:

Annales de l’Institut Poincaré - Physique théorique
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We use Lemma 3.4 and Lemma 3 . 5 from [4] to remove the condition
on the support of ~r (x) and using a partition of the unity over Q we
obtain:

In the sequel we shall omit the index "(B)/)’B
Obviously, thé proof of Proposition 3.1 follows from (3 . 3) and o from:

LEMMA 3 . 3. - The integrals , and , Ih, m, j, h, m &#x3E;_ 1, j &#x3E;_ 0 satisfy the
estimates for any E &#x3E; 0:

where , Co, ..., C4 &#x3E; 0 are independent of q, A, l and , E and , C~&#x3E;0 is indepen-
dent of and ’ A.

Proof of Lemma ’ 3.3. - First note that from thé reasoning j prior to
(3 . 25) from [4] it follows that:

where c’ &#x3E; 0 is independent of t and q.
Then we estimate 1~ o (A) for ~&#x3E; 1 with the aid of (2 . 3):

where Co &#x3E; 0 is independent of and l.
Next we consider the integrals Ih, m, j(03BB) for h, m~1 and j~0. We have
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where we dénote

For this intégral we have:

Hence, we get with the aid of Proposition 3 . 2

where C’ is independent of A, k, l and q.
We substitute this estimate in the expression for and obtain for

any s&#x3E;0:

with a constant CE &#x3E; 0 l independent of A, l and q.
For we have

For 1 we have "

Annales de l’Institut Henri Poincaré - Physique théorique "
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Using the same argument we obtain the desired estimate for 10, j (A),
7=1,...,4.

Thus the Lemma is proved. 0

4. PROOF OF THEOREM 2.1

First we note that from Corollary 2.4 and Proposition 3.1 it follows
an estimate for some l’, /1 &#x3E; 0 and for any s&#x3E;0 and /=/’:

Hère the constants C, C’ are positive and do not dépend on rand q.
We fix for a &#x3E; o, (the constant Pô we shall choose later).

Let P’ be such that P  P’  We choose p, p’ &#x3E; 0 such that if we pose

we have the inclusion

Hence it is sufficient to prove the theorem for p P’ instead of p.
We dénote :

Then for the real part of the intersection point of Sa, p, p’ and SS/(2 aq&#x3E; we

get:

Hence

We apply (4.1) for r= C~, p p. and using (4 . 2) we obtain:

where the positive constants C~ 13,13" C. p p., ~, E and C’ do not dépend on q.
We rewrite the last estimate as follows

Then we fix /~/’ and 0  E  1 and we choose such that if

0  ?  P’  Pô an estimate holds :

Thus the theorem is proved.

Vol. 60, n° 3-1994.



302 L. S. FARHY

[1] C. BARDOS, J. C. GUILLOT, J. RALSTON, La relation de Poisson pour l’équation des
ondes dans un ouvert non borné, Comm. Part. Diff. Eq., Vol. 7, 1982, pp. 905-958.

[2] C. GÉRARD, Asymptotique des pôles de la matrice de scattering pour deux obstacles
strictement convexes, Bull. S.M.F., T 116, Mémoire n° 31, 1988.

[3] M. IKAWA, On the poles of the scattering matrix for two strictly convex obstacles,
J. Math. Kyoto Univ., Vol. 23, 1983, pp. 127-194.

[4] M. IKAWA, Trapping obstacles with a sequence of poles of the scattering matrix converg-
ing to the real axis, Osaka J. Math., Vol. 22, 1985, pp. 657-689.

[5] M. IKAWA, preprint.
[6] P. D. LAX, R. S. PHILLIPS, Scattering theory, Academic Press, New York, 1967.
[7] R. B. MELROSE, Scattering theory and the trace of the wave group, J. of Funct. Anal.,

Vol. 45, 1982, pp. 29-40.
[8] J. SJÖSTRAND, M. ZWORSKI, Lower bounds on the number of scattering poles, Comm.

P.D.E., Vol. 18, 1993, pp. 847-854.

(Manuscript received November 20, 1992;
revised version received May 10, 1993.)

Annales de l’Institut Henri Poincaré - Physique théorique


