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ABSTRACT. — We use renormalization techniques of singular quadratic
forms to define and analyze Hamiltonians for N-particle systems interact-
ing through local and translationally invariant zero-range interactions in
two dimensions. When the same construction is performed in three dimen-
sions, one obtains quadratic forms which, without symmetry requirements,
are unbounded below for N>3 and are in any case unbounded below for
any N sufficiently large.

ResuME. — En utilisant des techniques de renormalisation de formes
quadratiques singuliéres, on étudie des Hamiltoniens pour systémes de N
particules avec interactions de portée nulle, en dimension deux. Si on
utilise la méme méthode en dimension trois, on obtient des formes quadra-
tiques qui, pour N=3, ont une borne inférieure seulement si ’on impose
des conditions de symétrie, et qui, pour N assez grand, n’ont, en tout cas,
pas de borne inférieure.
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254 G. F. DELL’ANTONIO, R. FIGARI AND A. TETA

1. INTRODUCTION

We consider a system of N non relativistic spinless particles in R?
interacting through a two-body zero-range force.

To keep the notation to a minimum, we assume that all masses are
equal and choose units in which n=1/2, A=1. It is easily seen that the
results we state hold for any choice of the masses. The system is then
described informally by the Hamiltonian

N
H=-A- Y p;8(x,—x) xeR* i=1, ..., N (1.1)
i,j=1,i<j
where A is the Laplacian in RN and W;; are parameters which play the
role of coupling constants. One possible way to give a precise meaning to
the formal expression (1.1) is to choose for H any of the self-adjoint
extensions of —A° which are translation and rotation invariant (see
e.g. [1], [2]). Here A is the restriction of A to CZ where
Ci={feC*(R™);  f=0 in a neighborhood of £=UJ o}
i<j

GijE{xeRdN; X.':Xj}, x={xg, ..., xx}-

(Notice that o;; is a hyperplane of codimension d).

Such extensions exist since —A° commutes with complex conjugation.
Each extension is related in a suitable sense to a choice of boundary
conditions on the hyperplanes o;;. We shall call local or translation
invariant an extension if locality or translation invariance are properties
of the corresponding boundary conditions on . (For the construction of
non local extensions see e.g. [3]).

Remark that for d=1 (1.1) provides a self-adjoint extension for any
choice of the parameters y;;, since the 3-potential is a small form perturba-
tion of —A. For d>3 the only self-adjoint extension of —A% is —A (see
e.g. [4]). We therefore discuss only the cases d=2, 3.

A complete characterization of the extensions is in principle possible,
using the deficiency subspaces of A°. Spectral properties are not easy to
determine in this approach, in particular for N>3. In ([1] [2]) a family of
extensions of —A° for d=3, N=3 were defined and their spectral proper-
ties were analyzed. We shall follow a different route and define the local
and translation invariant extensions through their quadratic forms.

We want to emphasize that our main concern here is the case N=3.
This reveals entirely new difficulties as compared to the case N=2 which
falls within the theory of one particle Schrodinger equation with zero
range potentials, extensively discussed in [5] for space dimension d=1, 2, 3.
How serious these difficulties are has been already pointed out by Minlos
and Faddeev in [2]. We shall come back to this problem in Section 6.
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HAMILTONIANS FOR SYSTEMS OF N PARTICLES 255

In Section 2 we shall give an overview of the construction of these
quadratic forms, emphasizing the qualitative ideas which lie behind our
procedure. The basic step, already exploited in the study of interactions
in R3 supported by piecewise smooth curves [6], is to describe the extension
by enlarging the form domain of —A through the addition of potentials
produced by “charges” £;; supported by the hyperplanes o;;.

For arbitrary N the quadratic form for the case =2 will be defined in
Section 3; it will be proved there that it is closed and bounded below.

In Section 4 we make precise, in the sense of I'-convergence (for the
definition and main properties see e.g. [7], [8]), the informal limit proce-
dure described in Section 2; this will show that local and translation
invariant extensions can be obtained as limit of a sequence of smooth
perturbation of —A. In fact convergence is proved in a sense somewhat
stronger than I'-convergence and equivalent to strong resolvent conver-
gence.

In Section 5 we analyze the domain and the action of the Hamiltonian
defined in Section 3, and we give an explicit expression for the resolvent
in terms of the solution of an integral equation for the “charges™, a two-
dimensional equivalent of the equation introduced for the case N=3, d=3
by Ter-Martirosian and Skorniakov [9]. This is an analogue of a well
known result in potential theory which permits to reduce a boundary
value problem to the solution of an equation for the charges “induced”
on the boundary.

Our analysis proves that the Thomas effect (see e.g. [10], [11], [12]) is
absent in two dimensions for a system of an arbitrary number of particles
(our restriction to the case of equal masses is inessential for this result).

(We call Thomas effect the fact that the spectrum of H is unbounded
below, reserving the name of Efimov effect to the presence of infinitely
many bound states for three-particle systems with regular two-body poten-
tials such-that at least two subsystems exhibit a zero-energy resonance.)

In Section 6, following the same procedure as in d=2, we construct a
quadratic form for the case d=3. It turns out that this form is unbounded
below; this extends the results in [2].

In Section 7 we prove that the quadratic form constructed in Section 6
is closed and bounded below for N =3 in the subspace of functions which
are antisymmetric under exchange of two of the particles. This result was
obtained by Minlos and Shermatov ([13], [14]) using different techniques.
We also prove boundedness below in the subspace corresponding to
angular momentum larger or equal than 1.

Finally, we consider the case of a system of N+ 1 particles, N of which
are identical (scalar) fermions. We show that for N sufficiently large the
quadratic form is unbounded below. Therefore the Thomas effect is always
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256 G. F. DELL’ANTONIO, R. FIGARI AND A. TETA

present for systems composed of sufficiently many particles; this statement
is seen to hold independently of restrictions on angular momentum.

In this work we leave untouched the question of the existence in d=3
of extensions which are translation invariant, local and bounded below
and whether these extensions can be obtained by our procedure through
a further renormalization or through addition of a three-body point
interaction.

2. GENERAL REMARKS AND OUTLINE
OF THE CONSTRUCTION

In this Section we give a motivation for the construction to be introduced
in Section 3 and for the analysis of I'-convergence in Section 4. We begin
with some simple considerations. Denote by C3(R?) the class of twice
differentiable functions on R? with compact support. For ueC3(R™)
define

Q“(u)=j dx|Vu(x)|*= Y, ”i’f dx|u(x)[?8(x;—x)). (2.1)
RdN i<j RdN
The bilinear form (2. 1) can be extended to L? (R®N) by setting Q" (u) = + oo
when u¢ C3 (R™). If ;;<0, Q*20.

The extended functional Q" is not lower semi-continuous; denote by
Q* the corresponding relaxed functional (the largest lowest semi-conti-
nuous functional with values in [— oo, + o] such that Q" (u)<Q*(u)
VueL?(R™). One can verify that if p;<0 Vi<j, one has

Q¢ (u)=j |Vu(x)|*dx. In this sense, the Laplacian is the only self-
RdN

adjoint operator on L2 (R?N) which can be associated directly to (2. 1), if
p;=0.
If one at least of the p;; is strictly positive, then

Q*(u)=— o VueL?(RM).

Therefore no self-adjoint operator can be associated “directly” to (2.1).

Still, as mentioned in the introduction, one can give a non trivial
meaning to (2.1) by considering it a “symbol” for a self-adjoint extension
of —A° According to the general theory of self-adjoint extension of
symmetric operators which commute with complex conjugation, a complete
classification can be given in terms of deficiency spaces of —A° and the
unitary maps between them. The parameter space is then a space of
functions and the relation with the parameters p,;; occurring in (2.1) is
obscure.
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In this paper we will study a subclass of extensions, the local and
translation invariant ones, corresponding to a choice of a particular local
and translation invariant (singular) behaviour at X. This subclass of exten-
sions can be described by the energy of charge distributions on . They
are obtained through a limit procedure.

In Section 3 we shall show that this form defines uniquely a self-adjoint
operator, which coincides with —A° on C2(R%N), for d=2.

We describe now the limit procedure. The first step is to regularize (2. 1);
denote by £ the Fourier transform of f- We introduce a cut-off function
Xr» in p-space and “‘renormalized” parameters Bij; the parameters p,; will
be considered as functions of the P’s and of the cut-off. The specific
choice of the cut-off function will be irrelevant; we choose y; to be the
characteristic function of the ball of radius R in R%. We set

b; (B, R, p)

Fw=| alorliok-3 [ ait® Dy )

i<jJriN 42
XJ dSXR(S)ZZ(Pp s Picts (Pi+Pj)/2+S/\/Z < Pi—1s
RrY
(Pitp))2=s/ /2, ..., pn) (2.2)

where p={p;, ..., pn}, p;€R? and B={P,;} are new parameters.
It is straightforward to verify that, if weC2(R™) and
lim p;(B, R, p)=u;, then F'; (u) - G* (u). To obtain a closed form we

R~ +o0
must therefore choose a different asymptotic behaviour for the functions
M5 in fact we shall require that lim p;;(B, R, p)=0. Terefore the forms

R-> +w
corresponding to the self-adjoint extensions of —A° take the value
l|u|[at @2 on ue CE(RN).
It will be convenient to rewrite (2. 2) introducing a set of volume charges
p® * associated to the functions ue H! (R?™) and defined by
pPh ()= piy (%)

i<j

R, u i~ Pj\er,u
pl_] (p) XR<72—]> %’ <p19 s Dicqs

Iy
BT P ...,p,-_l,pj+1,...,pu> @.3)

J
q;+s

ddSXR(S)lz(%s s iy, =~ s 9j—15

\/2

;=S
LI qN_l) @2.4)

\/2

u; (B, R, @
~ 4n@oN

Eu@=
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258 G. F. DELL’ANTONIO, R. FIGARI AND A. TETA

where q={q,, ..., gn_,} and we allow for a small dependence of p;
on q. For every A>0 we introduce “potentials” G*epR¥ (o stands for
convolution) where G* is the kernel of (—A+X)™%.

Remark that G*- pe H2 (R?N) if pe L2(R?™) and moreover the following
identity holds

N (G*op) ()2 (x)

R

dede(G*°p)(x).Vv(x)+KJ

=J dxp(x)o(x) VoeH!R™). (2.5)

Remark 2.1. — Although the choice of the value of the parameter A>0
will be inessential for our analysis, one cannot choose A=0 since one
would then lack control over the behaviour of G*° p®*(x) for large values
of |x|

For every choice of A>0 one has, using (2.5) and an integration by
parts

F'I}(u)=Jdex[|V(u—G*°pR”‘)|2+7»|u—G*°pR’“|2—)»|u|2]
R

+Y dx (p% “u—pfy " Greply ) — > dxp*Greppt (2.6)
i<jJRIN ij, bk JRIN

where we have used the symbol )’ to denote that the sum must be
performed on the couples (i, j), i<j and (h, k), h<k with (i, j) #(h, k).

For concreteness, we restrict ourselves from now on in this Section to
the case d=2.

The two sums in (2.6) are more conveniently expressed in Fourier
transform, taking the form

R 472N R2+|q|2+A
» dplasf“(q)F( LA S [ 1 )
i<j R2N_2 uij(Bs R9 q) |q| +7\'

- Z' dp xx (p; _Pj)/\/j) xr ((Pn _Pk)/\/i)

_ ij, ik JRZN B - A
y &5’“(1’1, .- ~,Pi—1,(Pi+Pj)/\/2’ .- -aPN)&E)Z“(Pl, .- 'aph—la(ph+pk)/\/29 e esPN)
IpP+2 '

2.7
To avoid divergences in the limit R — co we choose
4n2m)N
B,+mlog(R2+|q|?)

We shall discuss later the relation between the parameters PB;; and the
boundary conditions at c;;.

p; (B, R, @= (2.8)
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Remark 2.2. — For the informal manipulations of this Section, we
could have chosen, instead of (2.8), the g-independent relation
4nQ2m)N
(B, R)= ———— . 2.9
K; (B, R) Byt log K2 2.9

This would give the same weak limit, but the proof of I'-convergence we
shall give in Section 4 does not hold if the p;; are chosen as in (2.9).
If one chooses ; as in (2.8), the approximating form can be written
as
Fg(w)=7F"*w)+op*E"") (2.10)
where

grk,k(u)=J‘ZNdx[|V(u__Gl°pR,u)l2+)\‘lu__G).opR,ul2_;L|u|2] (2.11)
R

WrEn=3 [ alErP

i<j

2 B A
(e ot o (1 s ) |

- Z’ dpxr ((p; _Pj)/\/i) Xr (Pn _Pk)/ﬁ)

_ ij, hk JRZN a - B
y é‘ij’“(l’p ~esPio1s @i+1’j)/\/2’ e PN) 5;;“(1)1, cesPh—15 (ph+pk)/\/2, )
|p|2+7» ’

(2.12)

It is now reasonable to agree (a formal proof will be given in Section 4)
that in the limit R — oo one obtains the form

Fg(u) =" (u)+ @y ' (€ + 02 (&") (2.13)
gﬂ(u)=J Ax[|V (u—G &Y 2+ 4 u—G P —A|uf2] (2.14)

Dyt (E)= ) quIE:-‘,—(q)lz[Bij+1t10g(|q|2+7»)] 2.15)

i<jJRZN™

*E)=-3 |

_ ij, hk JRZN a . B
« &:‘lj(plz' cesDi—1s (Pi+Pj)/\/29 s PGP Pr—1s (Ph+pk)/\/2’ --sDN)
|p|2+7u

(2.16)

where £*={&}, i< j} is a collection of “charges” supported by o,;, obtai-

ned as suitable limits of the volume charges pf; “. Correspondingly the
G*- &, are now the potentials in R?™ due to the charges &},
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260 G. F. DELL’ANTONIO, R. FIGARI AND A. TETA

Notice that the bilinear form Fy does not depend on the parameter A
and that the “charge renormalization” (2.8) is independent of A.

On the other hand, each term on the r.h.s. of (2.13) does depend on A;
we shall exploit the arbitrariness in the choice of A to provide a lower
bound on Fy and therefore on the spectrum of the corresponding
Hamiltonian Hj.

3. QUADRATIC FORMS
AND SELFADJOINT EXTENSIONS FOR d=2

In this Section we prove that the form F; defined in (2.13) is closed
and bounded below. In Section 5 we shall describe the domain of the
corresponding operator, and give a representation for its resolvent. We
shall also prove that the operator is characterized by boundary conditions
which are local and translation invariant.

The method we use is an adaptation of the one employed in [6] to study
perturbations of the Laplacian in R* which are supported by piecewise
smooth curves. Notice that there, as well as here, the support of the
perturbation has codimension two.

We begin with some preliminary results about the form CI)I*}.

Let # =@ L? (o4, dy;;) where dy;; is Lebesgue measure on the hyper-

i<j
planes o;;. A generic element of # will be denoted by &={¢§
denote by ||&||,+ the norm of & in #.

i<j}. We

ijo

LemMA 3.1. — For any A>exp (B~ +n*N(N—1)/2), B~ =min {0, B;},
i, Jj

the  quadratic  form  QE=0p'+®2  on K, with domain
D (®p={&eH, Oy ' (§)< 0} is closed and coercive. In particular, D (®F)
is a Hilbert space with norm given by ®p .

Proof. — Fix ) as indicated. Then @} ' is obviously closed and coercive
on D (®}).

In order to study ®* 2 it is convenient to treat separately the following
two cases in the sum over the indices.

@ {ij}N{h k}={T}

(b) one of the indices i, j takes the same value as one of the indices
h, k.

Case (a). — In view of the symmetry of the kernel (|p|>*+2)”! under
interchange of indices, it is sufficient to consider the case i=1, j=2, h=3,

Annales de I'Institut Henri Poincaré - Physique théorique



HAMILTONIANS FOR SYSTEMS OF N PARTICLES 261

k=4. We must then estimate

J |§12((P1 +Pz)/\/2 D3sDas -+ 5PN)I |§34(P15P2’ (P3+P4)/\/2 9PN)|
R2N |p]2+7»

=7, ®. (3.1
We use the following inequality, valid for f, ge L2 (R?) and any ¢>0

J dxf dx! |f
x2+x%+c¢

J‘znd(pjvznd(pj dtJ‘ d'IfO \/t. (p)] [go(\/t', (p')l

t+t

L (P(J dt| fo (/1. <p)|2> f do’ (Loodf'lgo(\/ﬁ 2)1/2

< ||fHL2(R2)”g”L2(R) (3.2

=

13

where f, (\/f, @)=f(x!, x?) of x! =\/fcos 0, x2=\/fsin ®.

In deriving (3.2) we have made use of the fact that (¢+¢)"! is the
integral kernel of a bounded operator T on L2(R™*) with norm n. This
known result can be easily obtained by noticing that the isometry
U:L%?(R*) - L2 (R) defined by

UNE@=e"*f(e) (3-3)

is such that UTU ™! acts as convolution by (¢”’>+e~*?) and its norm is
easily computed by Fourier transform.

From estimate (3.2) and a repeated use of Schwartz’s inequality one
concludes

_ . -
Y, 0= ?“ €1z “L2 RZN-2 H €34 ”L2 RZN=2). (3.4

Case (b). — Without loss of generality, we take i=h=1, j=2, k=3.
We introduce the new variables
\/2 \/2
ERal Tp >3 \/2
2
_ l L _pitpaths
Pt P3— 3 \/» D2 qs \/§

and define
T‘l,m(qm—-ls q35 A qN—l)

_¢ 9m-1 \/E “dm-1 q3 _
= - + - ’—_—|—_:’.‘_’ —-1 ) m—2,3.
&1, ( 2 343 \/2 \/3 4qn 1)
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Then
¥, (©)= J dp
R2 N

y |E1z((P1+P2)/\/Z P35 - - -:PN)i |E~13((P1 +P3)/ﬂa P2 - - '7pN)|
[p|*+A

3
= -\—é— dp,. . .jdequl dq, dq,

% |n12(‘]1>‘13’ s - - - PN)l lnxs(‘h, q3> Pa> - - > PN)| (3.5)
GGt Y path

m=4

We now use the inequality
1
Graztg;.4;2 5(q§+q§)
and proceed as in case (a) to conclude

le (&)57‘52 “ Elz ”L'-' R2N-2) H &23 ”L2 R2N-2). (3.6)

From (3.4), (3.6) we conclude that ®* 2 is a bounded quadratic form
on . It is also easy to verify that if £ D (®}) then

Qﬁ(&)z[log%—ﬁ‘— N(N }n&llx

This concludes the proof of Lemma 3.1. O
We shall also need the following estimates for the potential G*° £ produ-
ced by the charges &.

LeMMA 3.2. — For every A>0 one has

(a) 1G*Ell <@ N [E ]l lim (b, N)=0 (3.7
(b) Grog¢H'(R*™)  if £eD(@)),  &#0. (3.8)

Here ||.|| indicates the norm in L2 (R?").

Proof. — (a) Using the explicit expression for the Fourier transform of
G*- £ one can verify that (3.7) is implies by the inequality

f dp |E12((P1 +P2)/\/§, Py - PN . "
REN (pP+21)? A

” €12 ”12,2 RZN-2) (3.9

and this follows easily performing explicitly the integration with respect
to the variable p, —pz/\/2.
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(b) To verlfy (3.8), choose E_,eD((D ), £E#£0, R>0. Then

B ﬂ @)Y (G &)@ |

R i<j
_Z dPnXR(Pz)
i<jJr2N .
y |&U(P1» <o s Pio1s (Pi+Pj)/\/Z cesDj—15 Pj+15 - - ’9pN)|2

Ip[>+2
—A Y dpﬂxn(p,)

i<jJr2N

« l&;,(l’u e Diets (Pi+pj)/\/§7 vy Dj—15 Pjv1s -+ s PN)l2

(p]?+n?
+7\z dPHXR(Pz) |l;|2
ij, hk JRZN = | | +A

XE.»ij(Pn < Di1s (Pi+Pj)/\/Z ceesDjm1> Pj+1s -+ -» PN)
XEhk(Pv -+ s Pu-1> (ph+pk)/\/§a ooy Ph—1> Pr+1s - - > Pn)- (3.10)

By (3.9), Lemma 3.1 and dominated convergence, the second and third
term in (3.10) are bounded above by c||&||% for some ¢>0. We show
now that the first term in (3.10), which is strictly positive (unless &=0),
diverges to +oo when R— co. By dominated convergence, this will
imply b).

Since every term in the sum is non-negative, and by assumption & #0,
it is enough to evaluate the term i=1, j=2 under the assumption &;, #0.
One has

J N |E12((1’1 +P2)/\/Z Pss - - -’PN)|2

d
p11=_[1XR(pl) N

N
énlOngj dps. . .dpy n XR(PI)JZdSXR(s)|Elz(S, D3 - PN)|2
1=3 R

R2N‘4

N
_nJ\ dP3~~-denXR(P1)
RZN-4 =3

szdsxk(s)|élz(s,p3, o P Plog(s2+p3+ ..+, (B.1D)
R

The last term in (3.11) is in absolute value smaller than ¢ @y ' (§). On
the contrary the first term in the r.h.s. of (3.11) is larger than c(E_,) logR?,
where ¢(£)>0 if ££0. Therefore the left hand side in (3.10) diverges as
clogR when R — oo, and this proves (). O
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We study now the properties of the form Fj defined by (2.13)-(2.16)
on the domain D (Fg)

D(Fy)={ueL?(R%, 36D (@)s.t.u—G*-g'eH' (R*M}. 3.12)

Notice that the charge &* associated to ue D (F) is uniquely determined
in view of Lemma 3.2, part (b) and independent of A since
G*'e—GYeeH! (R?N) if £eD(®f). Moreover Fy and D(Fg) do not
depend on the value chosen for the parameter A. This can be checked
directly, but it is also a consequence of the fact, proved in Section 4, that
FP ;Ls the I'-limit of approximating forms which are explicitly independent
of A.

The charges £ can be computed as pointwise and L?(R?N7?) limits.
One has, for almost every choice of ¢, ..., gy_, in any bounded subset
of RZ (N—-1)

B (@i G- y)= lim ———
€12(qy an-1) e 2mlog R

x j xR () u((g:+9/ /2 @1 =9/ /2 ¢2r - gn-1) (13)

and similar expressions for &%, i<j, i#1, j#2.
To prove (3.13), remark that if ue D (Fy) one has

1 - i~ —
MLZ ds g () u((q, +s)/\/2, (ql—s)/\/Z, e net)

1 - i~ .

= ERg_RLzalsxR(s)w((ql+s)/\/2, (@1=9/ /2 - > an-1)
1
T omlosR & L?_ ds 1x ()

- _ G p#(1,2) -

i@ty @ =) S2 s @+ e J2 - dn-)
s>+ |qP+
R?+]q?+2¢

nlo b s N 3.14
2rlogR g |q|2+k 12(q1 an-1) ( )

where w=u— G- £*e H! (R?Y). Using Schwartz’s inequality the first term
on the r.h.s. of (3.14) is bounded pointwise in R>®~1 by

2+ 2+)\. 1/2
! <logR |q| >

2 /mlogR lq>+2

- __ 1/2
X(J‘st";)((ql-‘—s)/\/z, (ql_s)/\/z’ L] qN~1)|2(52+|q|2+7\')>
(3.15)
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which converges to zero a.e. in RZN"Y and also in L2(R2®™"Y) since
weH! (R2M).

Reasoning as in the proof of Lemma 3.1, also the second term is shown
to converge to zero a.e. and in L2(RZ®N"Y) when R — 0.

The third term converges to &%, pointwise and in L2 (R2™N-1D) by
construction.

We prove now that the quadratic form F, defines a self-adjoint operator
which represents a perturbation of —A supported by the set = o,;.

i<j

THEOREM 3.3. — The quadratic form F, defined by (2.13)-(2.16) on the
domain (3.12) is bounded below and closed. Moreover, if ue H' (R2N), then

Fﬂ(u)=f dx|Vul?.

Proof. — Choose A>exp (B~ +n*N(N—1)/2). By Lemma 3.1 one con-
cludes that a lower bound for Fy(u) is —exp (B~ +n> N(N—1)/2) ||ul?
since the first two terms in (2. 14) are non-negative and (I)ﬁ €920, Vu,
under the assumptions made on A.

To prove that F is closed, we proceed as in [6]; it is of course sufficient

to prove that Fjj (u)=F, (u)+kja’x|u|2 is closed.
Let {u,}, u,eD (Fy) be such that
lim ||u,—u||=0, lim  Fj(u,—u,)=0. (3.16)

n— o n,m — o

Then {u,—G*<&"} is a Cauchy sequence in H! (R2M); denote by w its
limit.

Since lim @} (E*—E“m)=0, {&™} is a Cauchy sequence in #’; denote
by & its limit.

By Lemma 3.2, lim ||G*-&%—G*-E||=0.

We conclude that u,—(w+G*°&) converges to zero in L2(R?Y), and
therefore

u=w+G*£eD(Fy)
and moreover
lim Fj(u—u,)=0.

n — o

In order to conclude the proof of the theorem notice that from unique-
ness of & for ue D (Fy) it follows that £'=0 if ue H* (R?Y). O
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4. THE FORM FB AS A T-LIMIT OF APPROXIMATING FORMS

In this Section we give some details of the proof of I'-convergence to
F; of the approximating forms F',; introduced in Section 2.

For a given quadratic form T in a Hilbert space #* with domain D (T)
we introduce the extension T to the entire space by

_ T D(T
T(u)E{ ) ueD(T)
+o u¢D(T)
It is easy to verify that T is closed if and only if T is lower semiconti-
nuous (L.s.c.).
We recall next the definition of I'-convergence for quadratic forms. We

refer to ([7], [8]) for an extensive treatment.
We denote by ||. ||, the Hilbert norm of .

DEFINITION 4. 1. — T is the I'-limit of T, if and only if
(i) VYueD(T), 3I{u,}, u,eD(T,), lim |[u,—u|x=0

such that
T@)= lim T, (u,) @.1)
(ii) Yued, Vi{u}, uet’, if lim ||u,—u|,=0
then
T () <lim inf T, (u,). 4.2)

We shall recall some properties of I'-limits which will be useful in the
sequel. Proofs can be found in ([7], [8]).

LEmMA 4.2. — (i) The I'-limit is unique when it exists.

(i) If T is lcs. and bounded below, then in definition 4.1 one can
substitute D (T) with D (A), where A is the s.a. operator associated to T.

(iii) If T—=1mT,=T, and S is a bounded quadratic form, then
I'—lim(T,+S)=T+S.

(iv) Let {T,}, T be quadratic forms uniformly bounded below and I.s.c.
If {A,}, A are the corresponding operators, the following statements are
equivalent

(@ T=1imT,=T, T(w) <lim infT, (u,) V{w,} which converge to u

(b) lim A,=A in the strong resolvent sense

We verify now I'-convergence of Fj to Fy when R — oo. For a sequence
R, — o we write Fj for Fjm. We denote with Hf and H, the selfadjoint
operators corresponding respectively to the forms Fy and F.

Choose A>exp (B~ +n2 N(N—1)/2 and let

Frt () = Fp () + 0| u 2 4.3)
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THEOREM 4.3. — (i) For every ue D (Hy) one can find a sequence { U, },
U, € H' (RZN) such that

lim || u,—u =0 4.4)
lim F* () = F} (). 4.5)

(il) For every ue L?(R?™) and for any sequence { u,, } in L* (R*") weakly
convergent to u, one has
F% (u) lim inf FJ-* (™). (4.6)

m = oo

Remark 4.4. — As a consequence of Theorem 4.3 and of Lemma 4.2,
we conclude that the selfadjoint operators H',} associated to F'; converge
in the strong resolvent sense to the s.a. operator Hy.

Proof. — We prove first (i).
For fixed ue D (Hy) define

U,=w+Gregt — w=u—-Greg" 4.7
2®=Y x<u>
i<j \/z
- D,
X E,“(pl, .. .,Pi—l,p\/zpj, e s Pio1> Djs1s - - .,pN). (48)
By construction u, e H! (R?N), Vm, and one can easily verify (4.4). To
verify (4.5) it will be convenient to rewrite Fp u,,) as

Fgt (uy) = F™* (u) + @ * (™) (4.9)

[see Eq. (2.10) in Section 2]. As in (2.15), (2.16) we will denote
by ®p*' and ®™*? respectively the diagonal and off-diagonal part

of &,
By explicit computation one obtains, e.g. for i=1, j=2
- 1
(@)=

By, +rlog(Ry+[q[?)
X UzdsxR,,,(S)l&((ql +9/ /2 @1 =) /2 das - n-1)

R RN ey

h<k R
R h#(1,2) v
X&Zk((q1+s)/\/§9(q1_s)/\/2""’(qh—1+qk—1)/\/2"--:qk—Z’qk:'-'an—l)
s*+|qF+A
RZ+|q)*+A ]
+nlog—2 11 &Y . 4.10
g |q|2+>\' 212(‘1) ( )
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For the sake of simplicity in (4.10) we did not write explicitly the two
terms h=1 and h=2. It is easily checked that the estimate which follows
applies to those terms as well. From (4.10), using Schwartz’s inequality,
one obtains, for any o, 0Za <2

[\ datosQaf ) & @ - L@

c

ém[LZNdP(lﬂ +1)|W| (P

ey [ dogqapen g @F | @
i<jJr2ZN-2
and an identical estimate for any (i, j) #(1, 2).

We shall prove in Section 5 that if ueD(Hg) then u can be writ-
ten in an unique way as u=w+G'e& with weH?>(R*Y) and
log(|q >+ 1) B4 (@eL?(R2N"))Vh, k, h<k. Estimate (4.11) indicates
then that for any ue D (Hp) the approximation procedure introduced above
is such that the £™ converge to the £* in the L? (R*™~?) norm (2=0) and
in the norm induced by the form @y ' (a=1).

Notice that for R,, sufficiently large

1 2 2 — )\' 2
5log(|q| +7L)§log[(|q| +X)<] ————R2+|q|2+x)]§log(|q| +20) 4.12)

so that the norms induced by ®&-* and by ®j} are equivalent. From (4.11)
and Lemma 3.1

I‘D'é"x(ﬁm)—@?;(&“)iédq’ﬁ"(i"‘)—fbﬁ’1(&“)|§C(1Ong)_l (4.13)
and moreover

m__ ym lg" - p" ()|
“Gh(g - p )“H‘(RZN).éJ‘RZNdp——lp—'ZTx——

RZ+|q]2+2)\, ¢ -
énNZj dplog<—'"—l—2q|——)|§’{,-(®—§§'}(q)|2 (4.14)
NRR
so that, using estimate (4.11), with a=0
lim HG“(g"‘—p"‘)”Hl ®2N=0.

Since by construction u"—G*e p™=w+G"° (g"— p"), the proof of (i) is
complete.

We prove now (ii).

Suppose that {u,, }, u,eL*(R?"), is such that u,, converges to u weakly
in L2 (R2N).
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If lim inf F™*(u,,) = + oo, assertion (ii) is trivally satisfied. We can there-
m — o
fore assume that there exists a positive constant ¢ and a subsequence (still
denoted by {u,, }) for which

F™*(u,)<c. 4.15)

We conclude that for m sufficiently large
|4y — G o p™ ||t @2y <c 4.16)
ot (EM <. “4.17)

Denote by w and & respectively the weak limit of {u,—G*<p™} in
H' (R?") and the weak limit of {£™} in D (®} ). One easily verifies that
G*op™ tends to G*o& weakly in L2(R2N). We conclude then that
w+G*<§ is the weak —L?(R?M) limit of #™ and coincide with u by our
assumptions.

By lower semicontinuity of the Hilbert norms with respect to the weak
convergence, one has then

|| te= G* & ||yt 2, <lim inf]| s, — G*o p™ [yt 2, 4.18)
@y ' (§) <lim inf &> * (&™), 4.19)

Taking into account the continuity of @2, inequalities (4.18), (4.19)
conclude the proof of part (ii) of theorem 4.3. [

5. THE HAMILTONIAN FOR d=2

In this Section we study the selfadjoint operator Hy defined by the
quadratic form F; introduced in Section 2 and analyzed in Section 3.

Consider the selfadjoint positive operator I'y on # associated to the
form @, with A >exp (B~ +n2 N (N —1)/2). It is easy to verify that

DIp={EteAstVij L@log(qP+Nel?®R*¥ Y} (5.1)
and that, if £ D ()

(T30, (@=[By+log(a +M]g;@— X ds

h<k r2
B (026, )
Xihk("'aqi—l’(qi_*_s)/\/z""’qj—la(qi_s)/\/za"-a(qh—l_qk—l)/\/zs--"qN—l)
s+|qF+A

(5.2)

(the dependence on the ¢;’s in (5.2) is in fact suitable only for the case

Vol. 60, n® 3-1994.



270 G. F. DELL’ANTONIO, R. FIGARI AND A. TETA

h>j; the terms relative to different type of pairs (i, j), (h, k) can be easily
written down and were omitted in order to simplify the notation).

We claim that the Hamiltonian Hy, p={B,;} describing a system of N
particles of mass 1/2 in R? interacting through two-body zero-range forces,
is characterized by

D(Hp)={ueD (Fp)s.t.&*eD ('), u—G*-&*e H* (R?")
=G &), = T8y} (5.3
for some A>0, and therefore for all A>0. Notice that
u—G*-£*e H?(R?") has an L*-trace on each o; and the last equality
in (5.3) is in the L2-sense. Moreover if ueD (Hp), for all A>0 one has
Hg+ N u=(—A+1) (u—G*-&") (5.4)

Remark 5.1. — It follows from (5.3), (5.4) that if 4, is an eigenvector
of Hy relative to a negative eigenvalue —A,, then u,=G*o<&% (notice
that —A-+A is invertible for every positive A) and moreover &0 satisfies
[ g*o=0. Conversely if there exist A, and & such that I} £=0 then by
(5.4) uy=Ghro<E is an eigenvector relative to the eigenvalue —\, and,
being Gro-E¢H! (R2N), £=E% by uniqueness. Therefore the negative
eigenvalues of H are those A’s for which the equation F§0§=0 has a
solution.

The proof of (5.3), (5.4) can be obtained following the procedure
described in [6]. For the convenience of the reader we recall it briefly here.

If ue D (Hy), then by definition 3ge L*(R*") s.t. Yve D (Fp)

Fg(u, v)=(g, v). (5.5)
Choose ve H* (R?M). In this case £"=0 and (5.5) becomes

j dx(Vw, V(u—G‘°§“))+kJ‘

dx (v, (u—G*>&"))
=f dxv(g+iu) (5.6)
R2N

which implies
u—GroE*eH*(R?N). S.7

Using this information and integrating by parts in the first integral in
(5.6) one obtains (5.4).
Choose now v so that v=G*<&’, £Ee D (®}). Then (5.5) gives

D &, E)=(hutg, G*E)=((—A+N) (u—G"g"), G*-&)
=Z‘ dJ’ij(u_G“{;u) (yij)g')j(yij)écnu_Glo&u||H2 (RzN)Hgv”x
o (5.8)

where a standard estimate on traces of functions in Sobolev spaces was
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used. From (5.7), (5.8) we conclude that D (Hp) is contained in the set
of functions appearing on the right hand side of (5. 3).

Conversely, following the same steps, it is not difficult to verify the
other inclusion.

Let us remark here that the condition

=G g9, =@T38Y;  Vi<j (5.9

is equivalent to the following boundary condition, satisfied by ueD (Hp)
almost everywhere on o;

lim I:u(xl, cees XN)

| xi=xj|=>0

1 = 1
— &y o, Ot x)) /2,0, x) log——
2n§]( 1 ( ])/\/ N) gl xl:l
=B85 (0 - (X)) /2, x). (5.10)
The equivalence is easily checked if one takes into account that

[ lim ((}logg(xl,. X

[ xi=xj|—>0

STV
oyl COURRES \/2,..., N g|x,.— - q
- 1
- i gy Ko apFa o nl) - Lo L]
MRV 5]

| xi=xj|~0 2n
—&(@log(q*+2) (5.11)
where K,(.) is the zero-th order Hankel function with imaginary
argument [15].

Equation (5.10) expresses a linear relation between the first two terms
in an asymptotic expansion of the function u near Peo;;; moreover the
relation is independent of P. Therefore Hg is a local and translation
invariant extension of —A°,

Notice that the relation (5.10) is a direct generalization the boundary
condition defining the two-body zero-range interaction in two dimensions
(see e.g. [5]).

We end this Section giving an explicit description of the resolvent of H;.
For every A>exp (B~ +n2 N(N—1)/2) and fe L2 (R?"), one has

(Hg+A) "1 f=G*f+G*en (5.12)
where 1 is the unique solution of the integral equation
TE)y=G 1|, (5.13)

Equation (5.13) generalizes the equation of Ter-Martirosian and
Skorniakov [9] which was further analyzed in [1], [2] for the case of three
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particles in R3. In fact, (5.12), (5.13) continues to hold, by analytic
continuation of both sides, in the complex A-plane cut along the negative
real axis, with the exception of those positive values of A for which
kerI'j#{0}. We recover here the fact already noted in Remark 4.1 that
—Xo is in the negative part of the spectrum of Hy precisely if
ker I #{0}. ’

We shall not discuss further here the properties of the spectrum of Hy,
and we add only the remark that the eigenfunctions have an exponential
decay in the directions away from X, with a rate which increases with A,,.
The decay along X is linked to the decay of the solutions of I’ﬁoc“,=0 and
will in general not be exponential.

6. QUADRATIC FORMS FOR d=3

In this Section we begin the discussion of the case of dimension three.
The informal part of the discussion follows the pattern of Section 2.
The first sum in (2.7) has now the form

Y dq| €5 (@)
i<j RIWN-1
3N/2 3/2
X(M—4nR+4n\/qz+karctan R > (6.1)
by B, R) JETR

while the second sum in (2.7) is unchanged, apart from the fact that the
integration is now over R3N.
Correspondingly one chooses

w; (B, R)=2n)*N? (4m)*? (B;+4nR)™! (6.2)
The approximating forms can than be written as in (2.10)-(2.12), with
the obvious changes, and the expected limit form is
Fy(0)=7"(u)+ @y ' (§)+ 02 (€Y (6.3)
where

g’*(u)=J dx[|V (=G &) P+ |u—G & P—A|ul’] (6.4)

@)=Y | dl&@FB 2w A 6.9
o2 @)=Y | dp
ij, hk JR3N
X’E.:li‘j(pla"'3pi—-1’(pi+pj)/\/§’~"9pN)EZk(p1e'~'aph—l’(Ph+pk)/\/§a-~-sPN)

|p|*+A
6.6)
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with domain
D(Fp)={ueL?*R3*N), u=w+G*-&* weH! (R3N),
6.7
"={&;}, EheH2 (RPN}

Notice that # and (I)l*,’ ! are, by construction, well defined on D (Fp). It
is immediately checked that also ®* 2 is well defined on the same domain.
We give details of the proof for the case {ij} N {h, k}#; the other
case is treated similarly. Choosing for definitness i=1, j=2, h=1, k=3

and introducing the same variables as in the case (b) of Lemma 3.1 one
easily obtains

E12((P1 +P2)/\/Z P3s - - +» PN) 813((171 +P3)/\/Z P2 - - -5 PN)
kadp Ip[>+A

§CJJP4- . -dPNqus Id‘h dq,
X lc12(q1’ (I3, p45 .. -sPN-)Cm(%, q39 P4, RS pN)I

a1t +ad) Ja:]
where

32 2 14
12\"1> Y35 F45 - - -5 PN) | 91 3
C12(91> 93, P = 4q+q+7»

£ 9 2 9, q3
X — + —qs3, _—+—, s e ey . 6.8
&12(2 \/;q3 \/z 3 p4 pN) ( )

The function ,, is defined in an analogous way and we have used the
fact that (¢1 +¢3)/2< g1 +q5+4,-9: 2 (g3 +43) 3/2.
Performing the integration in the angular variables of ¢, and ¢,, using

1/2
, ...)E<Idﬂ|§|2(lq|, Q, )) , one has then

f dp,. . .dpy fd43 qul dq,

X Iclz(‘h, 93> Pas - - «» pN)| |C13(q2’ 93> P4> - - '>pN)|

Sa 1@ +43) [4:]
o) 1/2 1/2
é[supj dfhﬁlql'z Iqjl J
le1lJo qit+q;
@ 1/2
xfdm...dejdqs{j dla;| 4P 0. )}
0

0 1/2
{j d|q2||q212z%3<1q2|,...>}

0

<CO ' (). 6-9)

the notation §(|¢
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As a result of these estimates, we have also shown that F; is closed in
the norm defined by #*+®% ! (i.e. the H'-norm for w and the H'/?-norm
for &).

Also the result described in Lemma 3.2 holds. We shall reformulate it
in a somewhat sharper form, which will be useful later.

LEMMA 6.1.
@) G =&l =11&ill - 1/2.a (6.10)
(i) GE¢H' (RN  if £eD@yY),  E#0 6.11)
where
||5.»i,-||2—1/2,x51r2j3(N_U(|ql2+>»)'”2|F,ij(q)lqu. (6.12)

Notice that the norm defined by (6.12) is equivalent to the norm of
H™Y2(R3N-) 1In fact it is immediately checked that one can find two
positive constants ¢_ (M), ¢, (A) such that

c- (M) ” 3 “1—[‘1/2 ®3 ‘N‘l))én € ”—1/2,1§C+ 0y ” g ”H‘l/2 ®3®N-n). (6.13)

Proof. — (i) This is an explicit computation, using the expression for
the Fourier transform of G*<&;;.

(ii) The proof is a lenghty but straightforward computation, along the
lines described in detail in Lemma 3.2 for the case d=2. We shall not
repeat it here. [

A result equivalent to Lemma 3.1 does not hold in dimension three.
The form F; is neither closed nor bounded below in general (i.e. if no
further constraint is imposed on its domain).

It can be used however, as we shall presently see, to construct an
operator which commutes with complex conjugation and has dense domain
in L2(R3M). This operator admits therefore self-adjoint extensions, all of
which are unbounded below.

For N=3, a family of such self-adjoint extensions has been constructed
in [1].

The form Fy commutes, at least formally, with the translation group,
the rotation group O(3) and the group II of permutations of particle
indices (recall that we have chosen all masses to be equal).

We shall only consider extensions which commute with the translation
group. In view of this fact, one can take into account the tensor product
decomposition of L2(R?) obtained using center-of-mass and relative coor-
dinates and introduce a different form Fj, which coincides with Fy on a
common domain (dense in L?(R?)) and is obtained by decomposing u in
a way different from (6.7). To prove the results described in this Section
we find it more convenient to work with Fy. In the next section, to prove
boundedness below of the restriction of the form on suitable subspaces, it
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will be more convenient to make use of Fy. We shall give then more
details about the relation between the two representations.

As for the other two groups, the formal invariance of F, allows to
consider separately its restriction to subspaces corresponding to irreducible
representations of O (3) or of IT (or of some of their subgroups); it can be
expected that some of these restrictions be bounded below. In particular,
we shall prove in the next Section that, for N=3, this is the case if one
considers the subspace of functions which are antisymmetric under exch-
ange of two of the indices, and also if one considers the subspace of
functions which have zero mean under the operation of rotation of the
relative coordinates, leaving the baricentric coordinates invariant.

We remark that the existence of a self-adjoint extension which is
bounded below was established for the first of these two cases in ([13], [14]).

We prove now that F; is unbounded below if no further constraint is
introduced in D (F), as defined in (6.7).

We prove first that this is the case for N=3.

LEMMA 6.2. — There exists a sequence {u,,}, u,€ F$), ||u,|*<1 such
that
lim F§ (4,)=—o 6.14)

(here F§Y denotes the bilinear form Fy for a system of N particles).

Proof. — To prove that F; is unbounded below, it is sufficient to
restrict attention to a subset of functions in D (Fg). We choose functions
u(x;, x,, x3) which are symmetric under permutation of any two of the
particle indices, and have moreover the form

u(xy, X35 %3)=(G*° &) (x;, x5, X3) (6.15)
where, as usual £={§, i<j, i, j=1, 2, 3}, §; is supported on the hyper-
plane o,;={xeR’|x;=x;}, and ;eD(®}p '), Vi<,. Notice that all the
(putative) negative bound states of any operator associated to F§” have

the form (6. 15).
It is easy to see that if (6.15) defines a symmetric function, then the

corresponding charges are all equal: &;,(q;, 42) =813 (91, 92)=&23 (925 91)-
It is convenient to introduce the variables defined in Lemma 3.1,

case (b), and the new charge n (p, q), defined by

NN
np, 9= > &12<§+ gq, ﬁ+ﬁ> (6.16)

We choose n’s which have the product form

N, 9=/(p)g(q) 6.17)

where g has compact support and || g || 2 g3,= 1.
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Then F§ (1) becomes

F (w)= —Xj3dx|u|2

R

+J3dq|g(q)|2f3dp[rs+2n€/§p2+42+x}|f(p>|2

I R N (/1 N
La q|g(q)| J‘Rs 71 pzpf+p§+p1.p2+q2+7» ( )

with B= % T B,y

i<j

For ¢ in a compact set one has

\/§p2+q2+k—\/§p2+k§——c (6.19)
4 4 \/3/4p +g7+ A

Moreover the kernel

1 1
pitpstp ., ta*th pitpit+p.p,tA

(6.20)

defines a bounded integral operator in H™ /2 (RS).
Taking into account (6.10) and choosing f real and rotationally
invariant

fp)=h(p), Imha=0 (6.21)
from (6. 18) we obtain
Fff"(u)§(—)»+C)J~ dx|u|2+4nBJwdpp2|h(p)|2+‘l‘*(h) (6.22)
R3 0

where

\P%(h)ssnsf dp p? /%p2+7»h2(p)
0

© © I+p3+ +A
1672 f dp, J dp, py plog P P2 PPy (0 ) h(p,) (6.23)
0 0 pitpPi— PP TR

In order to diagonalize the operator defined by ¥* (k) in L*(R?) we
introduce the following change of variables

3
sinh x= \/7 P yx=o0 (6.24)

\/X
nd _
3 2 /A
ox)= /32n_ksinhxcoshxh< \4 sinh|x|> xeR. (6.25)
3./3 3
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Using elementary properties of hyperbolic functions and taking Fourier
transform we have

P (h)=P"(p)= fdw (x)

2cosh(x—x")+1

fj dedx o (x)o (x")]og 2cosh (r—x)—1

=J dk (1-T k) 2 (k) (6.26)

where
sinh /6 k
T(k)=—2 /

SmAmbE (6.27)
\/3 kcoshrn/2k

is \/ﬂ times the Fourier transform of
(4/\/3«15) log[(2 cosh x+1)/(2cosh x—1)]

(see for example [16]). Notice that T is a positive, even and decreasing

function of keR, with max T (k)=T (0)= 4m

keR \/3

Consider a function ¢, (k) with compact support, f dk @2 (k)=1 such

R

>1.

that
VY ke supp @, (6.28)

3\/3 \/?
One has
_ 2r - 21
xp(%)g(l—_ﬂdk(pg(k)=(1—_>de¢g(x) (6.29)
3\/§ R 3\/§ R

Notice that if ¢, (x) satisfies (6.28), so does @, (x+b), VheR. Choose a
sequence

On)= —o(x—m) meN,  y,>0 (6.30)

and denote by u,, the corresponding sequence in D (F§”) defined via (6.25),
(6.21), (6.17), (6.16), (6.15).
Using Lemma 6.1, (6.24), (6.25) and (6.29), from (6.22) we have

1 95 (») ¢ 1
F®u,)S(-C+C'/AN)— | d 0 + —
B ) =( & ZL ycoshz(y+m) N

e (2% _\1 g5
Ldycosh(y+m) 3\/3 1>y§, (6.31)

m

Vol. 60, n° 3-1994.



278 G. F. DELL’ANTONIO, R. FIGARI AND A. TETA

By dominated convergence the two integrals in (6.31) converge to zero
for m large and one can find a sequence v, converging to zero so that
Fg) (u,,) diverges to — oo for m tending to infinity, concluding the proof
of the Lemma. [

We consider next the case of N particles. One has

LemMMA 6.3. — F§V is unbounded below if no symmetry restriction is
placed on D (FgY).

Denote by o_ (N)e[— o0, 0) the largest lower bound for F§"

c_(N)= inf FEY (u) (6.32)
ueD FRY), llull=1

Lemma 6.3 is a consequence of Lemma 6.2 and of the following
Lemma 6.4, which expresses the rather natural fact that the lower bound
for F{Y is a non-increasing function of N

LEMMA 6.4. — o_(N)=Zo_ (M) if NEM.
Proof. — In the proof of the Lemma we denote by G™ the kernel of
(—A+2)"1in R3M
Notice first that, if u, e D(F§?) and u,eH'(RN™™), then u=u,.u,
defined by
ulxy. .. x)=u (g XUy (Xpsq- - - XN) (6.33)
belongs to D (F§V).
To prove this recall that for every A>0 one can decompose (uniquely)
u, as
u;=w+GM-og (6.34)
By construction wu, e H' (R*") = D (Fg").
We prove now that
(G<8).u, — GV (Eup) e H' (R3M) (6.35)
Using Fourier transformations, (6.35) is equivalent to g;<oo
Vi,j=1...M, i<j where e.g.

r3

1 1 2
a,,= |dp,...d 24+ . +pE+A -
12= |y dpn (P2 PN )[pf+...+p§d+x pf+...+p§+7\,:|

X‘E((P1+P2)/\/§a .- -’Pm)ﬁz(PMH, ---apN)'
Gl R IEF P
N RN (Pt . pA )
(pit+ ...+t P+ ..yt

~

Apysy - - 'de(pr%/l+1+ s +P§1)|£2(PM+1: .- -,PN)|2

|g((p1 +P2)/\/Z R PM)|2
dep""dpM (P2+ ... +p4+A)?

SClluy [fr w3 -y | €[22 3 a- 1 | (6.36)

IA
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Define now u (xy. ;. . . xy) by
Wy (Xpgs1s - or X)) =ty g1+ 0, .., Xyt D) 6.37)

Using the continuity properties implied by (6.36) and Lebesgue’s domi-
nated convergence theorem, it is now easy to prove, for almost every b

lim FgN) (u, . u’z'b)=F}5M) (u)=|u, || ®3 N-M)) (6.38)
)
Therefore
o_(N)= inf (FRP (u) + || uy [ @3 v-w)=0_(M) (6.39)
ug, ug, [lug [|=1luz||=1

concluding the proof of the Lemma. O

Remark 6.5. — One can prove the stronger inequality
o_(N)Soc_M)+o_(N—-M) 1=MZN (6.40)

but the proof is not straightforward because one cannot use product
functions. The difficulty lies in the fact that if w,eD(F§?) and
u,€ D (F'~V), then in general u, .u, ¢ D (F{¥), if M and M —N are larger
or equal to 2. The proof must then proceed through approximations and
a limiting procedure.

7. SYMMETRY CONSTRAINTS AND BOUNDEDNESS BELOW

We start with the case N=3 and we shall prove that, if one introduces
suitable symmetry constraints on the domain of F”, then this form is
bounded below, and defines a unique self-adjoint operator, bounded below.
To simplify the notation we shall drop the dependence on the number. of
particles. .-

It is convenient to consider a slightly different quadratic form Fy, which
coincides with F; on the common domain D (Fg) N D (Fp) which is dense
in L?(R®). Both Fp and F; are continuous in the topology induced by
F (u)+ 0 ' (£") [see (6.3)].

Therefore if one of them is bounded below, so is the other one, and
they define the same self-adjoint operator.

The new form F} is obtained through an informal construction which
parallels the one described in Section 2 but places more emphasis on the
separation between the center-of-mass and relative coordinates.

Consider the decomposition

L?(R%=L2?(R% ® L2(R®) (7.1)

corresponding to this choice of coordinates.
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One can construct approximate bilinear forms Fi, > Using volume charge
distributions as in Section 2, but making now use of the Green’s function
G* of the restriction of the Laplacian to the second factor in (7.1).

In particulier, the restriction of F}  to the first factor in (7. 1) coincides
for every R with the bilinear form associated with the free Laplacian
in R3.

Proceedings as in Section 2 we obtain the following result for the
quadratic form in the limit R — oo

Fi (o) = 0|22 @3 Fp () + || 0 [[fr e || |22 e 7.2)
D(F[;)—{vueL2 (R ®L? (R6)|veH1 (RY, ueD(f:B)} (7.3)
D(FB) {uGLZ(R6)|3&u=(§12a 13> £23)5 &ZEHI/Z(R3)Vi<ja (71.4)
u—GroEeH! (R®)} '
~ ~ Eu (k) +E (k) +E(k,+k,)
G}'°“k,k: Glol.l.k’k=12(l 13\2 23\ 2
&k, k)= 2, Gl k) G+ I +ky ky A

(71.5)

Fy(w)= fdk dhey (k2 + K2+ ke, Jey + )| d— G o842~ jdx|u|2
+op )+ (E) (7.6)

Dy E)=) dqlé’fj(q)|2<l3i,~+27t21/zq“rl) 7.7

i<jJRrR3
q)A,Z(&u):_Z dg, dg, Zgij(:h)&hk(%) ) (7.8)
ij. hic JRS gitartg gt

To compare the domains of Fy and Fj notice that ue D (F) if there
exists we H! (R®) such that

(1;_ "";)A(kl’ k2’ k3) R R
_ (it k)] f2, k) + 83 (e +K3)/ /2, k) 803 (s, (ha tK3)//2)
k3 +i3+k3+A

(7.9)

where &;e H'?(R®)Vi<j, while ueD (Fp) if there exist we H' (R®) and

veH! (R3) such that
(W—w) (ky, ks, k3)
ok, + ey )iz E TR 1 (g — k) F 154 (s — ko)

k2+k2+k2 ki ky,—ky ky—ky. ks+A

where ;e H'/? (R®) Vi<,. Using these explicit formulae it is easy to verify
that D (Fp) ¢ D (Fp), D (Fp) ¢ D (Fp) and that D (Fg) N D (Fyp) is dense in
L2 (RY).

We shall consider the restriction of FB to the subspace of functions
which are antisymmetric under interchange of the indices 2 and 3, and
also the restriction to the subspace of functions which have zero mean

(7.10)
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under the rotation group (notice that the permutation group acts trivially
on the first factor in (7.1)).

Recently ([13], [14]) Minlos and Shermatov have shown boundedness
below for the Schrédinger operator corresponding to the first case. They
construct the Hamiltonian applying the Krein’s theory of s.a. extensions
of symmetric operators. Then, using the Mellin transform, they diagonalize
the Faddeev equation for the bound states and, by direct inspection, they
show that the spectrum is bounded below.

In the Proposition below we shall find the same result using minimax
methods.

Prorosition 7.1. — Let Fy , the restriction of F‘B to the subspace of
Jfunctions which are antisymmetric under interchange of the indices 2 and 3.
One can find ho>0 such that

Fp o )2 —hollu|Z2@s, VueD(F,). (7.11)

Proof. — We already remarked that there is no loss of generality in
assuming that the functions considered are symmetric under interchange
of the indices 1 and 2. Every such ue D (F; ,) can be uniquely decomposed
as

u=w+G*-¢ (7.12)
where

wreH! (R®), E=( \/ﬂ, - \/ﬁ, 0) with neHY2(R?® (7.13)

and correspondingly F, , takes the form

FB,H(")=J dkldkz(kf+k§+k1.k2+7»)|12—Gx°§|2—7\,J cl'xlu,2
RS 6

R
+Op LM+ P 2(m) (7.14)

¢ﬁzi(n)=f3dq|n(q)IZ(B+2n2 /zq“rx) (7.15)

(1)2,2(11):! dq dq n(‘h)n(‘h) . (7]6)
e e AL )

Take a positive number ¢, with 0<g<1 if B<0 and e=1 if $=0. Then
Fl},a(u)
20 [ axlul Bl - B L 0+ o051 )+ 057
R

> ~XJ dx|u|2+(B+2n2(1—g)\/X)||n||fz(R3)+s(D%;,},(n)+<Dﬁ'Z(n)
R6

Vol. 60, n° 3-1994.



282 G. F. DELL’ANTONIO, R. FIGARI AND A. TETA

;—xf dx |+ & [ (m) ~ @ ()]
R6
+[®Y 2 () — @ 2 (M)]+e® s M)+ D2 (M) (7.17)

where \/X>| B|/2n%(1—g) if p<0 and A>0 if B=0.
As in (6.19), (6.20) one can see that
|0, 5 ()= @g: s ()| ScA|[n]Z 12,1 (7.18)
| @) 2 () — @Y 2 () [Sch[n |1 (7.19)
Then, using Lemma 6. 1, equations (7.18) and (7.19) imply

| S () P —clf

R

dx|ul*+e®3 L (n)+ 0 2 (n). (7.20)
6

The Proposition is proved if we can show that for some ¢,
0<e<l1, g0 L (n)+ 92 % (n) is non negative for any ne H'/?(R?).
Introducing spherical coordinates (p, ®), p>0, ®=(0, ¢)€S? and defin-
ing
h(p, ®)=n(g), qeR’ (7.21)
we have

e®g;; () + 07 * (n)=n \/ﬁjzdwj dpp® [k (p, ®)[*
S

0

<o) <] 2 2]7
+J do, dmzj dle‘ dp, 21 p22 (P1, @) A (P, @) (7.22)
s2 x§2 0 0 pi+pz+p;pycos(0;, ©y)

where cos (®,, 0,)=cos 0, cos0,+sin 6, sinB, cos (p, —@,). Now with the
change of coordinates

p=e~, xeR (7.23)
o (x, 03)=1t\/a\/§e2"h(e", ) (7.24)

the last integral in (7.22) is reduced to a convolution and it is then
diagonalized taking Fourier transform

8¢8:§(n)+‘1>2’2(n)=f2dmj ix|o G, o)
S R

L] f dmdm,f dxdr @ 9K, @)
272 /3e Js2xs2 2 cosh (x—x')+1/2 cos (0, ®")

=J dcojdk|q3(k, o)

+j dmdm'fdké(k, ®) ¢k, @)Sk,v) (7.25)
s2 xs? R
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where

y=cos“1<%cos(m, m')), §y§§ T, (7.26)

WA

and
1 sinhyk

n\/§—s siny sinhmk

is \/21: times the Fourier transform of [2n?_/3€(cosh x+cosy)] ™! (see

e.g. [16)).
It is easily checked that S(k, y) is positive for k=0, n/3<y=<2n/3, and
strictly increasing as a function of y for any k=0. Therefore

2 sinhmk/3

Sk, v)=

(7.27)

minS (k, y)=S" (k)= 7.28
yn () ® 3ne sinhmk ( )
max$ (k, 1) =5+ (k)= > Smh27k/3 (7.29)

. 3ne sinhmk

Notice that S* (k)—S~ (k) is even, positive and decreasing in k. So that it
attains its maximum value at k=0. Using this fact and the Schwartz
inequality we have from (7.25)

Jdkj‘ d(o(p(k m)j do' ¢ (k, ®") S (k, 7)
s2

= dk (S* (k)+S~ (k)

f do ¢ (k, 0))
s2

5 Je
+fdkj do ¢ (k, m)J do' ¢ (k, @)
J] s2 s2

S*(k)+S~ (k)]

x| S(k, )~ >

g—%fdk(S*(k)—S“(k))j do| ¢ (k, m)|J do' | ¢ (k, ©) |
R s? s2

(%

—‘-‘sjdkj lo (k, )| (7.30)
9 Jr s2

In view of (7.30) and (7.25) we get

e®y 1 (M) +®>2(n)=0  for g<8<1 (7.31)

and this concludes the proof of the Proposition. [J

Along the same line of reasoning as in the above proof one can also
show that @} . +®} 2 is closed and bounded below on H'/?(R?).

Then, proceedmg exactly as in the two dimensional case, it is easy to
verify that F , is closed on D (F; ,) and that it is the I'-limit of approxim-
ating forms which are smooth perturbations of the form of the Laplacian.
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The s.a. operator Hy , on L?(R®) defined by Fj , is bounded below and
describes (in the center of mass reference frame) the dynamics of two
identical scalar fermions interacting with a (different) particle through a
two-body, local and translation invariant zero-range interaction. Action,
domain and resolvent of H; , can be easily characterized following the
same steps as for the case d=2.

Remark 7.1. — Let o_(B) be the infimum of the spectrum of Hg ,.
It is easy to see that

o (B)=min (0, —%q(B))
where A, (B) is defined by
e 2| B [C()|? }
)LO(B)_ggmf{CeL (R )|2T[2Ls~——\/3/4q7 +kdq+(C, T,0=20

and

@ Tle;)sj dq|L:(q)|2+$
R3 n

C(q08(92)
dq, dq, 2 14,2 2 2 1ya’
RS @BAHgi+M)" (g1t 92 14,-9, TV ((B/4) g3+ 1)
For the system we are examining in this Section one has T, =0.
It follows that A, (B)=0 if p=0 and therefore o_ (B)=0 if =0 (i.e. if
B=0 there are no negative energy bound states for the system).
If B<0, an easy scaling argument shows that A, (f) is given by

xo(ﬁ)=< b ) = inf € T,0 |
n°c ;GLZ(Ra)J‘31@(‘])]2((3/4)4124‘1)_1/2dq

R

Notice that ¢<1, as one can see taking test functions with compact
support concentrating at the origin. We remark that ¢=1 if one takes
functions which are product of the two-body bound state (seé e.g. [5]) and
a free particle.

It would be interesting to obtain a sharper estimate on c. Indeed, if
c¢<1, then the three-particle system has a bound state with energy smaller
than (—|B|/27?)>

We shall now prove boundedness below also for the restriction of Fy to
functions which have zero mean for the group of rotations of the internal
variables.

Consider the following action of the rotation group

x;—x;— R(x;—x), X, tx,+ x5 > x,+x,+ x5, (7.32)
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with Re O (3). Its dual action on functions, in the decomposition (7.1), is
trivial on the first factor and is the usual action of the rotation group on
the second factor. In particular, if u has the form u=G"<¢, £eL?(R?),
O (3) acts by

E(p) - E (P)=ERp). (7.33)

Therefore, on the charges &, the restriction we are considering can be
described as the requirement that “‘there are no s-wave charges”.

If one considers the entire space L*(R®) this restriction on the angular
momentum takes a somewhat more complicated form and will not be
described here.

As we have seen in the course of the proof of Proposition 7.1, the
proof of boundedness below only involves properties of the term
Oy ' (§)+ P+ 2(E) in (7.6) and therefore we will take explicitely into
account only the condition

J S(Rp)du(R)=0 (7.34)
Re0O(3)

where p is the Haar measure on O (3).

We prove

PRoPOSITION 7.2. — Let Fy , be the restriction of F to the subspace of
Sfunctions which are such that (7.34) is satisfied. One can find A, >0 such
that

Fp o )= =L, || u||?2 gs) VueD (F; o). (7.35)

Proof. — We proceed along the line of the proof of Proposition 7. 1.
Take ¢ such that 0<e<1 if minB;;<0 and e=1if B;;=20 Vi<,. Then

i<j

FB’O(u)g—kJ dx|u|2+z[BU+(1—s)21t2\/—]||§”||Lz(Rs

i<j

+e[@, 5 () — 05 6 (8)] +[@5 * (§) — 0 (B)] +e®F; 5 (§) + DY > () (7.36)

where @f § and @ ? are the restrictions of @} * and ®* 2, defined in (7.7),
(7.8), to the subspace of functions satisfying (7.34).
Now we take \/X> min B;;[2n* (1—¢)]™" if minp,;<0 and A>0 if

i<j i<j
B;j=0 Vi<j and we estimate the third and the forth term in r.h.s. of
(7.36) exactly as in (7.18) and (7.19). Then again the proof is reduced
to show that for some positive &, 0<e <1, e’ § (§) + @ 2 (€) is non nega-
tive for &;;e H/?(R?) satisfying (7.34) Vi<}.
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Proceedings as in the previous case [see (7.21), ..., (7.30)] and using
the fact that the charges have zero mean over S* we have

£0% () + DY 2(E)= Y dcof dk | ¢, (k, o)

i<jJs?

-2y do dm'f dk ¢ (K, ©) Gy (k, &) S (K, 1)
R

ij, hk Js? x s2

=D dmf dk | ;; (k, @) 2
R

i<jJs?

_LZ'Jko do| ¢, (k, m)IJ do'
9 e i he Jr s2 s2

g<1—£>ZIdkj do| ¢;k, ©)* (7.37)
9e R s2

i<j

(Bhk k, o) |

where
&i; (@) =hy; (p, w), geR>, p>0, oweSs? (7.38)
p=e’, xeR (7.39)

0;;(x, ®)=mn /8\/§eth,-j(e", ) (7.40)

and S(k, y) has been defined in (7.27). Taking ¢ satisfying 8/9<e<l
completes the proof. O

As in the previous case we can conclude that Fy , is also closed on
D (F,, o) and then the corresponding Hamiltonian H; , is s.a. and bounded
below.

Finally we consider the system of N+ 1 particles, formed by N identical
(scalar) fermions and a different particle and we show that the correspond-
ing quadratic form F}"! is unbounded below for N sufficiently large.

Taking into account the symmetry constraint it is easily seen that the
interaction is described by a single charge £ HY/?(R*™). The form F§"*
is then defined as in (6.3), (6.4) with ®} ! and @ ? replaced by

q’.‘;’,iz(&):Nf3qu|§(q)|2(B+2Tt2\/q7‘+7») (7.41)

P2 E)=NN-1) dp

g3 N+1)

XE((IH +PN+1)/\/§, Pz - - PN)E((P2+PN+1)/\/Z Py -- s PN)'

7.42
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We choose a function u=G*-§ and, introducing the variables defined
in Lemma 3.1 case (b), we define as before
Tl(t, s, p39 RIS PN)
(1 2

_ N2 20t s
N7§<5+ 3s, \/§+\/§,p3,...,pN>. (7.43)

In terms of the new charge n we obtain
O n () + Dy * (§) =D n (M) + By > (n)
=J3qu3. .. dgydsdt|n (1, s, g5, .., qu) P

R

X<B+2n2\/%t2+s2+q§+...+q§+7\.>

+(N—-1) dps...dpydsdt, dt,
_ R3 (N+1)
XTI(I;, S,2p3, "',PN)T](IZ9 S’p39 "',pN)‘ (7.44)
6+t +s2+pi+ . PR+
All the arguments of the charge m, with the exception of the first one,
have the role of parameters and can be rescaled through the change of
variables ¢ — z

t
- NSRRI RS
and the redefinition of the charge
C(z 843 -, g)=(*+g2+ ... +¢4+ V)1
(\/s2+q§+ oot ght Az S, g3, ..., gy (7.46)
Finally we choose { in the form of a product
§%9(xy, .., xn)=a(py)cosO,.g(x,5, ..., Xx) (7.47)

where (p;, 8;, ¢@,) are the spherical coordinates of x, e R3, a is a positive,
smooth function defined in [0, + o) and ||g || 2 g3 ~-v,=1. Then

Dy M)+ B2 () =T K =)+ DK 29

4 Xy X0 ? [®
Y RN (G- RERLE. V) il A OO
3 Jr3wm-p x5+ ...

811.'3 )
+ _J dp, pi
3 Jo

+(N_1)J dp1j dp, pia(p)pia(p,)
0 0

(7.45)

3
prﬂa’(pl)

8 J do ooy —— cos 0, cos 9, ‘
52 x §2 p1t+p2tpipycos(o;, @,)+1

(7.48)
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It is easily checked that, for N sufficiently large, the sum of the last two
terms in (7.48) is in fact negative. Following the line of Lemma 6.2, it is
now straightforward to show that the form FE" ! is unbounded below for
N sufficiently large.

Remark 7.2. — Obviously the quadratic form for a system of N
identical fermions plus M identical fermions of a different type is also
unbounded below for min (N, M) large. '

Remark 7.3. — The last result shows that a system on N particles in
R? interacting through local and translation invariant point interactions
is unstable for N large, even if the maximal (non trivial) symmetry
constraint on the form domain is required.

8. CONCLUSIONS

We conclude with some remarks and indication of open problems.

It would be desirable to prove that one can construct the point interaction
described here as limit of sequence of smooth two-body potentials, and
to study the possible role of three-body potentials in providing limit forms
which are bounded below. Alternatively, one could study the influence on
the spectrum due to an additional term in the energy form for the charges,
supported by c;; M o, j#k.

Another interesting problem would be to establish a firm link between
the Thomas effect and the Efimov effect [17], which we take to be the
following: if V is a two-body potential which correspond to a positive
spectrum and a zero-energy resonance, then for N=3 a system of N
particles pairwise interacting through V has infinitely many negative bound
states accumulating at zero. Note that for d=2 there is no Efimov effect
for N=3[18] and we have proved in Section 3 that the Thomas effect is
absent for d=2 and any N (in this context it would be interesting to
prove that the Efimov effect is absent for d=2 also for N=4). If d=3,
the Efimov effect is present and it can be expected [19] that one has
imE,, ,/E,=c, where {E,} is the sequence of the eigenvalues and the
constant ¢ depends only on the mass ratios of the particles. It would seem
that the Thomas effect is in some sense a dilation of the Efimov effect,
and its spectrum could provide the “‘universal” asymptotic behaviour of
the eigenvalues in the Efimov effect.

Finally one should also extend to the case of space dimensions d=2
the very interesting result of Dimock [20] on the relation between the
scattering matrix for a point interaction and the scattering matrix for a
relativistic scalar field theory with quartic interaction.
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In space dimension d=1 Dimock proved that the two-particle channel of
the scattering matrix of the relativistic field converges in the non-relativistic
limit to the scattering matrix of the Schrdédinger operator with a point
interaction. In space dimensions d=2 our results are significant for matrix
elements other than in two-particle channel.

The interest in this problem for d=2 lies in the fact that both the point
interaction and the scalar field theory require a “renormalization” which
in both cases corresponds to the subtraction of a “‘self-energy”, as indicated
informally at the beginning of the paper.

We remark that it would also be interesting and non trivial to extend, for
space dimension d=1, the result of Dimock to cover the case on N-
particle channels of the scattering matrix.
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