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ABSTRACT. - The pressure in the thermodynamic limit of a non-ideal
Boson gas whose Hamiltonian includes only diagonal and pairing terms
can be expressed as the infimum of a functional depending on two
measures on momentum space: a positive measure describing the particle
density and a complex measure describing the pair density. In this paper
we examine this variational problem with the object of determining when
the model exhibits Bose-Einstein condensation. In addition we show that

if the pairing term in the Hamiltonian is positive then it has no effect.

RESUME. - Dans un modèle de gaz de Bosons en interaction dont

l’hamiltonien ne contient des termes diagonaux et des termes de paires, la
limite thermodynamique de la pression est donnee par 1’infimum d’une
fonctionnelle dependant de deux mesures sur l’espace des impulsions : une
mesure positive correspondant a la densite de particules et une mesure
complexe decrivant la densite de paires. Dans cet article, nous étudions
ce probleme variationnel pour determiner quand le modele exhibe une
condensation de Bose-Einstein. De plus, nous prouvons que si le terme de
paires dans l’hamiltonien est positif, il est sans effet.
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422 J. V. PULE AND V. A. ZAGREBNOV

0. INTRODUCTION

Consider a system of identical bosons of mass m enclosed in a cube A c IRd
of volume V centred at the origin. If the particle interaction is defined
by a translation-invariant two-body then assuming
periodic boundary conditions, the Hamiltonian of the system in the second-
quantized form is given by:

where

ak and ak are the boson creation and anihilation operators,

One of the most interesting questions in the study of boson systems is
the persistence of Bose-Einstein condensation in the presence of the interac-
tion. For the Hamiltonian (0 .1 ) this problem has so far been intractable;
for this reason one is led to the study of model Hamiltonians which
exhibit some fundamental properties of the original Hamiltonian (0 .1 )
and which are at the same time simple enough so that they can be solved
analytically. The only models which have been studied fully so far are
"diagonal models", that is ones in which the Hamiltonian can be expressed
in terms of the occupation number operators Nk [1-6]. The next step is to
include "pairing" terms and Let HP be the "pair Hamil-
tonian" [7-10], that is the part of H in (0.1) which can be expressed in
terms of diagonal and pairing terms; then HP is given by

Three types of scattering interactions are taken into account in (0.2) :
forward scattering interaction: q = 0, exchange scattering interaction:

q = k’ - k (k’ ~ ~ k) and pair scattering interaction: k’ = - k, similar to the
interaction in the BCS model [11]. The restrictions in the sums are neces-
sary to prevent duplication of terms.

Annales de l’Institut Henri Poincaré - Physique théorique



423A PAIR HAMILTONIAN MODEL OF A NON-IDEAL BOSON GAS

If only the forward scattering terms ares included in (0.2) the model
reduces to the mean-field model:

where N= ~ Nk; this model has been studied exhaustively [12].
kEA*

Adding exhange scattering terms gives the Hamiltonian

If the constraint is dropped this model corresponds to the

"perturbed mean-field" model with Hamiltonian

this model is the subject of [5] (see also [2]).
The diagonal part of the "pair Hamiltonian" (0. 2) is

This coincides with the "full diagonal Hamiltonian"

treated recently in [6].
Here we study a modified version of (0.2) which contains pair scattering

terms; more precisely, we consider the following pair Hamiltonian:

Below we impose conditions on the u (k, k’) and v (k, k’) to ensure the
existence of the grand canonical pressure in the thermodynamic limit.

In the series of papers [2-6] in which the diagonal models mentioned
above were studied, the pressure in the thermodynamic limit was expressed
as the supremum of a functional over the space of measures. The minimiz-
ing measure can be interpreted as the equilibrium distribution of the
particles according to their momentum; in particular an atom in the

Vol. 59, n° 4-1993.



424 J. V. PULÉ AND V. A. ZAGREBNOV

measure is interpreted as the occurrence of Bose-Einstein condensation.
The main technical tool used in these papers was Varadhan’s Large
deviation theory; this was possible because of the commutative nature
of these models. These techniques were extended to non-commutative
inhomegeneous mean-field models by Cegla, Lewis and Raggio [ 13], Duf-
field and Pule [14, 15] and Raggio and Werner [16]. However and in all
these cases the operators involved in the Hamiltonian are bounded. In the
model under investigation in this paper the operators do not commute
and moreover they are unbounded. We again give a variational formula
for the pressure; the proof of this formula will be given in another paper.
This time the variational formula is over two parameters: one parameter
again describes the distribution of particles according to their momentum
while the new parameter describes the pair density.
We should mention here that some models intermediate between the

diagonal models and the pairing models have been studies; among these
the best known is Bogoliubov’s model [ 17, 18] which recently has been re-
examined from the stability point of view [ 19].

Let p~ (~~ be the pressure for the Boson gas with Hamiltonian given
by ~0. 8)r Then we have the following variational formula for the pressure
in the thermodynamic limit = lim pv 

For A c jRd let

and let v be the limit of the measure Vv as V tends to oo. Let M be the

space of complex bounded measures on [Rd and M+ c M the set of positive
bounded measures. Let t : f~d --~ f~d be defined by t (k) = - k and for m E M
let M be defined by

F is the set of pairs (m, n), with and n E M satisfying:

(ii) n is absolutely continuous with respect to m;

and

Annales de l’Institut Henri. - Physique théorique



425A PAIR HAMILTONIAN MODEL OF A NON-IDEAL BOSON GAS

For k ~ let

and for xO let

then

where

The variational formula (0.15) will be proved elsewhere. Here we restrict
ourselves to the study of this variational formula. If (m, n) is a minimizer
of then we can interpret m as the equilibrium density of particles and
n as the equilibrium density of pairs. We identify the presence of an atom
with respect to v in m as the presence of a Bose-Einstein condensate. In
examining the variational problem we are interested mainly in determining
when Bose-Einstein condensation occurs and the value of n when this

happens.
If the kernel u is of positive type then since x - s (x) is increasing it is

clear that for all allowed n

and therefore

Now we have proved in [2, 5] that for the perturbed meanfield model with
Hamiltonian given by (0.5) the pressure pPMF (~,) is given by

where

Thus if u is of positive type

This result can be proved more directly; this we shall do in Section 1.
In Section 2 we shall study the variational problem (0.15) in general when

59, n° 4-t993.



426 J. V. PULE AND V. A. ZAGREBNOV

u (k, k’)  0 for all k, k’ E in particular we shall prove the infimum is
attained and that every minimizer satisfies the Euler-Lagrange equations
for the problem. In Section 3 we shall study in detail the variational

problem when u and v are constants.

1. POSITIVE u

In this section we consider the model with Hamiltonian defined in (0.8)
in the case when u is a positive definite kernel and give a direct proof of
the assertion (0 . 21 ). To be able to make use of the results in [2] we shall
assume in this section that v satisfies the following condition:

v : IRd X is a bounded, continuous, positive definite function; there
exists a continuous, strictly positive, symmetric function vo : IRd X f~d -~ f~ such
that for all m E M +

PROPOSITION l. - If the kernel u is bounded and positive definite then

for all ~. E R.

Proof - Since u is of positive type then clearly

where HPMF is as in (1.5); thus for I~

and

To prove the lower bound let a  0 and let

where ~b is the space of continuous bounded functions on for

t E Eoi 1 let

By convexity we have that

Annales de l’Institut Henri Poincaré - Physique théorique
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where

then

and

We also have for k ~ k’ and k # - k’

The first term in the right hand of the inequality (1.6) can be computed
to give

To compute  we write Huv in the form
V

using ( 1 . 8), ( 1. 9), ( 1 . 10) and ( 1. 11 ) we then get

Vol. 59, n° 4-1993.



428 L V. PULE AND V. A. ZAGREBNOV

where

Finally

Putting

and thus since cv is bounded,

where a) v (dk). It was proved in [2, Theorem 1] that for
each m E M + there is a sequence {tn} in D1 such that

Therefore from (1.18) we get

thus combining this with ( 1. 2) we obtain

Annales de l’lnstitut Henri Poincaré - Physique théorique
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2. THE GENERAL VARIATIONAL PROBLEM

If m is a complex measure on IRd, bounded or unbounded and

shall write (wm)(k) for also if

f: we shall denote the measure f (k) m (dk) by fm. If f : C and

m is a complex measure on Rd we shall write m,f&#x3E; for id f (k) m (dk).
With this notation we have

We shall make the following assumptions on u and v:
A 1. u is symmetric and u (k, k’) _ 0 for all k, [Rd,
A 2. v is a bounded, continuous, positive definite function; there is a number
ð&#x3E;O such that ( m, for all m E M + , where

A 3. There is a constant C~ such that for all k~Rd
A4. 
Under the conditions (A 1- A 4) we have that:

PROPOSITION 2. - The functional ~uv : F --~ I~ is bounded below.
~’roof. - For {m, n) E F,

by the Schwarz inequality.
From (Al) and (A 2) we and therefore

~m, and so

Thus

using the inequality ~-~~ - (~-~).x-’~ we then get

But by (ii ) and (iv) we have

Vol. 59, n° 4-1993.
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thus

Therefore

Now let a  0, then

Let

then since s is increasing

where

Since

~u" is bounded below.
We now make an additional assumption A 5 which allows us to prove

that the infimum of ~u" is attained in F:
A 5. There is a compact set B c f~d satisfying t (B) = B such u (x, y)  0 for
(x, y) E B X Band u (x, y) = 0 for (x, y) ~ B X B.

PROPOSITION 3. - There exists (m*, n*) E F such that

Proof - Let M be equipped with the narrow topology that is the
weakest topology for which the mappings in 1-+  m, f’~ are continuous

Annales de l’Institut Henri Poincaré - Physique théorique
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for Let 03B10 and let

Define C : ~ - R by

where

and

For (m, n)EM+ x M let

then for (m, n) ~ F, I (m, n) = oo and for (m, n) e F

Since I is the supremum of a family of functions which are continuous
in the product topology on M+ X M, I is lower semi-continuous in the

product topology. Now vm ) is continuous and un) is
lower semi-continuous in the product topology (See [2]) and therefore if
we define

(~ ~ 2 ~ ’ un ) + I (m, n) (2.4)

for (m, n) E M + x M then is lower semi-continuous; clearly
(m, n) = oo for (m, n) ~ F and for (m, n) E F the definition coincides with

(0.16).
Let eo = inf (m, n) = inf E (m, n). Then eo _ E uv (0, 0) = 0;

(m, n) e M + x M (m, n) E F

if eo = 0 then there is nothing to prove. Suppose eo  0; we can find a

sequence {(mr, nr)} if eo = 0 then there is nothing to prove. Suppose eo  0;
we can find a sequence {(~,, in M + X M such that (mr, nr)  0
and lim ~u" (mr, nr) = eo. Since ~u" is lower semi-continuous it is sufficient

to prove nr) ~ has a convergent subsequence. Since

( I nr I, u ~~ ) ~ ( nr, unr) we can assume that each nr is a positive measure;

Vol. 59, n° 4-1993. -
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also because of assumption A 5 and the fact that s is an increasing function
we can assume that each ~ has support in B.
By the inequality (2.2)

but it was proved in [2, Theorem 3] (See also [6]) that I has compact level
sets in M+; therefore {~} has a convergent subsequence ( m~~ ) in M+.
Now

by inequality (0.11)
Therefore

and since B is compact and converges { is uniformly bounded.
But nr~ 

= 0 and so nrs has a convergent subsequence. Thus we have
proved that (mr, nr) has a convergent subsequence.

In the following proposition we collect together the properties of minimi-
zers of which we shall need. If we shall denote its singular
part in the Lebesgue decomposition with respect to v by ms.

PROPOSITION 4. - Let (m, n) E F be a minimizer of then

(i) P (k) &#x3E; o, v-a . e .
(ii ) (P (k) + P ( - k~) ( 6 (k) ~  P (k) + P ( - k) + 1 v-a. e.
(iii) o (k) = 0 v-a. e. for k e BC.
(iv) a (k) ( =1 ms-a. e. for k E B.
(v) hi-a. e. for k E B or 6 (k) I &#x3E; 0 v-a. e. for k E B.
(vi) then 

Proof - (i ) By (0.12) we have that if p (k) = 0 on a set of non-zero
v-measure then c!-(~)=0 and therefore R (k) = p (k) = 0 on this set; since
s’ (0) = oo this value of 6 (m, n) can be decreased (See [2] Lemma 4 . 2).

(ii) By (1.11) (p(k) + p(-k»)2 ~ a (k) ~ 2  (P (k) + P ( - k)) (p (k)
+p(-~)+2)=(p~)+p(-~)+1)~-1.

(iii) follows from the fact that s is increasing.
(iv) We know that a (k) ~  ~; f v, s ~ R ~ is unchanged if o is changed

on a set of zero v-measure. Now

Therefore and 
a, e, for k e B..

Annales de l’Institut Henri Poincaré - Physique’ théorique



433A PAIR HAMILTONIAN MODEL OF A NON-IDEAL BOSON GAS

(v) Let A={k~B:03C3(k)=0}; note that since |03C3(k)|=1 s-

a.e. for kEB. Let 6 (k) = a (k) + E IA (k) where U  E  1 and
P tk)

p(k)= - (p(k)+p(-k); let n{dk)=cr(k)m(dk), then

Since s is concave we have for k E A

and thus

(rr~,. ~~  ~~~ (m, n) is sufficiently small contradicting assumption
that m is a minimizer; therefore

Vol 59, n° 4- 1993.



434 J. V. PULE AND V. A. ZAGREBNOV

Therefore either v (A) = 0 or nz (BBA) = 0

We shall now give a set of Euler-Lagrange equations for the variational
problem under consideration. It is convenient to introduce a new variable c
where we know that we can assume the v-a. e.

in Band c(~p(~H _ +p(~)J v-a.e. Since we can also assume that

? (k) = 1 e. our variational problem is equivalent to minimizing the
following functional:

where

By varying p, ms and c we obtain the following Euler-Lagrange equations.
Let

and

Annales de l’Institut Henri Poincaré - Physique théorique
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then we have:

PROPOSITION 5. - If (m, n) is a minimizer of ~u" then (m, n) satisfies
the following Euler-Lagrange equations:

for k E B

and

We note that if (m, n) is a minimizer of ~ then as consequence of the
Euler-Lagrange equations we have:

3. THE VARIATIONAL PROBLEM WITH u AND v CONSTANT

We shall now study the variational problem in the special case when
(1) v(k, k’)=a&#x3E;0
(2) 
(3)

where Oya.
It is clear in this case that if m is a minimizer of ~ and then ms

is concentrated at k = 0, that Equation (2 . 8) and (2 . 9)
now become

Vol. 59, n° 4-1993.
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and if for k E B

where

Here (2.10) becomes

From (3.1) it is clear that

letting k - 0 we get a ~ ~ 2014 ~ ~ 0. Also from (3 . 3) we see that for k E B

and again letting k - 0 we get

We introduce new variables x &#x3E;_ y &#x3E;_ o, where x = a |( m | I -  and

y = y n (dk). In terms of x and y

and equations (3.1) and (3 . 2) can be re-written as

Equation (3.4) implies that x = y if mo * nJ ( °0 ) ~ o.
Consider the case when mo = O. In this case ~we can integrate (3 . 5) to

get

Annales de l’Institut Henri Poincaré - Physique théorique
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and integrating (3 . 5) we get if y ~ 0

where 03B1 = a 03B3 &#x3E; 1. Let 1 v (dk). It is straightforward to check

that if II  a 03C1c then the equation

has a unique solution x (fl); then

is a solution of the Euler-Lagrange equations.
Let us consider now the case when rno ~ 0. In this case x = y and we

know from Proposition 4 (vi) that Letting

and integrating equations (3 . 5) and (3 . 6) we now get

Equivalently

and

Therefore, the Euler-Lagrange equations have a solution with mo &#x3E; 0 if
and only if (3.12) has a solution with the right-hand side of (3.13) strictly
positive.

Vol. 59, n° 4-1993.
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The expression (2.13) for the pressure now becomes:

E (k) is the spectrum of the elementary excitations of the model; we
note that if mo = 0 then it is possible that x &#x3E; y and

while if m0 ~ 0 then x = y and

for small k. This means that in our model with the interaction defined by
u (k, k’) and v (k, k’) as in (0 . 8), the occurence of Bose-Einstein condensa-
tion produces a phonon spectrum for small k, while the absence of condensa-
tion creates a gap. It was observed in [8, 20, 21] that for the pair Hamil-
tonian (0.2) there is a gap in the spectrum. However, in contrast with
our model, in this case the gap appears when Bose-Einstein condensation
occurs and various attempts were made to rectify this unphysical behaviour
of the model (0.2) [10, 22-26]. Our model is thus more satisfactory from
the physical point of view; this is achieved at a price, namely a deformation
of the original interaction (0 . 2) to the model (0. 8) and a particular choice
of the kernels u (k, k’) and v (k, k’).
To study the problem further we shall make the following definitions

Let x1 (y; a) be the solution of 11 (x, y)=03B1 as an equation in x for the
values of y for which it exists (~i ( y, a) exists for all a) and similarly let
x2(y; Jl) be the solution of I2(x, y)=x+  for the values of y and  for
which it exists. The properties of 11, 1~ x~ and jc~ are given in the

appendix.
Let x) and l2(~)=l2(~ x); let Uo=sup (I~(~)-jc). Since

x~o

12 (0) = ~ Pc, Pc. Finally let

Annales de l’Institut Henri Poincaré - Physique théorique
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is strictly increasing and strictly concave; A’ (0) = 00,

A (0) = - a and A (x) -+ - 1 a K as x -~ 00 where K= v (B).( ) P~ ( ) 
2

Consider the equation (See Fig. 1).

this equation has a unique solution. For a &#x3E; 1, let be

the unique value such that ( 3 .17 ) has a unique

solution. Then for fixed a, we have the following:
(i ) if p~, (3 .17) has a unique solution,

(ii) (3 . 17) has two solutions,
(iii) (a), (3 . 17) has no solutions.
We remark that if x* is a solution of (3.17), then by (3.13) x*

corresponds to a solution of the Euler-Lagrange equations if

Vol. 59, n° 4-1993.
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Let be the solution of xi (y, ex) = y that is the value of x (or y)
when a) hits x = y. Then il {~1 «(X)) = oc and therefore at x = ii {a),
2014 (x) dx  = 1; but dI1 (x)  0 and therefore 

dx 
 0 so that 03B1~x1 {a) is

dx doc dx d(X 
" ’

decreasing. Also as a - 0, Mi (a) - oo and as a - oo, Mi (a) - 0.
If x satisfies 12 (x) = x + ~i, then x  Mi (a) implies that A (x) &#x3E; (a - 1) x - J.l

and (a) implies that A (x)  {a -1 ) x - -~,. This follows from the iden-
tity

A (x) = x T~ {x) - IZ (x) (3.18)
and the fact that Ii is decreasing.
We now solve the variational problem in some regions of the a-u plane;

we have not been able to exhaust the plane, however our results give
an indication of what can occur. In figure 2 we have labeled the regions
of the plane we can deal with.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Region A. - ~ &#x3E; This is the simplest case. have m tms case tnat

for all x &#x3E; 0

since y--~ I2 ~x, y) is decreasing; therefore x + ~, - I2 ~x, y) has no solution
for any y. On the other hand if x* is the unique solution of (3.17) then

this means that ~ uv has a unique minimiz.er (m*, n*) where

where

and

Before we examine the other regions we make some general remarks.
For each r:x&#x3E; 1 there is a unique value of  such that

let 112 (cx) be this value of Note that III (cx) _ Jl2 (rx) _ The shape ot-

the curve is given in figure 2. Let  &#x3E; 112 (cxo) and let (cxl, j.l), «(X2’ Il)
with 1 ~ as ~ cx2 ~ oo be the endpoints of the segment parallel to the cx-axis
which is contained in  &#x3E;_ J.12 (a) and contains the point (cxo, Let x v = x
(a 1 ) and 1 (a2); since both xv and xL satisfy

if then 2(x)x+  (Fig. 3). Also since xL1
(a)  xU and thus

Therefore there is a solution x* of

satisfying and thus

This means that there is a solution of the Euler-Lagrange equations of
the form (3 .19).

Region B. - We have seen that above that in this region there is a
solution of the Euler-Lagrange equations with mo &#x3E; 0. Here oc2 = 00 so that

Vol. 59, n° 4-1993.
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xL = 0 and for xxu, l2(~)~+~; therefore since a) and x2 (y, ~)
are increasing they never intersect. Since a solution with y = 0
and mo = 0 is not possible, the situation is as in region A.

Region C. - Similar arguments show that there is a unique solution of
the Euler-Lagrange equations with and 

Regions D, E, F. - Again the above argument shows that there is a
solution of the Euler-Lagrange equations with mo # 0 but we cannot exclude
other solutions.

Region G. - i (u) then has no solutions and
therefore there is no solution with mo # 0. In general we cannot determine
whether n = o.

Annales de l’lnstitut Henri Poincaré - Physique théorique



443A PAIR HAMILTONIAN MODEL OF A NON-IDEAL BOSON GAS

Region H. - Here ~,  ~3 (ex) where ~.3 (ex) is the value of j which satisfies

1 (oc) = x2 (0, J.l). Since x 1 (a)  x2 (0, x 1 (y, ex) and x2 ( y, Il) cannot

intersect. Therefore the Euler-Lagrange equations have only one solution
with n = 0.

Finally we remark that if (0, t~)+~K+ ~ then

Therefore Xi(0, a)&#x3E;~(0. and so ex) and ~(~ Jl) cross and
the Euler-Lagrange equations have a solution with ~ ~ 0. It is possible to
check that in this region the solution with n = 0 does not correspond to a

minimizer. As ~ --+ - ~ 2 a K, (Xo - 1, therefore if  2 a K &#x3E; 1 it is possible

to satisfy uo  (x  ~2 (0,~) + a K + u.

4. CONCLUSION

(a) The presence of Bose-Einstein condensation mo ~ 0 causes abnormal
pairing n ~ 0 [the Hamiltonian (0 . 8) is gauge invariant]. In this case there
is no gap in the spectrum and we expect both the one-particle and two-
particle reduced density matrices to display off-diagonal long-range order
(ODLRO).

(b) There is a region where mo = 0 while in this case we expect
ODLRO to occur in the two-particle reduced density matrices but not in
the one-particle reduced density matrices. There is the possibility of a gap
in the spectrum of excitations.

(c) For small Jl (region H) we do not expect ODLRO and the model
(0. 8) is equivalent to (0. 5) ; there is no gap in the spectrum.
The possibility of "two-stage" condensation, that is, condensation in

the one-particle and two-particle states was discussed in [27]; there the
model displays a similar behaviour.
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