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ABSTRACT. - Using Floquet-Lyapunov theory, it is shown that for
Baire-almost every periodic potential the Dirac system has all its instability
intervals open. Consequently, one-dimensional Dirac operators with

periodic potentials generically possess infinitely many spectral gaps. These
results also hold true if only even potentials are admitted.

RESUME. 2014 Utilisant la theorie de Floquet et Liapounoff, il est demontre
que pour Baire presque tous potentiels periodiques tous les intervalles
d’instabilite du systeme Dirac sont ouverts. En consequence, les operateurs
de Dirac unidimensionnels a potentiel periodique possedent generiquement
une infinite de lacunes spectrales. Ces resultats restent vrais quand on
n’admet que des potentiels pairs.

1. INTRODUCTION

Floquet-Lyapunov theory provides a very useful tool to study the

spectral properties of self-adjoint one-dimensional Schrodinger and Dirac
operators h with periodic potentials: the discriminant D (X) of the corre-
sponding eigenvalue equation,

(/!-~)M=0,
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316 K. M. SCHMIDT

defined as the trace of the canonical fundamental system of this ordinary
differential equation. It is a smooth function of the spectral parameter À,
and is associated to the spectrum of h by means of the following well-
known properties (cf [6], [16]):
A) 
B) D is strictly monotonous within each of the stability intervals

{ À E lR D(~) 2};
C) if hp and ha denote the selfadjoint realizations of the operator h on

a periodicity interval with periodic and antiperiodic boundary conditions,
respectively, then cr (hp) = D -1 (2), and 03C3 (ha) = D -1 ( - 2). Both are

unbounded discrete sets; À is a degenerate (double) eigenvalue of hp [ha] if
and only if it is a double zero of D - 2 [D + 2].

It follows that the spectrum of h has band structure as it is the closure
of the union of the stability intervals; in particular, h has no discrete
spectrum. This extreme structural simplicity of the spectrum is confined
to strictly periodic potentials; even moderate relaxation of this requirement,
such as almost periodicity, already unfolds the whole range of spectral
variability ([2], [13]).
Whenever there is a non-degenerate (closed) interval between two neigh-

bouring stability intervals, its interior (a nonvanishing instability interval
of the eigenvalue equation) is a gap in the spectrum. If, however, two
stability intervals are separated by a single point À, this point belongs to
the spectrum, which is a closed subset of R; by abuse of language, one
then speaks of a vanishing instability interval, regarding the empty interior
of the pointlike degenerate interval as an instability interval in statu

nascendi. In this case, À is also called a coexistence value, since it is
characterized by the simultaneous existence of two linearly independent
periodic or antiperiodic solutions of the eigenvalue equation (as À is a

double eigenvalue of hp or ha).
Although one-dimensional Schrodinger and Dirac operators with

periodic potentials always possess infinitely many instability intervals (note
that h p and ha are unbounded), the number of spectral gaps may actually
be considerably smaller: e. g., the zero potential is clearly periodic, yet
the potential-free Dirac operator has only one spectral gap, i. e., one

nonvanishing and infinitely many vanishing instability intervals. On the
other hand, the Meissner and the Dirac-Meissner operators (with non-
zero piecewise constant periodic potential) have infinitely many spectral
gaps (see [16] 17. D), G)); however, in these examples some instability
intervals can still be observed to vanish. A famous example where no
instability interval vanishes is the Mathieu equation,
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317ON THE GENERICITY OF NONVANISHING INSTABILITY INTERVALS

(Ince [7]; see also [4] and the references given there). However, the conjec-
ture that in general, coexistence values are totally absent in one-dimen-
sional Schrodinger equations with non-zero even periodic potentials
([8], [12]) was far too optimistic, as was pointed out by Borg [3] with
reference to the Meissner equation. Indeed, already the addition of a
cos 2 x term in the Mathieu equation produces coexistence values [11].
Another particularly striking counterexample with a smooth potential is
the Lame equation,

(with 2 co’ the imaginary period of the doubly-periodic Weierstrass J
function), which has exactly n nonvanishing instability intervals ([9], [ 1 ]).

These examples show that it is certainly no general property of periodic
one-dimensional Schrodinger operators to have all instability intervals

nonvanishing. Yet it has been proven ([15], [13]) that it is a generic
property, insofar as it is only for a "small" set of exceptions that some or
even infinitely many instability intervals vanish.
The purpose of the present paper is to establish the corresponding result

for the one-dimensional Dirac system; this is of particular interest as for
this equation, no example like the Mathieu equation appears to be known.
We shall show that the ordinary differential equation system

with matrices 6 - ~ - i , (73= 0 -1 ), and two-component u, has

no coexistence values for "almost every" (real-valued periodic) potential q.
Of course, the notion of "almost every" must be given a precise meaning;
we use the Bairean topological definition (cf. [5] 7.1) :
A statement holds generically in a Baire topological space X, or for

Baire-almost every x E X, if the set of exceptions is a countable union of
nowhere dense subsets of X, a subset being called nowhere dense if its
closure has empty interior.
We remark that although the "generic" case may be regarded as typical

in general, obvious examples often belong to the set of exceptions, and
examples for the generic case are not always easily constructed: e. g., the

generic continuous function is nowhere differentiable ([5] Ex. 7. 14).
The condition that X be a Baire space is crucial if "generically" is to

signify "up to few exceptions". In topological spaces of the first Baire

category, which are countable unions of nowhere dense sets themselves,
anything is true "generically".
Thus a "generic" statement about periodic Dirac systems presupposes

that we choose a Baire space of admissible potentials, subject to periodicity
and regularity requirements. In particular, all potentials will be locally
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318 K. M. SCHMIDT

integrable, so that the solutions of (* ) are pairs (written as column vectors)
of locally absolutely continuous functions that are uniquely determined
by their initial value.

DEFINITION 1. - Let m &#x3E; 0. Whenever Y is a space of real-valued

functions, denote by Ym the subspace of m-periodic functions. We call a
Baire topological space X a suitable potential class of period m if

a) X is a linear subspace of L~ (R, R) containing the constant functions,
is continuous in the topology of X, and

c) the following consistency requirement is fulfilled: if q E X, ~, a coexist-
ence value of the differential equation (* ), and (u, v) the corresponding
(real-valued) canonical fundamental system, then vTv~X (by uT we
indicate the pointwise transpose of u, considered as a 2 x 1 matrix).
Remark 1. - Requirement c) may appear rather implicit but is not

difficult to satisfy provided X is chosen large enough; for instance, we
admit as potential classes the real Banach spaces R), and

Ckm (R, R) with the norm II = 03A3~djf~, as well as the Frechet space
j=o dxJ ~

C~ (R, fR) considered in [15].
Remark 2. - With regard to the application of the genericity theorem

in situations demanding that all potentials are even, e. g. when studying
spherically symmetric three-dimensional Dirac operators (cf. [14]), it is of
interest to note that if Xl is a suitable potential class, so is the subspace
of even potentials, X2 : _ ~ , f ’E X 1 ~ /(2014 ’) =/ }.

Indeed, and (u, v) the corresponding canonical fundamen-
tal system of (* ), then the functions U:=(T3M(2014 -) and V:= 2014c~(2014 ’)
also constitute a canonical fundamental system. By uniqueness it follows
that M(2014 ’)~M(2014 ’)=(73U)~((73U)=M~M, and accordingly for v, so X2
satisfies requirement c).

2. THE GENERICITY THEOREM

THEOREM 1. - If X is a suitable potential class, then for Baire-almost
every q E X, Eq. ( * ) possesses no coexistence values.

COROLLARY. - Periodic one-dimensional Dirac operators generically pos-
sess infinitely many spectral gaps. This also holds true f only even potentials
are considered.

In order to prove Theorem 1, we proceed as follows.
First we use eigenvalue perturbation theory to show that it is possible

to keep track of individual instability intervals as the (essentially bounded)
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319ON THE GENERICITY OF NONVANISHING INSTABILITY INTERVALS

potential varies (Corollary 1 to Lemma 1 ), and that nonvanishing instabil-
ity intervals are stable, i. e. do not suddenly vanish under potential pertur-
bations (Corollary 2 to Lemma 1).
The central part of the proof is devoted to establishing that, on the

other hand, a vanishing instability interval is unstable in the sense that if an
appropriate arbitrarily small perturbing potential is added, the instability
interval opens up to a non-degenerate interval containing the former
coexistence value. To this end, we expand the discriminant of the perturbed
equation in a Taylor series around 0 with respect to the perturbation
coupling parameter. This procedure has been applied to the one-dimen-
sional Schrodinger equation with periodic potential by Moser [13]. In

contrast, Simon [ 15] (see also [2]) applied degenerate eigenvalue perturba-
tion theory to the coexistence value, seen as a double eigenvalue of hp
or ha: since the canonical fundamental system (u, v) of the one-dimensional
Schrodinger equation satisfies 1, but v~ x5 0 near the origin, it is easy
to find a perturbation that removes the degeneracy of the coexistence
value to first order. However, the canonical fundamental system of a
Dirac system has near the origin, so we cannot argue in the
same way.
We find that at a coexistence value À, where D (À) = 2, the first

derivative with respect to the perturbation always vanishes, whereas the
second derivative provides a quadratic form for the perturbing potential,
whose parameters are determined by the solutions of the unperturbed
equation (Proposition 1 ). This result formally coincides with the findings
of [13] for the one-dimensional Schrodinger equation; however, while it is
obvious that the quadratic form is not actually nonpositive on the whole
of X in the Schrodinger case, we here have to enter a more detailed

analysis of the properties of the solutions in the case of coexistence

(Lemma 2). Having thus verified the existence of a perturbation for which
the quadratic form takes a positive value (Proposition 2), we find that
this perturbation lifts D (À) I above 2 and thus produces a nonvanishing
instability interval as desired (Proposition 3).

Finally, we collect the information gained about each of the infinitely
many instability intervals to obtain the general genericity result.
The first step of the proof of Theorem 1 is a direct consequence of the

following special case of the well-known stability theorem for eigenvalues,
cf [10] Theorem IV 3.16 :

LEMMA 1. - Let X be a suitable potential class of period m, q E X, hp [ha]
the self-adjoint realization of the symmetric ordinary differential operator,
- i + a3 + , q on [0, m] with periodic [antiperiodic] boundary conditions,

dx
À an eigenvalue of multiplicity 1, 2} of the operator hp and r a
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closed curve in C which encloses X, but no other parts of [cr (ha)].
Then there such that for every the part 
[(7 (hQ)] enclosed by F has total multiplicity v.

COROLLARY 1. - The instability intervals may be indexed, using ~ as
index set, in such a way that the n-th instability interval behaves continuously
under bounded perturbations of the potential, for each n E ~.

This follows immediately from the fact that every coexistence value is a
double eigenvalue, and the end points of any nonvanishing instability
interval are simple eigenvalues of either hp or ha.

COROLLARY 2. - For each 

un. ~ _ ~ q E X I the n-th instability interval of {*) does not vanish }
is an open subset of X.

Indeed, for q E En there are two disjoint closed curves rB, r 2 in C which
enclose each precisely one end point of the n-th instability interval, but
no other parts of the spectrum of hp or ha. By Lemma 1, the end points
remain within their respective curves under small perturbations, so they
cannot coincide.

For the second step of the proof of Theorem 1, we now assume through-
out that X is a suitable potential class of period m, q, g E X and f~.

We perturb the original Dirac system (* ) by the additional potential
term Writing the perturbed equation as a matrix differential
equation, the canonical fundamental system ’P (., n), for some fixed value
of the coupling parameter p, is the solution of the initial value problem

(1 here denotes the 2x2 unit matrix.) The discriminant is

note that we study the properties of the discriminant as a function of the
perturbation coupling parameter whereas though arbitrary, is always
kept fixed in the following. The canonical fundamental system of the
unperturbed equation will be denoted (., 0) = (u, v).
Now we calculate the first and second partial derivative of the discrimi-

nant with respect to ~ using the well-known fact that the n-th derivative
(with respect to the parameter) of a solution is a solution of the differential
equation obtained by formally differentiating n times the original equation.
Since in our case, the initial conditions are independent of u, the initial
value of the derivatives will be the zero matrix.
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321ON THE GENERICITY OF NONVANISHING INSTABILITY INTERVALS

For the first derivative, we obtain the differential equation

and thus for Jl=O the initial value problem

The solution ~ of the unperturbed initial value problem (0) occurs as a

( fixed ) inhomogeneity; the homogeneous equation for ~ ~  03A8 is identical to
the unperturbed equation (0). Thus we may solve ( 1 ) by variation of
constants, finding

and for the discriminant,

where S (t) : _ ~ -1 (t) ( - i a2) ~ (t) (t e [0, m]).
The initial value problem for the second derivative with respect to J.1,

again has the unperturbed differential equation (0) as its homogeneous
part, so iterating the variation of constants we find

and

Vol. 59, n° 3-1993.
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The following propositions, which constitute the remainder of the second
part of the proof of Theorem 1, restrict our attention to the situation in
which is a coexistence value of (* ); in this case, all solutions of (* ) are
periodic [if D (À, 0) = 2] or antiperiodic [if D (À, 0) = - 2] with period m.

PROPOSITION 1. - is a coexistence value of ( *), then

with v = sgn D {~,, 0), and the coefficient functions (u, v)
as =1 /2 (M~ u + vT v), cp 2 : =1 /2 (M~ v) and cp 3 : = M~ v.

Remark. - Though formally similar and of comparable significance,
the (p~ differ from those of [ 13] in that both components of u and v are
involved, while in the Schrodinger case only the functions, but not their
derivatives come in.

Proo_ f. - By (anti-) periodicity, 03C6(m) = 03BD(03BB)1, and as the Wronskian

we obtain ) (s):

Thus tr S - 0, which implies ~ ~  D (X, 0) = 0 . Concerning the second deriva-
lp

tive, we observe that

as the integrand is symmetric under permutation of sand t. If we now
insert
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and remember u = a , v = b , it turns out thatc d

Proposition 1 shows that the second variation of the discriminant with

respect to the perturbing potential g is given by a quadratic form for g. If
we can find some geX for which this form takes a positive value, the
absolute value of the discriminant at À will rise above 2 for small values

so we will have removed the degeneracy, the coexistence value
broadening to a nonvanishing instability interval. In order to prove that
the quadratic form is not altogether nonpositive, we have to take a closer
look at the coefficient function cp2.

LEMMA 2. - cp2 - 0 implies q = X.

Remark. - If q = À, then X sits in the middle of the only nonvanishing
instability interval and therefore cannot be a coexistence value. By contra-
position, if À is a coexistence value, then 03C62 ~ 0.

It can also be shown that cp3 --- 0 implies q * X. From the uniqueness of
the solutions of (* ) it follows immediately that cp 1 # 0 even pointwise.

Proof. - We apply Prufer’s transformation substituting the two com-

ponents of u and v by the polar functions r J, 8 J, j E ~ 1, 2 } : cos ~ ), ,
sin 01 ~

v = r2 As u and v are solutions of the differential equation (* ),

we find

Taking the M scalar product by and (-sin 03B8j cos 03B8j) 8j ), respectively, we
find the differential equations for 8j and rj:

J J J J oJ

The initial values are r1 (0) = r2 (0) = 1 (0) = 0, 82 (0) = 03C0/2.
Now cp2 *0 implies so It follows that ri - r2, so

sin 2 61 = sin 2 82, which implies 82 e { 61 (t), 7T/2 - 81 (t) ~ mod 2 x (t E [0, m]).

Vol. 59, n° 3-1993.
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Uniqueness of the solutions rules out the first possibility, and as the
solutions are continuous, 20~=7r201426i, and thus both 62="~ and
cos 2 82 - - cos 2 91. Using the equations for 8~, we find

(~-~)+cos28i=e~= -e~==-(~-~)-cos2e2= -(~-~)+cos2ei.

Consequently, (q - ~,) = 0. D

PROPOSITION 2. - is a coexistence value ~(~), there exists g E X
such that 1, N ~, where N:={(p~, cp2 ~1. g may be chosen ortho-
gonal to 

Remark. - In span~ ~ 1, N ~, 1 represents the constant function taking
the value 1; by Definition 1. a) the constant functions belong to X.
Moser [13] considers the smaller N:=={(pi, cp2, cp3 ~1 so that only 
or cp3 ~ 0 is needed. With this choice, however, one has to strengthen
Definition 1. c), demanding eX as well. This would destroy the possibil-
ity pointed out in Remark 2 to Definition 1, of taking for X a space of
even potential functions, since in that case cpl and cp2 are even, but (pg is
odd. Therefore we prefer to leave (pg out of consideration.

Proof. - If we assume that for every /~ X there is a c e R such that
-m

f- c e N, z.?. 0 (f2014c)03C6j=0(j~{1,2}), this holds in particular for cp 1

and cp2, which belong to X by Definition 1. c). Thus we find real numbers
m

ci, c2 such that Jo (/, 1, 2 )). Consequently,

Regarding X as a subset of the Hilbert space L2 ([0, m]) in the obvious
way, and using the properties of the Cauchy-Schwarz inequality, we find
some with 03C62~03B103C61. As 03C61 (0)= 1 and cp2 (0)=0, it follows that

a==0, i. e. cp2 *0 which contradicts Lemma 2. Therefore there is some

span~ { 1, N}. Since a function from span~ { 1, N } remains in this
space upon the addition of a constant, the function

which is orthogonal to (pi, has the desired properties. D

The following proposition concludes the second part of the proof of
Theorem 1.
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PROPOSITION 3. - IF X is a suitable potential class, then for every 
E~ is dense in X.

Proof. - Let q E X, such that the n-th instability interval vanishes
(i. e. ~~EJ, ~ the corresponding coexistence value and v : = sgn D (X, 0).

m m

By Proposition 2, there is a g E X such that 0 g03C61=0, 0 g03C62~0. Thus0 0

by Proposition 1,

The discriminant is also three times continuously differentiable with respect
to ’.1. Hence there are constants M &#x3E; 0 and C 1 &#x3E; 0 such that

Expanding D(~, .) in a Taylor series around 0 up to third order, we
therefore have

Consequently, for sufficiently small non-zero j~, the degeneracy is remo-
ved, and the former coexistence value X lies within a nonvanishing instabil-
ity interval. In other words: D

Now we conclude the proof of Theorem 1. Corollary 2 and

Proposition 3 have shown that 8n is a dense open subset of X, for each
n E Z. This means that, for every n E Z, X is the only closed subset of X
containing ~,n, so the interior of is empty. Thus the set U 

n~Z

of all potentials from X for which at least one instability interval vanishes,
is a countable union of nowhere dense sets. D
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