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Geometry of the Kepler system in coherent states

approach

Maciej HOROWSKI and Anatol ODZIJEWICZ

Institute of Physics, Warsaw University Division
15-424 Bialystok, Lipowa 41, Poland

Ann. Inst. Henri Poincaré,

Vol. 59, n° 1, 1993, Physique théorique

ABSTRACT. - We consider a family of holomorphic embeddings
C3 -~ of nondegenerate quadric C3 in C4 into complex

projective Hilbert space parametrized by functions

fEF3 c Coo (R+, R). We show that there is a natural correspondence
between this and the Kepler system. Taking this into account we give a
complete classical as well as quantum description of the system in terms
of the map In this way we illustrate in the paper a nontrivial applica-
tion of the theory developed in our earlier publications.

RESUME. 2014 Nous considérons une famille de plongements holomorphes
Jf~:C3-~C!P(~~) d’une quadrique non dégénérée C3 de C4 dans

l’espace projectif complexe CP(Mf) parametrisee par des fonctions

f E F 3 c Coo (tR+, R). Nous prouvons qu’il existe une correspondance natu-
relle avec le système de Kepler. Comme consequence nous donnons une
description complete classique et quantique du problème de Kepler en
terme de l’application Ceci illustre une application non triviale de
nos résultats antérieurs.
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70 M. HOROWSKI AND A. ODZIJEWICZ

0. INTRODUCTION

There is an important connection between the classical and quantum
descriptions of the harmonic oscilator. It is given by a symplectic embed-
ding of the classical phase space C" into the quantum phase space CP 
of the oscilator, Jt being a complex Hilbert space. This embedding is

equivariant with respect to the one-parameter group of symplectomor-
phisms of C" corresponding to the Hamiltonian vector field and the flow
on CP (Jt) determined by the Schrodinger equation. The quantum states
which are the images of the classical states under this embedding, called
coherent states, minimize the uncertainty principle and have some other
properties which allow us to treat them as being closest to the classical
states. Having discovered this kind of states, E. Schrodinger concluded
the paper [Sch] with a conjecture that a similar situation should take place
for the Kepler system. He also pointed out that this case might turn out to
be more complicated from the mathematical point of view. Schrodinger’s
supposition has been confirmed, in a sense, in [R].

This paper is on the one hand a generalization of [R] to the case of an
arbitrary Kahler potential, while on the other hand it provides an example
of an application of the formalism developed in [01], [02]. According to
this formalism, any physical system is described by the triple: a symplectic
manifold M, a complex Hilbert space vii and a symplectic embedding

M - CP (~). Assuming that the system is in an equilibrium state, we
can express the action functional, the transition amplitude between coher-
ent states, the Schrodinger equation propagator and other characteristics
of the system in terms of the mapping Jf (see [01], [02]). If the physical
system is understood in this sense the classical and quantum descriptions
are complementary to each other. The problem of computing the path
integral is equivalent to finding :Y{ : M - CP(M) for a given action func-
tional.

In this paper we consider the following triple of objects:
(a) A nondegenerate quadric C 3 c C4""-{ 0 } which is the classical phase

space of the regularized Kepler problem (see [Ku], [M]).
(b) A complex Hilbert space which is realized as the space of square

integrable (with respect to the Liouville measure) holomorphic sections of
a line bundle (EO, 0 over C 3 .

(c) An embedding ~’ f : C 3 -~ C f~ (.~ll ~.) which is determined by evalu-
ation functionals on J{ f.

This gives rise to a family of physical systems parametrized by a function
f : R+ - R in a subset F3 of Coo (R+, R). It is the study of these systems
which is the purpose of the paper.

Section 1 contains some facts which are needed to understand the next

two sections. We describe SU (2) x SU (2) Hermitian line bundles over the
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71GEOMETRY OF THE KEPLER SYSTEM IN COHERENT STATES APPROACH

quadric C3. We also construct an orthonormal basis of the Hilbert space
and find an explicit dependence of the reproducing kernel on the

potential fEF3 [formula ( 1.16)]. In the special case f(x) =x~, a&#x3E;O, we
find an expression for the reproducing kernel Kf( w) in terms of the
Mittag-Leffler type functions [formula (1.27)]. This generalizes the result
of [R] corresponding to the case f = id. Moreover, we formulate conditions
on f which guarantee that the space is ample and the mapping is

symplectic.
In Section 2 we define a family of equilibrium states, that is, mixtures

of coherent states ~’~. (z), z E C3, with an SU (2) x SU (2) invariant weight
function p(~)=())(H(;c)), H : C3 --+ IR and x = (2 z . ~)1/2.
Next, using the formalism of [02] and introducing appropriate coordina-

tes we show that for H x 1 x lo I ’ x where f x : = K z z the

system (C3, ~ f, coincides with the regularized
Kepler system.

In Section 3 we compare the quantization based on Ehrenfest’s theorem
(see [E], [01]) with the Kostant-Souriau quantization. The Ehrenfest quan-
tization is characterized by the property that computing the mean value
of a quantized classical observable (function) on coherent states reproduces
this function (see [01]). The generators of the group SU (2) x SU (2), con-
stant functions and the Hamiltonian H span the space of functions which
are quantizable in the sense of Ehrenfest. Together with the results of
Section 2 this shows that the Kepler system is distinguished by Ehrenfest’s
quantization condition.
The requirement that the Ehrenfest quantization be equivalent to the

Kostant-Souriau quantization imposes a condition on f which has the
form of an integro-differential equation (3.12). We do not discuss in the
paper the question of solvability of this equation. We show, however, that
the function f(x)=x9, a &#x3E; 0, satisfies this equation asymptotically as

x - oo . This implies that, in the high energy region, the probability density
corresponding to the coherent state (z), z E C 3, is localized around the
point z. Since the embedding Kf is equivariant with respect to the
dynamics of the system, we have obtained those of the states anticipated
by Schrodinger the experimental realization of which has been proposed
in [Y-S] and [P-S].

1. GEOMETRIC PRELIMINARIES

In this section we describe SU (2) x SU (2) Hermitian line bundles over
a nondegenerate quadric in C4 and the spaces of holomorphic sections of
these bundles. These facts will be used in the following sections.

Vol. 59, n° 1-1993.



72 M. HOROWSKI AND A. ODZIJEWICZ

We start by describing some properties of the quadric

It was observed by Souriau [S] that there is a natural isomorphism of
manifolds C3 S3, where T*0 S3 is the cotangent bundle to the three-
dimensional sphere with the zero section deleted. It is given by

where e = (eo, ~ u = (uo, U) E [R4 satisfy the conditions

and = M’ u. Since C3 is the zero level set of a nondegenerate quadratic
form in C4"’{ 0 ~, its image under the natural projection onto (3) is
isomorphic to (see e. g. [G-H]). It follows that C 3 is 
principal bundle over 
where pr~ denotes the projection of CP ( 1 ) x CP ( 1 ) onto the i-th factor,

is the universal bundle and k, The quadric C3 can be
obtained as the pull-back of the universal bundle over CP(3) with zero
section deleted by the Segre imbedding S : CP ( 1 ) x CP ( 1 ) - CP (3). Com-
paring the transition functions for this pull-back bundle and 1F1, 1, we get
the isomorphism of bundles

Let = x* (IF k~ ~), where ~ : C3 - CIP (1) x CIP (1).

PROPOSITION 1.1. - (i ) V k, I, m, M6Z 1 p 

(iv) For each complex line bundle IL over C3, there is a k E 7~ such that

Proof. - The isomorphisms (i) and (ii) are obvious.
(iii) We have the following isomorphisms

The second one follows from the homotopy equivalence of

T~ S3 ~ S3 x (1R3"’{ 0 }) and S3 x S2 and the last one is obtained by applying
the Kunneth formula to the product of spheres S3 x S2.

(iv) This follows from the fact that the Chern class of ~°° 1 is the

generator of the group H2 (C3, Z). D

The bundle inherits from E - CP ( 1 ) the structure of Hermitian line
bundle.
The action of the group SU (2) on CP(1) induces an action of

SU (2) x SU (2) on the manifolds Fk, l and Ek, l; in particular we obtain an

Annales de I’Institut Henri Poincaré - Physique théorique



73GEOMETRY OF THE KEPLER SYSTEM IN COHERENT STATES APPROACH

action of SU (2) x SU (2) on C3. This action preserves the Hermitian line
bundle structure of [k, ~.

PROPOSITION 1. 2. - (i) C3 splits into five-dimensional orbits of the group
SU (2) x SU (2) labelled by a positive parameter x = (2 z . z~ I ~2.

(ii) The bundles [k, k, keZ, are isomorphic as SU (2) x SU (2)
bundles. D

We now describe the spaces of global holomorphic sections of the
bundles which will be denoted, as usual, by H° (C3, W (~k~ ~)). To this
end, we introduce coordinates on C3 which are compatible with the
fibration of C3 over CP ( 1 ) x CP ( 1 ). Let

be a covering of C3, where C~~ _ ~ [(~ 1, i =1, 2, cover
the first factor and ~, i =1, 2, which are defined in a
similar way, cover the second factor. Let [(0160l’ , ~2 ~~ H s ~ _ 1 ~ and

~1

O2[(03B61, 03B62}]~s2:=03B61 03B62~C be the coordinates on the first factor of

the coordinates on the second factor will be denoted by
ti and t2. We can now define an atlas of C3

Transition functions for this atlas are given by
s1=1, t1=1, 03BB4 = t1 03BB3= si 03BB2 = s1 t1 Å.1" To simplify the notation, we~2 t~ ’

shall write all expression in the chart (Vi, xl) and we shall drop the
subscript 1. We shall denote the elements of C3 by z, w and so on,
and we shall write z = (s, t, À) and w = (s’, t’, ~/). We have the following
relations

which imply

Vol. 59, n° 1-1993.



74 M. HOROWSKI AND A. ODZIJEWICZ

The bundle i : - C3 trivializes over Ya,
a, = 1, 2, 3, 4 : 1tk; t (y«) r-‘-’ y« x C, transition functions Y« x C*

being

We choose nonvanishing local sections va x C corresponding
to this trivialization given by (z) : = (z, 1). According to our conven-
tion, we write cro rather than 
Expanding an arbitrary cr E HO(C3, W (lEk, ~)) into a power series and

using the compatibility conditions implied by ( 1. 9), we obtain

PROPOSITION 1.3. - Any cr E HO (C3, W (lEk, ~)), when restricted to Vi , is

of the form where ~ E C~ (Vi) has the power series expansion

The natural action E of the group

is given in the coordinates (s, t, Ã) by

The corresponding action T on the sections of E~’ ~ is

This implies

PROPOSITION 1. 4. - The subspaces Vn c H° (C3, W ~)) spanned by
sections of the form

where c = n - 1, are T (SU (2) x SU (2)) invariant and

From now on we restrict our considerations to the bundle 

Annales de l’Institut Henri Poincaré - Physique théorique



75GEOMETRY OF THE KEPLER SYSTEM IN COHERENT STATES APPROACH

To describe SU (2) x SU (2) invariant Hermitian structures on let us
note that the section Oo extends to a unique (up to a constant coefficient)
SU (2) x SU (2) invariant nonvanishing global section of °. This follows
from T (SU (2) x SU (2)) invariance of V I and from formula ( 1.12). An
SU (2) x SU (2) invariant Hermitian structure H f on 1E0,0 is defined by
setting

where x2 = 2 z. z and f E C~ (R +, R). Thus, the mapping f’H H~ establishes
a 1-1 correspondence between R) and the space of
SU (2) x SU (2) invariant smooth Hermitian structures on °. The Hermi-
tian structure H f determines a metric connection Vf on (see [We])
such that

where cro: ~3 -~ E~’ ~ is the global section defined above. The curvature
(1, I)-form of this connection will be denoted i. e.

In what follows we shall be assuming that the function f satisfies the
following conditions

where h ( y) _ [ f ’~ ( y)] 3 .
Condition ( 1.18) is equivalent to nondegeneracy of the curvature form
Condition (1.19) is equivalent to the fact that, for each n EN, the

spaces V~ are contained in the space ~1~. of square-integrable holomorphic
sections

where A A is the Liouville form corresponding to the
symplectic form 0~. It is a standard fact that J{ f is complete (see [W]).

Let 0’ ø, b, c = B)/~ ~ ~ cro, where

These sections form an orthogonal basis of ~l f, their norms being
...... _ . _

where A is a constant independent of f and B (u, v) is the Euler beta
function.

Vol. 59, n° 1-1993.



76 M. HOROWSKI AND A. ODZIJEWICZ

Writing in the frame 6a, we can identify with the space of

holomorphic functions on C3 which are square-integrable with respect to
the measure e - f df. Let

be the evaluation functional. One knows [W] that this is a continuous
functional on JIf. It follows that, for each there is a 
such that

Expressing in the frame oeo, we get the reproducing
property

Expressing Kf (z) in the we obtain the following
expression for the reproducing kernel

From this formula we see that the diagonal K~ (z, z) is an even function of
jc=(2z’z)~. It is convenient to introduce the notation z).

Example. - Then

where Ep(v; P) is a function of Mittag-Leffler type (see [D] and Section 3).
In particular, for f = id we get the formula

which was obtained in [R].

2. THE REGULARIZED KEPLER SYSTEM

In [02] it was shown that any mechanical system can be described by a
triple (M, 5i : (J~)), where M is a differentiable manifold, w6

Annales de l’Institut Henri Poincaré - Physique théorique



77GEOMETRY OF THE KEPLER SYSTEM INCOHERENT STATES APPROACH

is a complex Hilbert space and Jf is a symplectic embedding in the sense
that the pull-back 5i* (Dps of the Fubini-Study form Ops on (~C) is
nondegenerate. According to [02], the symplectic manifold (M, ~’* 
is interpreted as the classical phase space of the system. The symplectic
manifold (CP (~), is the space of pure quantum states of the system
and the states in are interpreted as coherent states. Let P (m)
denote the orthogonal projection onto mE M, and let

n

p E L1 (M, where d~,L : - n ~’* is the Liouville form. Then the

operator

corresponds to a mixed state of the system. Among the mixed states

one distinguishes a family of equilibrium states (see [02]) which can be
characterized by means of a mapping H: M - R. The mapping H depends
functionally on Jf: M -~ CP and is interpreted as the energy of the
system. It was shown in [02], by means of the notion of formal path
integral, how the action functional depends on Jf and H. In this approach
the mapping Jf: M -~ CP (~) is a primary object, the action functional
as well as other characteristics of the system being dependent on it.

In this section, basing on Chapter II of [02], we shall give a physical
interpretation of the triple (C 3, 3i~ : C3 --+- CIP (~~.)), where 5i~ is
defined by Kf(z):=[Kf(z)], z~C3 [see (1.24)]. In order to make the
paper self contained, we shall repeat step by step some considerations of
[02] restricting them to the model being studied here.

First we show that is a symplectic embedding. Let us consider the
diagram

is the universal complex line
bundle and i denote the projections of E onto the
first and second factor of the and

~~. (z) : _ (~ f (z), K~. (z)). The bundle [E°’o being trivial, we obtain a

holomorphic morphism of bundles given by
(oo (z)) : = H~ (z). With this definition of the pull-back HFS of

Vol. 59, n° 1-1993.



78 M. HOROWSKI AND A. ODZIJEWICZ

the canonical Hermitian structure of E to takes the form

where Kf(z, z) is the diagonal of the reproducing kernel (1.26). The ( 1, 1)-
form

is nondegenerate what follows from the proposition :

PROPOSITION 2 . 1. - If f satisfies ( 1.18) and ( 1. 19) then these conditions
are also satisfied by log I f (x).
Proof. - Condition ( 1.18) holds for any even analytic function

00

g (x) = with positive coefficients (an&#x3E; 0) and the radius of conver-
n=0

gence R = oo . It follows from ( 1. 26) that II is such a function.
From ( 1. 26) it follows that is a positive Schwartz function on
U {0}. The for all U {0} implies that

uf: = 1/t}~ is a Schwartz function. Now, for all CE N U { 0}, the condition
(1.19) takes the following form:

and it is fulfilled because the derivative of a Schwartz function is a

Schwartz function and the product of Schwartz functions is a Schwartz
function. D

Because of the functions from Jt f separate
points of C3, which implies injectivity of We have thus shown that

is a symplectic embedding of (C3, ~’ f into ~), 
Given the mapping K~: C3 --+ ~~., we can write down an explicit form

of the transition amplitude

between the coherent states and which will be identified
in what follows with the classical states z and w respectively.
Suppose that the system is in a mixed state P~(p) defined by a

normalized ( BJc3 p~L,~=l) / weight function where

5i) 03C9FS A 5i) Then the probability of finding the

Annales de /’Institut Henri Poincaré - Physique théorique



79GEOMETRY OF THE KEPLER SYSTEM IN COHERENT STATES APPROACH

system in a coherent state z E C3 is given by

where P f (z) is the orthogonal projection in onto the state aT f (z).
Interpreting ( P f (p)): C3 -+ IR + U {0 } as the weight function of the mixed
state P~ (( P~ (p) ~), we introduce (following [02]) the condition of stability
of mixed states with respect to the interaction of the system with a classical
device which measures the probability of finding the system in a state z,
provided that it is localized in ~ f (C3) with probability density given
by p. Namely, we require that the level sets of the function p(p) are
the same as those of p, which is equivalent to the following condition

The mixed states P f (p) that satisfy (2. 7) will be called equilibrium states
of the system and H will be interpreted as the energy function of the
system.

In what follows, we shall restrict our considerations to the family of
equilibrium states defined by SU (2) x SU (2) invariant weight functions,
i. e. where x=(2z.z)~ labels the orbits of

SU(2)xSU(2) on C3. Due to SU (2) x SU (2) equivariance of
the space of SU (2) x SU(2) invariant equilibrium

states is parametrized by the mappings of C3 to I~ which are constant on
the orbits of SU (2) x SU (2).

In view of the equality

where

the state P~(po) is an invariant equilibrium state and it is representated
by the identity operator

Vol. 59, n° 1-1993.
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Raising (2.10) to the N-th power and taking the matrix element between
the vectors

Since the left-hand side of the N-th power of (2.10) does not depend on
N, passing to the limit as N -~ oo does not affect the amplitude w).
According to the law of multiplication of amplitudes, the expression

is the transition amplitude of the system from the state z = vi to the state
W = VN through the intermediate states v2, ..., VN -1’ i. e. the probability
amplitude of the process ..., If we approximate this
process by a piecewise smooth curve y :[ia, rj - C3, that is, if we put

where 03C4k=k N(03C4b-03C4a)+03C4a, we obtain the following expression

for the transition amplitude from z to w along the path y. If we introduce
the symbol of formal integration over all piecewise smooth paths joining
the stats z and w

we can express the transition amplitude as a formal path integral

Thus, according to the superposition law for amplitudes, a ~ (z, w) is the
"sum" of the transition amplitudes af(z; y; w). If we allow only those
processes that do not change the energy of the system, then the measures
po (xk) (vk) in the right-hand side of (2 . 13) should be replaced by

Annales de l’lnstitut Henri Poincaré - Physique théorique
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the measures

which contain a 8-factor corresponding to the constraint
H (y M) = E = Const. As a result we obtain an expression for the transition
amplitude between z and w

which is compatible with the energy conservation law. Integration over
the Lagrange multipliers n dA (t) takes into account the contribution

"C E Tb~

to the integral due to the freedom of choice of the parametrization of a
path. Fixing such a parametrization Ao can be understood as a choice
of a classical instrument (a clock) that measures time. Formally, this

corresponds to replacing the measure fl dA (i) in (2 .16) by
T E [To, "Cb]

n õ (A (t) - Ao (r)) dA (r). Finally we get
T E [Ta, Tb]

where the parameter ’t = (s) ds can be interpreted as time. According

to Feynman’s approach to the path integral, we obtain from (2.17) the
following expression

for the action functional of the system (C3, in
the equilibrium state P f (c~ ~ H), where we have assumed that the energy
function H is SU (2) x SU (2) invariant. The whole theory depends on two
functional parameter f: R+ ~ R and 03C6° H : C3 -+ [R +, which will be fixed
in the next section, where we shall analyze quantum aspects of the problem.
As far as the classical mechanics is concerned, the extremals of (the

Vol. 59, n° 1-1993.
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equation) 2014~-"2014 = 0 are described by Hamilton’s equation) 
8y 

Y q

which in our case has an explicit solution

where z(0)= (s (0), t(0), À(0)) is the state of the system at the moment

~ = 0 and xo = 2 z (o) ~ z (o).
In particular, we see that the choice of f and H affects only parametriza-

tion of trajectories.
In order to give a physical interpretation of the Hamiltonian system

(C3, H (x)), let us consider the following imbedding of symplectic
manifolds

where the second arrow stands for the diffeomorphism (1.2), TÓ (R3 is the
cotangent bundle to !R3 with zero section deleted and ’11-1 is the inverse

of the mapping

which, up to the (2~)), is the derivative
of the stereographic projection S3"’{ - 1R3. The domain of 03A8 is

Tó (S 3’" { oo })~To (S 3’" { oo }). After a calculation (2. 21) becomes

where (y, () E [R3 x ([R3", { 0 }) ~ Tó [R3, Z = I&#x3E; (.Y~ ~1) (Tó [R3) and cp f is

the inverse function of 1x(logf)’ (x).
2 

t g f) ( )

Annales de I’Institut Henri Poincaré - Physique théorique
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Pulling %1 Mps and H back on Tó 1R3 we obtain the following Hamil-
tonian system

which, for coincides with Moser’s regularization of
2

the Kepler problem (see [Ku]) 
-

To see this, let us relate the variables ( y, rj) to the momentum p and the
position q in the following way

where E (q, i) = 2 I is the energy function of the reduced Kepler

problem. We assume that the range of (q, i) is such that E (q, i)  0, that
is, we consider only bound states. We have

which implies that the trajectories of the system (2. 24) coincide with those
of the reduced Kepler problem, i. e. (2 . 20) gives the Hamiltonian flow for
the Kepler problem.

Concluding, we see that the Hamiltonian system

( Cg, is Moser’s regularization of the Kepler prob-

lem.

3. THE QUANTUM ASPECTS

In this section we discuss the problem of quantizing classical observables
(functions) for the regularized Kepler problem following the procedure
given in [02]. The procedure is based on the classical Ehrenfest theorem
(see [E]). is an Hermitian operator, the one-parameter
group UH (t) = exp (it H), t E R, generated by H uniquely determines a flow
U~ (t), t E R, on the universal bundle which preserves both
the metric and holomorphic structures of the bundle. The Poisson algebra
(COO (C3, I~), ~ ~ , ~ ~ f) defined by the symplectic form Mps is isomorphic

Vol. 59, n° 1-1993.
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to an algebra of vector fields on IE°~ ° which are infinitesimal automor-
phisms of the quantum bundle (%1 [E ~ C3, $’1 VFS, HFs). This iso-
morphism holds in general case; its explicit form is given in [K] (see
theorem 4 . 2 .1). Let Y~ be the vector field on ° corresponding to a
function cp E Coo (C3, R). We say that the pair (H, cp) satisfies Ehrenfest’s
condition if

(a) the flow [UH (t)] preserves 4~ (C 3) C CP 
(b) the vector field Y~ is the infinitesimal generator of the flow

This condition means that the Hamiltonian dynamics of the system
coincides with the Schrodinger dynamics, which corresponds to the asser-
tion of Ehrenfest’s theorem. In [02] it was shown that the space CE of
functions q&#x3E; for which there is only one such that (H, p)
satisfies Ehrenfest’s conditions is a Lie subalgebra of the Poisson algebra
(C°° (C3, ~), ~ ~ , ~ ~ f) and the assignement Qe cp H i H is a monomorphism
of this subalgebra into the Lie algebra (B ~), [ . , . ]). This monomorph-
ism will be called the Ehrenfest’s quantization. Conditions (a) and (b)
imply that the vector field Y~ is complete and its flow 6~ (t) consists of
automorphisms of the quantum bundle. Moreover, 6~ (t) is a holomorphic
flow because % f is an antiholomorphic embedding.
We shall not deal here with the problem of an explicit description of

the algebra CE of classical observables which are quantizable in the sense
of Ehrenfest. Our further considerations will be restricted to those elements
h E CE which satisfy

This condition implies condition a) and is equivalent to the fact that the
section ao which trivializes the bundle Jf~ E -~ C3 is invariant [up to phase
factor exp (i ~ (t))]. Taking into account that the metric structure HFs
is c~ (t)-invariant, we see that (a’) is also equivalent to crh (t)-invariance of
the diagonal of the reproducing kernel

Thus, the subalgebra CE, o c CE of classical observables which satisfy (a’)
and (b) consists of the functions which generate holomorphic flows leaving
jc==(2z-z)~ invariant.

Let r (h) = X + X denote the holomorphic Hamiltonian vector field gen-
erated by h E CE, o. Thus %1 (h) = dh implies that

where ~~~(~3). Since we have and

Annales de l’Institut Henri Poincaré - Physique théorique



85GEOMETRY OF THE KEPLER SYSTEM IN COHERENT STATES APPROACH

Each holomorphic Hamiltonian vector field X + X leaving If invariant is
easily seen to be of the form r (h), where h is given by (3 . 3). Therefore,
in order to describe the algebra CE, o, it suffices to know the group of
biholomorphisms of C3 preserving ~=2z.z~ It can be shown that this is
the group U (1) x SO (4) (see [R]). It follows that any h~CE, 0 is given
by (3 . 3), where the holomorphic vector field X corresponds to an element
of the Lie algebra under the homo-

morphism induced by the action of U ( 1 ) x SU (2) x SU (2) given by ( 1.11 ).
We thus see that the algebra CE, o is spanned by

where

This basis is compatible with the decomposition M(l) (B su (2) (B su (2).
The constant function J (s, t, À) = 1 spans the kernel of the homomorphism
r : CE, o - The functions Mk, Nk, k = 1, 2, 3, form a natural
basis of the algebra su(2)(Bsu(2) and satisfy the commutation relations
{M1, ~}=0. Functions of the
form HAB : = AE + B, A, span the center of CE, o. The flows 03C3Mk (t)
and aNk (t) are given by ( 1.11 ). The corresponding one-parameter groups
are T (aMk (t)) iT (t)), where the representation T is given by ( 1. 12).
The function E is exactly the Hamiltonian of the regularized Kepler
problem and the flow 6E (t) generated by E is the time evolution flow of
the regularized Kepler problem given by (2 .10). The flow generated
by the constant function J is the constant phase flow eit of the line bundle

o .

Quantizing (3 . 4) in the sense of Ehrenfest, we get
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The operators QE (Mk) and QE (Nk) are (up to the factor - 2 i) the gener-
ators of the representation T : SU (2) x SU (2) - Aut J( f given by ( 1.12)
and the Hamiltonian HAB: = QE (AE+ B) satisfies the obvious conditions

Moreover, the subspaces n E N [see (1.13)], are the eigenspaces of HAB
corresponding to the eigenvalues

and, for each and each r e !R, we have

It was shown in [02] that in the general case evaluating the mean value
of the operator which is the Ehrenfest quantization of a classical observable
on all possible coherent states gives again this function. More precisely,
the operation (. ~ of taking the mean value on coherent states is a Lie
algebra isomorphism which is the inverse of QE. Thus, for the case of the
Kepler problem we get

It follows from (2 . 20) and (3 . 8) that the embedding CP (~ f)
is equivariant with respect to the Hamiltonian dynamics on C3 and the
Schrodinger dynamics on CP(Mf). After passing to the Heisenberg pic-
ture, this together with (3 . 9) shows that the classical dynamics correspond-
ing to h E CE is consistent with the quantum dynamics corresponding to
QE (h).

Inserting the Hamiltonian function HAD into the formal path integral
formula (2.17) we obtain (see [02] for general case) the propagator for
the Schrodinger time evolution expressed in terms of coherent states [see
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formula (3.8)]

Let us recall that by formal path integration we mean the limit of N-time
integration over phase space given by (2.13).
We now discuss the connection of Ehrenfest’s quantization with the

Kostant-Souriau quantization. A discussion of this problem for an arbi-
trary system is given in [02]. In the case of the Kepler problem the
situation is as follows. Applying the geometric quantization procedure to
the quantum bundle (lEO, 0 - C3, Vf, Hf) with antiholomorphic polariza-
tion on the complex manifold C3, we obtain

as the space of quantizable functions and CIP as the space of pure
states. The operators QKS (h), for h E are given by (3. 5) as for Ehren-
fest’s quantization.
We thus see that, in this case, the two quantization procedures differ

only by the subalgebra of quantizable functions This implies,
in particular, that the operation (.) of taking mean values of the operators
QKS (h) on the coherent states ~’~. (z) does not give functions from CKS.
Thus, in the case of the Kostant-Souriau quantization, we do not have
the consistency of quantum and classical descriptions which we had in
Ehrenfest’s quantization.

Let F3 denote the set of potentials f : C3 ~ which satisfy ( 1.18)
and ( 1.19). The functions from F3 parametrize the quantum bundles
(lEo, 0 - C3, Vf, HI)’ and hence also the mechanical systems
(C3, l’f, ~’ f : C3 -~ where is the antiholomorphic embed-
ding described in the preceding section. Taking the pull-back by of
the universal quantum bundle (E - CP pFS, HFs) we obtain a new
quantum bundle

described by the potential log If which, by Proposition 2 .1 also belongs
to F3 . Summing up, we obtain a mapping J:~ -~~3 given 
Finding a fixed point of J amounts to finding a potential f such that

which implies that and ~’ f Thus the
quantum bundle which is the pull-back by of (E - CP VFS, Hps)
coincides with the initial quantum bundle. It follows that, for J (~ = f,
Ehrenfest’s quantization is equivalent to the Kostant-Souriau quantization.
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We have thus obtained a natural from a physical (and geometrical) point
of view criterion for choosing the functional parameter of our theory

The condition for J to have a fixed point takes the form of a nonlinear

integro-differential equation for the function f

where is given by (1.13).
An essential difficulty in studying the properties of this equation is due

to the fact that each term of the sum in the right-hand side depends
functionally on f In particular it is hard to decide whether there exist

solutions in F3. However, there is a class of functions in F3 which satisfy
the equation asymptotically. Namely, a&#x3E;O, the reproducing
kernel If (x) can be expressed in terms of functions of Mittag-Leffler type
[see (1.27)]. We recall that a Mittag-Leffler type function is an entire

function of a complex variable u given by the power series

where p &#x3E; 0 and  E C. A detailed description of these functions can be
found in [0]. We shall need the following two lemmas from [D].

LEMMA 3 .1. - Suppose that p &#x3E; 1 /2, J.1 is a complex number and (J" is a

real number such that

Then, for any p E (BJ and for u 1-+ 00 with arg u 1 ~ r.t, we have the following
asymptotic formula

LEMMA 3 . 2. - Suppose pE(O, and ~C. Then, for 
we have the following asymptotic formula

Ep (u; ) = P 03A3 ( upei2npn ) 1- eei 2 03C003C1 n u03C1
I arg u+2 1t n I ~ n/ (2 p)

where in the first sum the summation runs over those n 
= 0, :i: 1, ... which

satisfy the inequality under the sum symbol. 0
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The lemmas imply that the function f(x) = x° satisfies (3.12) asymptoti-
cally. More precisely, we have

It can also be shown that there is no a&#x3E;O for which (3.12) holds
identically.
The asymptotic symplectic coherent state described above or any

coherent state for which is a symplectic embedding have the following
properties: the square of the modulus of its wave function has a maximum
in the point z and the higher is the energy of the system the better it is
localized around this point. Thereby these states are the ones which can
be obtained in experiments proposed in the papers [P-S] and [Y-S].
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