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ABSTRACT. - For a quantum system with one degree of freedom we
introduce some families of states depending on the Planck’s constant, that
we call "classical states". We show that a definite class of these families

allows to characterize the coherent states.

RESUME. - Pour un systeme quantique a un degre de liberte, on

introduit, sous Ie nom d’« etats classiques », certaines familles d’etats

dependant de la constante de Planck. On montre qu’une classe definie de
ces families permet de caracteriser les etats coherents.

1. INTRODUCTION

The notion of coherent state in quantum Mechanics, at least in its

elementary form, is generally associated with the description of classical
situations. The current example, usually given in the one-dimensional case,
stems from the behaviour of the coherent states under the dynamical law
of the harmonic oscillator ([1], [2]). A more general argument, often

considered as setting the "classical" character of these states, is found in
their property of minimality with respect to the Heisenberg uncertainty
relations. In that sense, coherent states are only "as classical as possible"
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([3]-[5]), since, strictly speaking, every state in the Hilbert space must be
interpreted from the general principles of quantum Mechanics.
The minimality property is yet a characteristic one in what any minimal

state is a coherent state of some harmonic oscillator (Gaussian wave
packet) [6]. More particularly, the coherent states of a given harmonic
oscillator (that is, an oscillator whose mass and angular frequency are
specified) may also be characterized by a property of minimum [7]. In
accordance with these results, among the various generalizations of coher-
ent states which have been devised, some of them were founded on the
idea of minimizing a given uncertainty relation ([8], [9]).
The connection of coherent states with classical Mechanics is certainly

made clearer in the works implying the vanishing of the Planck’s constant.
Typical results are those referring to a precise formulation of the Ehrenfest
theorem ([ 10]-[ 12]). Coherent states there appear either under the form

or under the form

In these formulas q and p are the canonical operators, a the destruction
operator of some given oscillator defined by

and 10) the corresponding ground state. The states ( 1 ) and (2) are then
equal under the following correspondence between their labels

The states ( 1 ) or (2) explicitly depend on ~. On account of that depend-
ence a significative property is the existence of a finite limit when h ~ 0
of the expectation value on these states of any monomial in the canonical
variables q and p [11]. This feature calls for the more general notion of a
family of states 03C8 (h), depending on h and such that for any monomial
M (c~, p), the expectation value (B)/ (~) ~ M (q, p) ~ I’" (~) ~ admits a limit when
~ goes to zero. We suggest to give the name of "classical states" to such
families. Thus, a "classical state" would represent some kind of limit of
quantum states.
The preceding condition is equivalent to require the existence

of limits for the expectation values of the normal products
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h(m+n)/203C8(h)|(a+)man|03C8(h)~, where m and n are any positive integers
and a the operator defined by (3). In fact, as it is easily checked, for the
states defined by (2) these expectation values are constant with respect
to ~C. Each family B)/ (~C) having that property is privileged in what the limits
considered above can be calculated from any member of the family, in
particular from the one corresponding to the actual value of h ( 1 ).

In that paper we intend to show that the property just mentioned
essentially characterizes the coherent families (2). More precisely we shall
prove that, under a regularity condition which will be stated later on, the
conditions

in which the C n are some constants, admit as only solutions the families
of the type (2), up to a trivial factor. The proof would be trivial if the
values of the Cm, n were a priori chosen equal to those given by the
family (2). Here, however, the are left undetermined at the start.

Thus, the result expresses that the only constants which may appear in
the right member of (5) are the values of the observables of a classical
state.

In section 2, we give some preliminaries and state the regularity condi-
tion under which the proof will be achieved.

In section 3, the problem is reduced to the solution of a linear partial
differential equation constrained by some non linear conditions.

In section 4, the solution is obtained from a complete integral of a non
linear partial differential equation deduced from the preceding one, and
some remarks are added.

2. THE REGULARITY CONDITION

be the usual basis of the oscillator eigenstates defined from
the operator a [2]. With in the Hilbert space we associate

n

the power series of the complex variable z given by

and with (~, we associate the series

(I) That constancy property cannot hold for all expectation values since, for example, one
a + ~. Thus, the requirement of constancy for the normal products represents

a maximum.
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These series are absolutely convergent for z ~ 1 and we have

Let Pw and p w’ be their respective radii of convergence. From the Schwarz
inequality

in which denotes the state with components ! ~n ~, we obtain

Let us denote by D 00 the common domain of the monomials in a and
a + . If belong to D 00 it is easy to prove the relations (2)

from which results the equality pak ~, = p~. Let us also introduce the correla-
tion coefficients

From (8) and (9) we have

The are obviously determined by the ~n. Conversely, if p&#x3E;l,
the Cm, determine the functions in the neighbourhood of 1,
on account of ( 12) and ( 14), and therefore at the origin; from ( 15) it then
follows that the are determined up to a common phase factor.
Now, the result we have in view will be attained by the solution of the

following problem: find the such that

where the Cm, " are some constants. To simplify the notation let us put
P", ~~~ 

= p~. We have the following:

LEMMA. - For any solution 03C8(h) of (16) we have 1 for all h or

p~ =1 for all ~.

Proof - Let us assume that PJ! &#x3E; 1 for some given value  of h. The
formulas ( 12), ( 14) and ( 16) imply the relation

(2) As usual denotes the derivative " of order k off
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Therefore, the Taylor series about 1 has a finite radius of conver-

gence for any value of h. Since the coefficients of the power series repre-

senting f03C8(h) about the origin are positive, it follows that this function can
be analytically continued in the neighbourhood of 1, and that we have

Q.E.D.

From now we only consider the regular case for which Ph&#x3E; 1 for all ~.

3. THE CONSTRAINED PARTIAL DIFFERENTIAL EQUATION

Let  be a particular value of 11 and let

and

where x is a real variable. From ( 12), ( 14) and ( 16), and with the help of
the Taylor series, we easily find the relation

valid for all z such that 1 + (  Pw For the values of h satisfying
the condition 1 +  PJ! we can take z = -1 in the preceding equation,
thus obtaining, by ( 15),

These equations allow to calculate the components They imply,
however, some compatibility conditions, namely

which, by analytic continuation, must be valid in the whole interval

The equations (20) represent some contraints on the coefficients cn. To
render them tractable let us introduce the generating function

in which u and v are real variables. With the help of the Schwarz inequality
( 10) and of the Cauchy inequalities [ 13] written ~ j, it is not difficult

to show that, with ( 18), the right member of (21 ) becomes a series in three
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variables absolutely convergent for and for all (u, v). The condi-
tions (20) then become

Moreover, from the relations and ~,~~+1,~+1 we respec-
tively deduce

so that we have to solve the linear partial differential equation (24)
together with the non linear constraints (22) and (23).
The last equations are furthermore transformed by successively putting

f(x, u) = p (x, u, 0) then g (x, u) = Log / (x, u) (the logarithm being defined
by its principal value in the neighbourhood of a point of the form
(x, M)=(xo, 0), at which/takes a positive value). We then find
the following expression of cp (x, u, v)

the equations for g being

The next section is devoted to the solution of these equations.

4. SOLUTION

Instead of g we consider the following function on three variables (equal
to Log p)

On account of (27) is satisfies the non linear equation

The latter admits the following particular solution, depending on three
complex parameters a, P, y,

Actually, Go is a complete integral [14] of (29). More precisely, for any
solution G of (29), there exists a mapping
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such that the following equations are satisfied

Taking the derivatives of (A) and using (B) gives

These equations can be considered as determining y; then, they imply the
integrability conditions

Let us now introduce the particular form (28) of G. The equations (B)
show that a and P have the form

and these equations become

Furthermore, the equations (D) come to the unique equation

By differentiating this latter with respect to v we find (x, u) = 0, then
(x, u) = O. Therefore, the functions a and P are some constants, and

P=a from (31 ). The equations (C) then show that y is also a constant.
Finally, the function g is easily determined from (B’) and the

condition (26). We find g(x, with y real. Afterwards,
we have (p(~, u, v) --- K where K is a positive cons-
tant. That expression, up to now defined in a neighbourhood of (xo, 0, 0),
extends for all values of (x, u, v).
The expansion of cp supplies the cpm, n according to (21 ), then ( 18) gives

the equations

The general solution of these latter is Cn = ~ (oc)~‘ e‘ s, depending on an
arbitrary phase factor. It follows that the convergence radius p~ is infinite,
as also 03C1h for all h, since  was arbitrarily chosen.

Lastly, the components ~r,~ (~) are calculated from ( 19); by putting
~, = a , At we find
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in which C is a positive constant and 8 (~C) an arbitrary phase depending
on h. Up to the factor Cei03B8 (h), the corresponding state is the coherent
state (2).

Thus, under the only regularity condition stated in section 2, the coher-
ent families (2) are characterized by the condition of constancy (5). The
consideration of a varying ~ was obviously a fundamental one. In that
respect let us stress that the family (2) weakly converges to zero when ~
goes to zero, and does not correspond to a uniquely defined vector in the
space of states. Its physical sense is contained in the h-dependence of its
terms rather than in any particular of them.

Let us add that replacing in (5) the by the state (2) corres-
ponding to another value K’ than the value K of the parameter defining
the operator a does not give a left-hand side constant, but admitting only
a limit 0. Generally, the families (2) associated with an arbitrary
value of K are "classical states" in the sense suggested in the introduction.
A more general study of that notion will be the subject of another paper.
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