
ANNALES DE L’I. H. P., SECTION A

NAKAO HAYASHI
Smoothing effect of small analytic solutions to
nonlinear Schrödinger equations
Annales de l’I. H. P., section A, tome 57, no 4 (1992), p. 385-394
<http://www.numdam.org/item?id=AIHPA_1992__57_4_385_0>

© Gauthier-Villars, 1992, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1992__57_4_385_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


385
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ABSTRACT. - We consider the initial value problem for nonlinear Schro-
dinger equations in Rn(~2):

and

for any complex number o with ~= 1. It is shown that global solutions
of (*) have a smoothing property.

RESUME. 2014 Nous considerons 1’equation d’évolution de Schrodinger
non lineaire dans (l~" (n &#x3E;_ 2) :
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et

pour tout nombre complexe 03C9 avec I =1. Nous montrons que les

solutions globales de (*) ont la propriete de regularisation.

1. INTRODUCTION

In this paper we consider the initial value problem for non-linear Schrodin-
ger equations in [Rn(n~2):

Here the nonlinear term polynomial of degree 3
satisfying

for any complex number co with |03C9| = 1, where u is the complex conjugate
of u and V stands for nabla with respect to x.

In [3] we proved that small analytic solutions of (1.!)-(!. 2) exist globally
in time if the initial function cp is analytic and sufficiently small. The

purpose of this paper is twofold. One is to show that global analytic
solutions of ( 1 . 1 )-( 1 . 2) have a smoothing property if(p satisfies certain

analytical and exponential decaying conditions with respect to space vari-
ables. The other is to give a simple proof of an analogous result to

Theorem 2 ([4]) in which we proved smoothing effects of solutions of

( 1 . 1 )-( 1 . 2) for the special nonlinearity F = ~ I u I 2 u.
Our strategy of the proof in this paper is to translate (1.!)-(!. 2) into a

system of nonlinear Schrodinger equations to which we can apply the
previous methods developed in [2], [3], [5], and [6].
We note that smoothing properties for a class of nonlinear Schrodinger

equations in the weighted Sobolev spaces were studied in [5] first (in the
case of the usual Sobolev spaces, see [ 1 ], [9] and [ 10]).
We now state notations and function spaces used in this paper.
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Notation and function spaces. - We let Lp = {/(~); f(x) is measura-

inverse, respectively. For each r &#x3E; 0 we denote S (r) the strip
{z; 2014f3z~~; 1 _- j -_ n } in the complex plane en. For if a com-

plex-valued function f(x) has an analytic continuation to S (r), then we
denote this by the same letter f (z) and if g (z) is an analytic function on
S (r), then we denote the restriction of g (z) to the real axis by the same
letter g (x) .
We let

and Bm be the same function space as that defined in [3], p. 724, where

Constants will be denoted by C;(/=L2,...). For a multi-index

and

We denote by [s] the largest integer which is less than or equal to s.

Remark 1 :

We state " our results in this paper.

THEOREM 1. - We assume that (p (x) has an analytic continuation to ’ S (r)
and

Vol. 57, n° 4-1992.
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is sufficiently small. Then there exists a unique global solution 
(1 1 )-( 1. 2) such that M(JC) has an analytic continuation to S {~’) U S (~ t ~)
and exp ( - iz2/~ t) u (t) E AL~ (I t I ), ~here r’  r.

Remark 2. - From the fact that exp (- iz2/2 t) u (t) E AL2~(| I) it is clear
that the analytical domain of solutions increase with time. This implies
the smoothing effect of solutions to (1.!)-(! .2).

THEOREM 2. - We assume that F u| 2 u and

is sufficiently small. Then there exists a unique global solution u (t, x) of
(1 . 1 )-(1 .2) such that u (t, x) has an analytic continuation to S (I t I) anr~

exp ( - iz2/~ t) u (t) E AL~ (I t ~).
Remark 3. - In [4], Theorem 2, S. Saitoh and the author obtained the

result similar to Theorem 2. However the above mentioned assumption
on cp is more natural than that of [4], Theorem 2.

2. PROOF OF THEOREM 1

We consider the system of Schrodinger equations:

We translate (2 . 1 )-(2 . 3) into another system of equations and apply the
previous result ([3], Theorem 1 ) to it. For any smooth function w, we put

where

and

Annales de Henri Poincaré - Physique theorique



389SMOOTHING EFFECT

For any v such that Vk, we shall show that solutions u and
u of (2.1)-(2.3) satisfy the following system of Schrodinger equations:

The reason why we must consider the system of equations (2.4)-(2. 6) is
that in general |Wk| is not equal to I. We prove (2 . 4) and (2 . 6) only
since the proof of (2. 5) is the same as that of (2.4). We prove (2.4) first.
Applying Pk to both sides of (2 .1 ), we have

where we have used the fact that

By ( 1. 3) we see that the right hand side of (2 . 7) is rewritten as

On the other hand, we have by [7], p. 99

since V k E Bn + 3, where z=~-~(- 1)~. From (2 . 8), (2 . 9) and the assump-
tion that F is a polynomial it follows that the right hand side of (2.7) is
equal to

We again apply (2.9) to the above and use the homogeneous condition
(1.3) to see that the right hand side of (2 . 7) is equal to

A direct calculation yields

From (2 .10) and o (2 .11 ) we obtain (2 . 4). We next prove (2 . 6). We ha
by (2 . 9)

This shows (2 . 6). Thus solutions of (2 .1 )-(2 . 3) satisfy (2 . 4)-(2 . 6). Though
we do not treat a system of nonlinear Schrodinger equations in [3], the

Vol. 57, n° 4-1992.



390 N. HAYASHI

proof of Theorem 1 in [3] is applicable to our problem, since

is equivalent to

Hence, in the same way as in the proof of Theorem 1 in [3], it follows
that there exist unique solutions U and U* which are in Bn+3 and satisfy

Since Bn+3 c C(~;L2(~n)), we have Uk, for any t. Therefore
we obtain by Remark 1

From this equality and [3], Lemma 2.1, it follows that A-1 u has an

analytic continuation which belongs to AL (I t I). This
completes the proof of the theorem.

Q.E.D.

3. PROOF OF THEOREM 2

We introduce the function space ~m:

Here we note that We give a useful lemma first which
will be used to obtain the result.

Annales de 4 l’Institut Henri Poincaré - Physique " theorique "
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(b) For ~ [n/2] + l, j = 1,2,3, we have

Proo, f : - This lemma was already shown in [2], [3], [5] or [6] essentially.
Hence we only give a sketch of proof. Part (a) follows from an easy
application of Sobolev’s inequality (for details, see [2], Corollary 1 . 3, [3],
Lemma 2. 2 and [6], Proposition 5). We prove Part (b). We have by [5],
Lemma A. 2 (see also [2], [6]).

we obtain

Similarly, we have

From (3 . 1 ) and (3 . 2) Part (b) follows.
Q.E.D.

We now in a position to prove Theorem 2.

Proof of Theorem 2. - We consider the system of nonlinear Schrodinger
equations:

We shall prove Theorem 2 by making use of the contraction mapping
principle. For that purpose we prepare the function space:

where

Vol. 57, n° 4-1992.
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We first prove that

Here ~ means the two norms are equivalent to each other. The first
relation of (3 . 6) is proved in the same way as in the proof of the second
one, and so we only prove the second one. From [3], Lemma 2. ( 1 ), it
follows that

We apply Remark 1 and the Plancherel theorem to the right hand side of
(3 . 7) to obtain

By (2 .11 ) we see that

We iterate this argument to obtain

From (3 . 8) and (3 . 9) the second relation of (3 . 6) follows. By using (3 . 6)
and the contraction mapping principle we prove Theorem 2. For that
purpose, we consider the following system of Schrodinger equations:

We show M is a contraction mapping from GQn~~~ + 1 to itself if p is

Annnles de l’Institut Henri Poincaré - Physique theorique
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sufficiently small, where

and GP is a closed ball in Gm with radius p &#x3E; 0 and center at the origin.
In what follows we let ~==[~/2]+1. From (3 . 6), Remark 1 and

P~(0)=exp(2014(2014l)~’~) it is clear that the assumption on cp given in the
theorem is equivalent to the condition that

is sufficiently small for any k E K. 
-

Multiplying both sides of (3.10) and (3 . 11 ) by Uk and U: respectively,
integrating with respect to x and t, we obtain

By using Lemma 3.1 it can be shown that the second term of the right
hand side is estimated by

From (3.13) and (3 .14) it follows that if 

Similarly, we have

where MVk,1 and MVk, 2 are the solutions of (3 . 10)-(3 . 12) with the same
initial data. Therefore M is a contraction mapping from GP into itself if

p is sufficiently small, and hence has a unique fixed point which

belongs to Gm and satisfies

By (3 . 6) we see that there exists a unique solution u of (3 . 3)-(3 . 5) which
belongs to Em. This completes the proof of Theorem 2.

Q.E.D.
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