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ABSTRACT. - Let S be the scattering matrix for a Schrodinger operator
with a short-range potential q. The typical result of this paper is that there
is only a finite number of eigenvalues of S on the upper (lower) semicircle

RESUME. 2014 Soit S la matrice de diffusion pour l’operateur de Schrodin-
ger avec un potentiel q a courte portee. Le résultat typique du papier est
qu’il n’y a qu’un nombre fini de valeurs propres de S a partie imaginaire
positive (negative) si (~0).

INTRODUCTION

In the framework of abstract scattering theory the spectrum of the
scattering matrix (SM) was for the first time considered by M. Sh. Birman
and M. G. Krein in the papers ([1], [2]). In these papers perturbations
of trace-class type were studied. The spectrum of the SM consists of
eigenvalues of finite multiplicites lying on the unite circle,
Im ~,n &#x3E;_ O, Im ~0, and accumulating only at the point 1. The point 1
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362 D. R. YAFAEV

can also be an eigenvalue of possibly infinite multiplicity. For

perturbations V of definite sign, additional information about the eigenva-
lues ~ is available. Actually, as shown in [ 1 ], eigenvalues of the SM do
not accumulate at 1 from above if or from below if Further

results in this direction were obtained in ([3], [4]), where the trace-class
condition was also imposed.

In applications to the Schrodinger operator with a potential q (x) in the
space L2 (O~d), trace-class conditions require that q (x) = (9 (I x with a &#x3E; d

at infinity. We note that for the Schrodinger operator, the numbers 8~,
related to ~ by the formula

can be regarded as a natural generalization of phase shifts (see e. g. [5])
for the spherically symmetric case.
The method of [ 1 ], [2] relies on the decomposition of a trace-class

perturbation into a sum of one-dimensional operators. For a one-dimen-
sional perturbation the SM can be calculated almost explicitly. Then these
"one-dimensional" results are summed up which allows one to go over to

aribtrary trace-class perturbations. This "step by step" method permits
one to consider general perturbations of trace-class type but can not be
applied under the assumptions of the "smooth" scattering theory.
Our aim is to extend the results of [1], [2] on the spectrum of the SM

by removing the trace-class assumptions. To this end it turned out to be
convenient to study spectral properties of the SM relying only on the
structure of its stationary representation. This allows us to consider a
quite general situation and concrete assumptions of both trace-class and
smooth scattering theories are easily accommodated. Special attention is

paid to the Schrodinger operator for which the SM is well defined if

q (x) = O (~ x I -°‘) with arbitrary a &#x3E; 1. In particular, we extend the result
on the one-sided accumulation of eigenvalues for potentials of constant
sign to all a &#x3E; 1.
Another closely related problem which we treat here is the following:

Suppose that the negative q _ ( positive q + ) part of q vanishes at infinity
more rapidly than ~+(~_). If q _ (q + ) is not zero, then the eigenvalues
~ (j~) may accumulate at 1 but they should be "less numerous" then
the eigenvalues ~ (~). The precise statement can be given in terms of
bounds on the In fact, it is known [6], [7] that then

I ~,n - 1 =(9(~), where p = (a -1 ) (d -1 ) -1. We improve this result

showing in theorem 4 .16 that the bound I is determined only
by the bound on q + . (Whenever a relation contains the signs "±" it is

understood as two relations for upper and lower indices separately).
The proof of the last result relies on a kind of variational principle for

the spectrum of the SM. Actually, as shown in [2], [8] eigenvalues of the
SM rotate in the clockwise (counterclockwise) direction if a positive
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363ON SCATTERING MATRIX

(negative) perturbation is introduced. The precise formulation of this result
requires that a perturbation be small. For our purposes it is necessary to
extend the result on the rotation of eigenvalues to perturbations of arbi-
trary magnitude (see Theorem 4 .11 ).

This paper is organized as follows: Necessary information on perturba-
tion theory for unitary operators is collected in section 1. Some basic

concepts of scattering theory are discussed in section 2. The short section 3
plays the central role. There we study spectral properties of an arbitrary
unitary operator S having the same structure as the SM. The main result
of that section, formulated as Theorem 3 . 6, gives conditions of finiteness
of eigenvalues of S lying on the upper (or lower) semicircle. In section 4
we go back to scattering theory and discuss applications of the results of
section 3 to the SM both for abstract and differential operators. Finally,
in section 5, we carry over the results of section 4 to the modified SM E
which has the form 03A3=SJ, where J is some fixed unitary operator.
In case H is the Schrodinger operator and J is the reflection operator,
investigation of spectral properties of X was advocated in [9].

1. PERTURBATION THEORY FOR UNITARY OPERATORS

1. Spectral and perturbation theories for unitary operators in a Hilbert
space H are essentially similar to those for the self-adjoint case. The

spectral measure EU (X) of a unitary operator U is defined on Borel sets
X of the unit circle T : is the Lebesgue measure of X (so that |T| = 2 7t).
The essential spectrum of U consists of its whole spectrum
au = supp Eu without isolated eigenvalues of finite multiplicity. We denote
by (~1, Jl2) and [~1, ~2], where = 1, the corresponding open and closed
arcs of the unit circle T swept out as ~,1 moves to the counterclock-
wise (which we designate as the positive) direction. The class of compact
operators is denoted by ~ ~; ~ is the class of such unitary operators U
that where I is the identity operator; ~o consists of those
unitary U for which the operator U - I has a finite rank.

Weyl’s theorem on compact perturbations is formulated and proved
completely in the same way as in the self-adjoint case.

PROPOSITION 1. 1. - Let operators Uo, U be unitary and let U - Uo E 
Then = 

For finite-dimensional perturbations we can get additional information.

PROPOSITION 1. 2. - Assume that dim (U - U 0) Then for any

Vol. 57, n° 4-1992.



364 D. R. YAFAEV

In particular, if an arc X is a gap in the spectrum of U 0’ i. e. 03C3U0 n X = 0,
then the operator U can have only k eigenvalues (counted with their multi-

plicity) in this arc.
Proposition 1.2 can easily be proved with the help of the spectral

theorem.

COROLLARY 1 . 3. - The spectrum of an operator U Eú/1 cansists of
eigenvalues accumulating only at the point 1. Eigenvalues distinct from ~
have finite multiplicity. An operator U E ~a has only a finite number of
eigenvalues.

In the unitary case it is natural to introduce a perturbation in the

multiplicative form, that is as

Both forms (1.1) are equivalent since by setting T’=Uü TUo we can
rewrite the left form as the right one and vice versa. The multiplicative
forms are convenient because for unitary operators Uo and T (or T’) the

operator U defined by ( 1.1 ) is automatically unitary.
In the self-adjoint case the spectrum may be shifted only by a distance

not exceeding the norm of a perturbation. The following assertion may
be regarded as a modification of the above for unitary operators.

the estimate

holds.
Theorem 1. 4 becomes more transparent for arcs centered at the point 1

when ~,2 = ~1= : ~,, 0, and i2 = t = : ’t, Im T ~ O. This can always be
achieved by rotation. Set Jl = exp (i p), ’t = exp (~’ B)/) with cp E (0, ~], Bt/ E [0, ~).
Then ( 1 . 2) means and

A straightforward application of the spectral theorem gives a result weaker,
than ( 1 . 3), where the left-hand side (LHS) of ( 1. 3) is replaced by
dimEu((v,v))M, with In fact,

we need only this weaker version of Theorem 1.4. The precise result ( 1 . 3)
is due to M. G. Krein. Its proof can be found in [10].
Theorem 1.4 can be reformulated in a dual form.

Annales de ’ l’Institut Henri Poincaré - Physique ’ theorique 
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365ON SCATTERING MATRIX

For the proof we notice that Uo = T* U, where Then we

apply Theorem 1. 4 with and replaced by
U, Uo, T* and tj respectively.

2. In the unitary case the role of a small perturbation in the self-adjoint
theory is played by a unitary operator whose spectrum lies in some
small neighbourhood of the point 1. As in the self-adjoint theory, small
perturbations do not change the total multiplicity of an isolated part of
the spectrum of a unitary operator. In this section we suppose that

!J~i~2)t~ i. e. 

1’roof. - According to ( 1. 4), ( 1. 3) we have that

Since 1,2 we can choose i2 so that the LHS and the RHS

(right-hand side) of (1. 6) are equal to dim EU0(( 1, 2)) M’

COROLLARY 1.7. - Let ~,o be czn isolated eigenvalue of 
multiplicity k. Then there are exactly k eigenvalues (with multiplicity taken
into account) the operator U = TU0 in an arc 0 O? ) I ç I = 1, 1m ç &#x3E; 0,
~ ~ 2014 ~ / t j 2014 1 ~ y’= 1,2, are sufficiently small.
The spectrum of a self-adjoint operator is shifted in the positive (nega-

tive) direction if a positive (negative) perturbation is added. In the unitary
case, the role of a perturbation of constant sign is played by an operator
whose spectrum has a gap (r, 1 ) (or (1, i)), ImT&#x3E;0. Under such multiplica-
tive perturbations, the spectrum rotates in the counterclockwise (clockwise)
direction.
We start with the case of small perturbations.

PROPOSITION 1.8. - ~et U = TUo and either and 
Im t &#x3E; 0, or Eu and {JT c [t, 1]. Then for sufficiently small ~ t - 1

Proof. - Suppose, for example, that 6T c Let us apply
the second equality ( 1. 6) with 03C41 == 1, i2 = i. Since 1~03C3U0, we can choose
’t so that the RHS of ( 1. 6) is equal to the RHS of (1.7).
Remark 1. 9. ~- If in conditions of Proposition 1. 8 the RHS of (1.7)

is finite, then the equality ( 1. 5) holds. Indeed, to estimate the RHS of
(1.7) by its LHS we apply the first inequality ( 1. 6) with ’t 1 = 1, ’t2 = ’to
The finiteness of the RHS of (1.7) ensures that (Jl2 03C3U0 = Ø for

Vol. 57, n° 4-1992.



366 D. R. YAFAEV

Im T&#x3E;0 and sufficiently small I t - 11. Therefore the LHS of ( 1. 6) is equal
to the RHS of (1.7).

According to Proposition 1. 6 the equality ( 1. 5) can be violated only
if j~03B4U0 for j= 1 or j = 2. If 1~03C3U0, 2~03C3U0, then the total multiplicity
of the spectrum in (Jll’ Jl2) may be changed only due to the rotation of
the spectrum at the point Proposition 1. 8 shows that in the case

aT c [1, t] this point of the spectrum does not get inside the arc ~2)
so that the rotation in the clockwise direction is excluded.

The following consequence of Proposition 1. 8 should be compared with
Corollary 1.7.

COROLLARY 1 .10. - Let ~,o be an isolated eigenvalue ofUo and O"T c [1, t]
(or 6T c [r, 1]), Imr&#x3E;0. Then an arc (Jlo , Jlo), ~!= 1, Im ~ &#x3E; 0, (or an
arc gap in the spectrum of U=TUo, ~ ~- 1 ~ I and It - 11
are sufficiently small.

Proposition 1.8 can be reformulated equivalently if the conditions

1 ~ 03C3U0 and are interchanged. Then (1 . 7) should be replaced by
the opposite inequality

3. Let us consider the rotation of the spectrum for perturbations of the
class ~. By ~ + (~l _ ) is denoted the subclass consisting of operators
U whose eigenvalues may accumulate at the point 1 only in the clockwise
(counterclockwise) direction. In other words, eigenvalues of (~ll _ )
do not accumulate at 1 from below (above). Recall that according to
Proposition 1.1 for operators Uo and U = TUo have the same

essential spectra In case the direction of the rotation of the

spectrum can be taken into account.

This is possible because Let us set Xo=(I,"1), X 1= [i,1 ],

The operators To and 0 T1 are 
" unitary and 0 T = ToT 1. Moreover, ,

since and ’ crT! c [:t, 1]. Denote U 1 = T 1 Uo; then U = To U 1. By

Annales de ’ l’Institut Henri Physique ’ theorique ’



367ON SCATTERING MATRIX

Theorem 1.4

and by Proposition 1.2

Putting inequalities ( 1. 10), ( 1. 12), ( 1. 13) together, we arrive at ( 1 . 8).
The proof of ( 1. 9) is similar. Instead of ( 1.10) we notice that some arc

is a gap in the spectrum of Uo. The bound ( 1. 12) should be
replaced by

which is a consequence of ( 1. 4). Finally, Proposition 1 . 2 allows us to
estimate the RHS here by the RHS of ( 1. 9). This concludes the proof.

then U 0 = T* U where T*e~_. Therefore interchanging the
roles of Uo and U in Proposition 1.11 we obtain the dual assertion.

lues which may accumulate only at the point Jll ( 2).
For the proof it suffices to notice that the first terms in the RHS of

(1.8) and (1.14) are equal to zero.
Moreover, we can obtain a bound on the number of eigenvalues of the

operator U in the gap of the spectrum of Uo.

Vol. 57, n° 4-1992.
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which is equal to the RHS of (1.15). Thus applying Proposition 1. 2 to

the pair U and the arc (u, we conclude the proof.
Of course, Proposition 1.13 can be naturally combined with

Propositions 1 . 11 and 1.11’ but we do not need such a generalization.

2. SCATTERING THEORY

1. We describe here a necessary background of scattering theory for a
pair of self-adjoint operators H°, H in a Hilbert space Jf. Wave operators
for the pair Ho, H are introduced as strong limits

where Po is the orthogonal projection onto the absolutely continuous
subspace ~o ~ of the operator Ho. If W~ exist, then they are isometric
on H(a)0 and have the interwining property HW± =W+ Ho. The scattering

commutes with Ho. If the ranges R (W +) of W +
coincide with the absolutely continuous subspace of the operator H,
then wave operators are called complete. In this case ~ is a unitary
operator in ~’o ~.

Consider now the diagonalization of Ho under the representation of
as a direct integral

Here (?o denotes the core of the spectrum of Ho, i. e. it is some set of
minimal Lebesgue measure which carries the spectral measure Eo ( . ) of
Ho. The direct integral in the RHS of (2 .1 ) is the L2-space of vector-
functions defined on ao and taking values in auxiliary Hilbert spaces
Hi (~). The correspondence (2. 1) means that there exists a unitary operator
Fo mapping ~f~ onto the direct integral such that F 0 Eo (X) Fó acts as
multiplication by the characteristic function of a Borel set X c tRL

We set Fo/=0 if fE  e ~f~. It follows that for almost all (a. a.) 

where the scalar product in the RHS is evaluated in the space H (~). We
emphasize that scalar products and norms in different spaces are denoted
by the same symbols. The operator Fo acts as multiplication by an
operator-function S (~,) : fl-0 (~,) --~ ~-fl (~,) defined for a.a. and called
the scattering matrix (SM). Note that in abstract scattering theory S (À) is
defined only up to a unitary equivalence.

l’Institut Henri Poincaré - Physique theorique



369ON SCATTERING MATRIX

Let us give sufficient conditions for the existence and completeness of
wave operators W :to These conditions permit also to obtain a convenient
representation for SM. Moreover, under our assumptions the formal sum
H=Ho+V can be defined as a self-adjoint operator. Suppose that the
"free" operator Ho is self-adjoint and the perturbation V is factored as
V=G*rG, where is bounded and G is |H0|1/2-bounded. It is
allowed that G acts into some auxiliary Hilbert space ~; i. e. G : Jf -4 ~;
then r is an operator in cf. Let be the
resolvent of Ho and the product

Then the inverse operator

exists and is bounded for Im The operator H is defined in terms of
its resolvent R (z) _ (H - z) -1 which, in turn, is introduced by the relation

Details of this construction can be found in [ 10]. We always assume that
the inclusion (2.3) holds and denote by H the self-adjoint operator with
the resolvent (2. 5).
For scattering theory we need one of the two following assumptions.

They are formulated in terms of boundary values of the operator-function
Bo (z) as z approches the real axis. Let us introduce the classes 1,
of those compact K for which the norm

Eigenvalues of the operator are enumerated with
their multiplicities.
Assumption 2 . 1. There exists an open in 1~ set Q = U (f3n’ Yn) of full

n

measure, such that for every n the operator-function Bo (z) depends in the
operator norm continuously on the parameter z, up to the
cut along 
Assumption 2 . 2. The operator for some 

and Bo (z) has angular boundary values in ~’p as z -~ ~, ~ i 0 for a.a. À E [R.
Besides, Ker G={0}.
Under any of these assumptions the operator (2 . 4) has boundary values

in the operator norm as for where the set A has full
measure. In case of the "smooth" Assumption 2. 1 the proof of this
assertion can be found, for example, in [11]. Moreover, in this case A is a
closed set. Under Assumption 2.2 we consider (see [10] for details) an
appropriate regularized determinant Dp (z) of the operator I + Bo (z) r.

Vol. 57, n° 4-1992.
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The scalar analytic function Dp (z) has angular boundary values as

for a.a. Therefore by Lusin-Privalov uniqueness theorem
Dp(~±x0) can not vanish on a set of positive Lebesgue measure. This
ensures existence and boundedness of the operator (2 . 4) for and
a.a. ~, Now, according to the resolvent identity (2 . 5), it easily follows
that the operator B (z) = GR (z) G* also has boundary values as z --~ ~, ~ i 0
for a.a. 

Moreover, it can be shown that vector-functions 

GR (À:i: i E) f have strong limits as E -+ 0 for a.a. À E [R if f belongs to some
set dense in J~. Indeed, using the results obtained about the operator (2 . 4)
we find that it is sufficient to consider GRo (~±~8)/only. Under Assump-
tion 2 .1 this vector-function belongs locally to the Hardy space H2 C/)
in the half-plane (upper or lower). Therefore it has boundary values as
E -+ 0 for Under Assumption 2 . 2 the strong limit of

GR0(03BB±i~) f exists iff=G*g and is arbitrary. Since Ker G = {0},
the set of such f is dense in ~f.
Thus under Assumptions 2. 1 or 2.2 usual conditions of stationary

schemes (see e. g. [ 12]) of scattering theory are fulfilled. It follows, in

particular, that wave operators (H, Ho) exist and are complete.
To describe a stationary representation for the SM we introduce the

operator 20 (~): ~ -+ H (~), À E Oo, by the relation

The RHS of (2 . 6) makes sense only on a set of full measure which depends
onf In order to define 20 (À) as a bounded operator for we

first consider (2. 6) on linear combinations ~ of some fixed basis in f.
For all vectors 20 (À) f are well defined on a common set of full
measure. Moreover, the equality (2. 2) and the relation between boundary
values of the resolvent and the spectral density ensure that

Under Assumptions 2 .1 or 2 . 2 the operators are bounded for
Thus 20 (À) extends by continuity from the dense set çø to a

bounded operator on the whole space ~ and

Clearly, The representation for the SM
is given in the following assertion.
Theorem 2. 3. Let Assumptions 2.1 or 2.2 be satisfied. Then the wave

operators W+(H,Ho) exist, are complete and the SMS(~)=S(~;H, Ho)
admits the representation

Annales de ’ l’Institut Henri Poincare - Physique " theorique "
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Moreover,

where r = oo under Assumption 2 . 1 and r = p under Assumption 2 . 2.
Though similar in form, Assumptions 2. 1 and 2.2 are rather different

in nature. As was already mentioned, the first of them is a usual condition
of the "smooth" scattering theory. The second one can be easily verified
under trace-class conditions. Indeed, theorem 2. 3 ensures

THEOREM 2.4. - Let GE0(X)~H2 for any bounded interval X and let
Then Assumption 2 . 2 is fulfilled

and therefore all conclusions of Theorem 2. 3 hold. Moreover, the
inclusion (2 . 9) is = 1.

This assertion is somewhat different from familiar [ 13] trace-class results
in that all its conditions are formulated in terms of Ho and V only (but
not of H). These conditions are convenient for us because they permit to
obtain a representation for S (À) in the form (2 . 8). We note that under
assumptions of Theorem 2 . 4 the operator (2 . 7) belongs to H1 which
justifies (2 . 9) for r =1.

2. Let us give examples of differential operators for which Assump-
tions 2 . 1 or 2 . 2 hold. Set ~f = L2 

with real bounded functions qo and q. We suppose that q vanishes suffi-
ciently rapidly at infinity, i. e.

where at least oo 1. The verification of Assumption 2 . 1 requires that the
spectral analysis of the operator Ho can be performed effectively. This is,
for example, possible if qo is also short-range. More precisely, we introduce
Assumption 2.5. The bounds

and (2 . 11 ) hold with some (Xo&#x3E; 1 and a &#x3E; 1.
The leading particular case is qo = o. We denote Hoo= -A. The reason

to consider more general situation is that in section 4 we compare SM for
different short-range potentials. This requires the study of the SM for the
pair (2 .10).

Let G = G* be multiplication by (1+jxj)’~ and be multiplication
by ( 1 + I x ~)°‘ q (x). Then the operator is bounded and 
Under Assumption 2 . 5 the operator Bo (z) is continuous in the complex
plane cut along the positive half-axis with a possible exception of the
point z=0. This is a usual formulation of the limiting absorption principle
(see e. g. [ 11 ], [ 14]). The negative spectrum of H consists of eigenvalues

Vol. 57, n° 4-1992.
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which may accumulate at z - o only. Thus under Assumption 2 . 5 the pair
(2.10) satisfies Assumption 2.1.
The direct integral (2 .1) can be chosen as the space 

vector-functions on !?+ with values in Here is the unit

sphere in the Euclidean space dual to First, we construct a unitary
mapping of ~f~ onto ~f in the case Ho = Hoo. Let/be the Fourier
transform of a function f E L2 (~), i, e.

and let

be (up to the numerical factor) the restriction of ~f’ onto the sphere of
radius À 1/2. Clearly, the operator defined by the relation

(Foof) (03BB)=039300(03BB)f, maps H unitarily onto H and F00H00F*00 acts as
multiplication by the in dependant variable ~e!R+. In these terms the
operator (2. 6) takes the form

If (2 .11 ) holds for then it is well defined, compact and depends
continuously on ~&#x3E;0. This is a direct consequence of the theorem about

traces in of functions from the Sobolev space

W~(E~P&#x3E;1/2(P=~/2).
In the general case we consider the operator

where V 0 is multiplication by qo (x). Properties of the operator roo and
the limiting absorption principle ensure that under Assumption 2. 5 the
product

is also well defined, compact and depends continuously on ~&#x3E;0. Usual

results of the stationary scattering theory (see e. g. [ 11 ]) show that the
operator F 0’ defined by the relation (Fo f ) ("A) = r 0 ("A).t: maps ~ unit-
arily onto ~° and Fo Ho Fo acts as multiplication by the independant
variable ~&#x3E;0. It can be verified (though we do not need this information)
that Fo = Foo W* (Ho, Hoc). The choice of Fo diagonalizing Ho is of course
not unique. We can, for example, replace by in

(2.14). Then the corresponding operator Fo equals Foo W* (Ho, Hoo).
Note that for the operator J~o(~) constructed by (2.14), (2.15) the

multiplication formula

Annales de I’Institut Henri Poincaré - Physique theorique



373ON SCATTERING MATRIX

holds. This is a consequence of the multiplication formula for the wave
operators or can be proved directly (see e. g. [15]).
Assumption 2 . 1 is also fulfilled for the pair (2.1lo) if qo is long-range

or periodic and q satisfies (2.11) for rJ.. &#x3E; 1. However, in these cases

constructions of the direct integral (2.1) and the corresponding mapping
20 (À) are different.

If qo is an arbitrary bounded function, then for the pair (2.10)
Assumption 2.2 can be verified. This, however, requires more stringent
conditions on q.
Assumption 2 . 6. The function qo is bounded and the estimate (2 . 11 )

for q holds for some a &#x3E; d.
Under this assumption the inclusion where X is any

bounded interval, was established e. g. in [16]. The same method applies
for the proof of the inclusion 

According to Theorem 2 . 4, this ensures that for the pair (2 . 10) Assump-
tion 2.2 is fulfilled. We emphasize that the construction of the operator
20 (À) defined by (2 . 6) relies on the spectral analysis of the operator

Under the only condition this analysis is

implicit.
Let us summarize the results obtained.

THEOREM 2. 7. - Let Ho, H be given by (2 . 10) and let Assumptions 2.5
or 2.6 be satisfied. Then the wave operators W :t (H, Ho) are complete
and the SM S (À) = S (03BB; H, Ho) admits the representation (2.8). Moreover,
under Assumption 2 . 5 the operator Y0(03BB) is given by (2.13)-(2.15), the
SM S (À) is continuous with 0 and (2.9) holds for r = oo . Under

Assumption 2.6 the inclusion (2.9) r =1.
Note that under Assumption 2.5 the inclusion (2.9) holds actually for

some a, d)  oo .

3. SPECTRAL PROPERTtES
OF THE AXIOMATIC SCATTERING MATRIX

1. In our study of the SM only the structure of its representation
(2.8) is essential. Therefore it is convenient to describe its properties
axiomatically.

Let B: f -+ ~ -+!HI be any bounded operators in Hilbert
spaces / and H satisfying the relation

This requires of course that Assume that r is a self-adjoint
bounded operator in ~. We shall consider operators

Vol. 57, n° 4-1992.
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having the structure (2. 8) of the SM. An arbitrary operator (3.2), where
Band 2 are connected by (3 .1 ) is called the axiomatric

SM here.
The inverse operator in the RHS of (3 . 2) is supposed to exist. However,

in case Fredholm operator [i. e. the ranges R (T), R (T*)
of operators T, T* are closed and dim Ker T = dim Ker T*  00] it can be

interpreted in the following generalized sense. If fE R (T), then there exists
a unique 8 Ker T such thatf=T g. By definition, T -1 f = g.
IffEKer T*, then we set T -1 /= 0. Such an inverse operator always exists,
it is bounded and TT -1, T-1 T are orthogonal projections onto

R(T), R (T*) respectively. Clearly, (T - 1)* = (T*) - 1 . We note the identity

for Fredholm operators T1 and T2.

PROPOSITION 3. 1. - The operator (3.2) is unitary.
Without going into details (see [7]), we note that equalities S * S = I and

SS* = I can be easily deduced from (3 .1) with the help of (3 . 3).
Basically, the operator (3.2) does not depend on the choice of an

operator 2- obeying (3 . 1 ). In fact, S is the identity operator on Ker 2*.
Let now SIR"(.) be the restriction of S on R (J~). Denote 21 = Im B)1/2
and

Thus we have obtained

PROPOSITION 3 . 2. - Operators S |R(Y) are unitarily equivalent for different

Proposition 1.1 justifies

PROPOSITION 3 . 3. - If BE ~ 00’ then the spectrum 6S of S consists of
eigenvalues lying on the unit circle and accumulating only at the point 1.

All eigenvalues except possibly the limit point 1 have finite multiplicity.
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2. Our aim here is to obtain an additional information about spectral
properties of the operator S in case the operator ~ has a constant sign,
i.e. ~~0 or ~~0. To begin with, we reduce the problem to the case
~=1 or lT= -1. In fact, if ±~0, then (3 . 2) can be rewritten as

where the operators ~ _ ~ ~ ~’’ ~ 1 ~2 and B = ~ ~ ~ ~ ~2 B ~ ~ ~ 1 ~2 also satisfy
the relation (3 .1 ). This is obvious if the operators 1 and 0 8 are ’
invertible. In the general case we have that

With the help of (3 .1 ) it can be verified that

Let us multiply (3.5) by Y from the left and by 2* from the right.
Taking into account (3 . 6) we can get rid of the projections and

in the equality obtained. This proves that (3.4) coincides with (3. 2).
To facilitate the study of spectral properties of the unitary operator S

we introduce the self-adjoint operator

It is easy to see that if and only if v=Im for If
then also 

The cases of small and compact operators B are considered in
Theorems 3. 5 and 3.6 respectively.

to the ’ lower (upper) semicircle.

Proof - Supposing £ that 1/ = ::l: I we find that the operator (3 . 7) is

equal to

Clearly, ±Im 03C3S~0 if and only Thus it suffices to show that
for arbitrary f ~ Hi

Denote g = (I ~ B) -1 ~* f. Then the LHS of (3 . 9) is equal to

which is bounded from below by II g 112. Since
II  1, this concludes the proof.

THEOREM 3 . 6. - then eigenvalues of S
may accumulate at the point 1 only from below (from above).

Proof. - It is sufficient to show that eigenvalues of the operator (3 . 7)
do not accumulate at zero from the right (from the left). Suppose again
that V = ±I. Let us represent B~H~ as a sum B = K + B 1, where the
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operator K has a finite rank and B1  1. Similarly to (3 . 9) we have
that

According to (3 . 3)

where Q is the orthogonal projection onto the subspace Ker (I + B). The
RHS of (3.11) is an operator of a finite rank. Comparing (3.8) and
(3.10) we find that the difference also has a finite rank. Therefore

the operator A has only a finite number of positive (negative) eigenvalues

4. APPLICATIONS TO THE SCATTERING MATRIX

In this section we use the results of section 3 to obtain an information

about the SM for a pair of self-adjoint operators.

1. Under the assumptions of Theorem 2 . 3 the SM S (À) = S (~; H, Ho)
admits for a.a. the representation (2 . 8). It obviously has the

form (3 . 2) with 2 and B playing the roles of 20 (À) and Bo (À) respec-
tively. According to (2 . 7) the relation (3 .1 ) is also satisfied. Now

and the inverse operator in (2 . 8) exists for a.a. 

Therefore we can apply the results of the previous section to S (~).
In our study of spectral properties of the SM we can avoid any reference

to the direct integral (2 . 1 ) in the definition ofS(~). Actually, denote by
20 (À) any bounded operator obeying the relation (2 . 7) and let S (À) be
constructed by the formula (2. 8). According to Propositions 3 .1 and 3. 2
the operator S (À) is unitary and it has the same (with multiplicity taken
into account) eigenvalues, which do not coincide with 1, as the SM intro-
duced above. Thus such an operator S (À) can be accepted for the SM. It
is defined for a.a. and S (À) == I if À is a regular point of Ho. For
example, we can set

Note that for this choice of .20 (A) the operator (2 . 8) depends in the

operator norm continuously on if Assumption 2 .1 is fulfilled.
We emphasize that the results below hold for all those A, where S (A) is

defined. This set of points  has full measure. Moreover, under

Assumption 2.1 this set is open. In particular, under Assumption 2 . 5 the
results on the SM S (A) for the pair (2.10) are valid for all 
The following auxiliary assertion is a direct combination of Theorem 2 . 3

with Proposition 3. 3.
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PROPOSITION 4 . 1. - Let Assumptions 2.1 or 2.2 be satisfied. Then the
speetrum of the 8M S consists of eigenvalues accumulating only at the

point 1. All eigenvalues except possibly the limit point 1 have finite multi-
plicity.
We recall that under Assumptions 2.5 or 2.6 the pair of Schrödinger

operators (2. 10) satisfies Assumptions 2. 1 or 2.2 respectively. Therefore
Proposition 4. 1 ensures

P"ROPOSITION 4 . 2. - Let H0, H be given by (2. 10) and let Assumptions
2 . 5 or 2 . 6 be satisfied. Then all eonelusvans af Proposition 4.1 about the
spectrum o~‘ the SM S hold.
Our main concern here is the study of the spectrum of the SM for

perturbations of constant sign. We accept; by definition, that a perturba-
VG is positive (negative) if (V~0).

Applying Theorem 3 .6 we immediately obtain

THEOREM 4.3. - Let Assumptions 2. I or 2 . 2 be satisfied and r40 (or
V~0). Then eigenvalues of S may aceumulate at the paint 1 anly fram
below (from 

Let us formulate explicitly the particular case of this theorem for the
pair (2 . 10).

THEOREM 4 . 4. - Let Assumptions 2 . 5 or 2 . 6 be satisfied and g ? 0 (or
q~0). Then eigenvalues ofS may aceumulate at the point 1 only from 
(from above).

Srnall perturbations are easily considered with the help of

Proposition 3.4 and Theorem 3 . 5. We formulate the results only for the
pair (2 . 10).

THEOREM 4. 5. - Suppose that

2. Here we take Ho.o~ -= = t1 as the free operator and compare the SM

for two Schrodinger operators (2.10). We suppose now that qo are

short-range, that is the Assumption 2.5 holds. Then operators (4.3) are
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well-defined for all ~, &#x3E; 0, are unitary and differ from the identity operator
by a compact term. Therefore the spectra of these operators satisfy the
conclusions of Proposition 4.1. We shall show that eigenvalues of SM
rotate in the clockwise (counterclockwise) direction if a perturbation is
increased (decreased), i. e. (~0). Denote by and

N (Jll’ Jl2) the numbers of eigenvalues (with their multiplicity taken into
account) of the operators So and S in an arc 
We start with the case of small perturbations. Note that by a somewhat

different method it was considered earlier by T. Kato [8]. First we show
that the spectrum of the SM depends continuously on a perturbation.

Proof - The operators So, Sand S (H, Ho) are connected by the
multiplication formula (2.16). According to (4.2) we can apply
Proposition 1 . 6 with Uo, U and T playing the roles of So, Sand S (H, Ho)
respectively. Therefore (4 . 4) is a consequence of ( 1 . 5).

COROLLARY 4 . 8. - Let ~,o ~ l, be an eigenvalue of the operator So
of multiplicity k. Then for sufficiently small I ç - 11, I ç 1= 1, &#x3E; o, and
E &#x3E; 0 there are exactly k eigenvalues of the operator S in the arc ~o Ç).

Quite similarly, combining Theorem 4. 5 with Proposition 1 8 and
Remark 1. 9 we obtain the result about the rotation of the spectrum.

COROLLARY 4. 10. - Let an eigenvalue of the operator So.
Then for sufficiently small ~ ~ - 1 I, I ç I = 1, Im ~&#x3E;0, and E &#x3E; 0 there are no

eigenvalues of the operator S in the arc (Jlo, Jlo ~) if q &#x3E;_- 0 and in the arc

As was explained in section 1, p. 2, Theorem 4.9 gives the precise
formulation of the notion of the rotation of the spectrum. Remark also
that, under its assumptions, and 1~03C3S0 or
q~0 and 

Let us mention a particular case of the results obtained. Suppose that
Ho == "A, H -= 2014 A + y q, where the coupling constant y ~ 0 and q satisfies
the bound (2 . 11 ) for a&#x3E;l. Then as y increases the spectrum of the

rotates in the clockwise (counterclockwise) direction if ~0
(~0).
We emphasize that in Theorem 4.9 the parameter £ depends on the

points j, j=1,2. In particular, ~ may tend to zero as 1 -&#x3E; 1 or 2 ~ 1.
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Thus even for small E Theorem 4. 9 does not give us information on a
displacement of all eigenvalues of the SM. To remedy this drawback we
shall now consider the movement of eigenvalues in the neighbourhood of
the accumulation point perturbation q is no longer assumed to
be small. Since in contrast to Theorem 4. 9 and Corollary 4.10 the roles
of operators H° and H are now symmetric it is sufficient to consider, for
example, the case ~0.

THEOREM 4 . 11. - Let Assumption 2 . 5 hold, ~0 and let 
some fixed point of T. Then

Proo_ f : - We use again the multiplication formula (2 . 16). By
Theorem 4 . 4 the operator Therefore we can apply
Proposition 1.11 with the operators Uo, U and T playing the roles of the
operators So, Sand S(H,Ho). Thus (4 . 5) and (4 . 6) are direct conse-

quences of ( 1. 8) and ( 1. 9) respectively.

Remark 4.12. - The bound (4 . 5) ((4 . 6)) is non-trivial only in the limit
Jl-+ 1 + i 0 (~ -~ 1- when the function N (Jl, (No may tend

to infinity.

Remark 4.13. - If then N and No should be interchanged in
(4. 5) and (4. 6) so that

Remark 4.14. - Choosing in (4 . 5) and (4 . 7) recover

Theorem 4.4.

Theorem 4. 11 gives a kind of variational principle for scattering phases
8; connected with eigenvalues (counted with their multiplicities) ±n,

where ~ are some fixed finite numbers.
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in terms of r~+ where

We proceed from the familiar [7] bound o o ~,~ -1 ~ in terms of q.
PROPOSITION 4 . 15 . - Under the condition (2 . 11 ), where a &#x3E; 1,

Theorem 4. 11 allows us to improve " this result.

THEOREM 4. 16. - Suppose that (2 . 11 ) holds for some ’ a &#x3E; 1. Let for one
of thE , signs

Then for the same lower) sigh

Let, for example, (4.9) hold for the lower sign. Denote
H_==2014A2014~_. By Theorem 4 . 4 eigenvalues j~ of the 8M 8 (H -, Hoo)
may accumulate at the point 1 only from the above and by (4 . 8) they
satisfy the bound This is equivalent to the bound

where f.l(0) # 1 is some fixed point of T and  -+ 1 +i0. Let us now apply
Theorem 4 . 11 to the SMS(H,Hoo) and S(H_,Hoo). Since q &#x3E;-- - q_, it

follows from (4. 5) that

dim Es (H, H00)(( , (0)))H~ dim ES (H -, H00)(( , (0)))H + C ( (0)), (4 .12)

where does not depend on Therefore (4 . 11 ) ensures
that the LHS of (4 . 12) is also bounded by This is equivalent
to the bound (4 . 10) for ~ - 1 ~.
Re~ar~ 4.17. - If jxj-+ 00, then

1 = o (n - P -~ ). The proof is the same but instead of Proposition 4 . 14
we should use the bound 11 = o {n ~ P) which holds if q = o (I x ~ - °‘).
Remark 4. 18. - The bounds (4. 8) and hence (4. 10) are uniform in

the spectral parameter ~, E [~,°, ~ ~ j where 0  Ào  À1  

5. MODIFIED SCATTERING MATRIX

1. Let 03A3=SJ be the product of the with some

unitary operator J. Such an operator X will be called the modified SM.
Here we shall carry over the results of section 4 about S to the operator
X==X(~; H, Ho). In case H° = -- 0, H= -A+~ it is natural to choose J
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as the reflection operator in the space M = L2 i. e.

Then solutions of the Schrodinger equation, behaving as standing waves
at infinity, are described [9] in terms of eigenvalues and eigenfunctions of
such an operator E.

Clearly, the spectrum of the operator (5.1) consists of eigenvalues 1

and -1 with corresponding eigenfunctions being even and odd. If not

specified otherwise, we suppose only that the spectrum of J has some gap
(y +, Y-) and study the spectrum of the operator E in this gap. In conditions
of Theorem 2. 3

so that by Proposition 1.1 1 the spectrum is discrete in (y +, y _ ). To
take a sign of a perturbation into account we combine Theorem 4. 4 with
Corollary 1. 12. In the last assertion Uo, U and T play the roles ofJ, E
and S respectively. Thus we obtain

THEOREM 5.1.- Under Assumptions 2.1 or 2.2 03C3(ess)03A3~(03B3+, y-)=0.
(o~ 1/’~O), eigenvalues may accumulate only

at the point y-.(y+).
This theorem can be directly applied to the pair (2 . 10) if

Assumptions 2 . 5 or 2.6 are satisfied. In particular, if J is given by (5 . 1 )
then eigenvalues of I: may accumulate only at the points 1 and -1. If

q &#x3E;_ 0 (q ~ 0), then there is no accumulation at 1 from above (below) and
at -1 from below (above).

2. The results on the rotation of the spectrum of the SM can straightfor-
wardly be extended to the modified SM. To this end we use the multiplica-
tion formula

which is a consequence of (2.16). As in section 4, p. 2, we suppose now
that and Ho and H are given by (2 . 10), where qo and q are
short-range potentials.

Eigenvalues of the modified SM rotate in the clockwise (counterclock-
wise) direction if (~0). To give precise formulations denote by
Mo and M ~.2) the numbers of eigenvalues (with their multipli-
cities taken into account) of the operators E (Ho, and X (H, Hoo) in
an arc ~,~), ~ (~+, y.~). First we consider the case of small

perturbations and formulate, for example, a modification of Theorem 4.9.
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Next we formulate ’ a modification of Theorem 4.11 for perturbations
of arbitrary magnitude.

THEOREM 5 . 3. - Let Assumption 2 . 5 Jl(O) be some ’

where the constant (C2 (~,~°~)) does not depend (on

Proofs of Theorems 5.2 and 5.3 are quite similar to those of
Theorems 4. 9 and 4. 11. Again we should apply the results of section 4,
p. 1, on S (H, Ho) and use Proposition 1. 8 (combined with Remark 1. 9)
and Proposition 1 . 11 respectively. Now the operators Uo, U and T play
the roles Hoo) and S (H, Ho).

3. Bounds on eigenvalues of the operator L = L (H, Ho), where

Ho = Hoo = - 0, can be deduced from those for the SM S = S (H, Ho).
Denote by vn (v~) eigenvalues of E accumulating at y + (y _ ). Now we use
Proposition 1.13 with Uo, U and T playing the roles of J, E and S
respectively. Thus the following assertion is a direct consequence of
Theorem 4. 16.

PROPOSITION 5 . 4. - Under the assumptions of Theorem 4 . 16

This estimate can be improved if J is given by (5 .1 ). In this case there
are two series of eigenvalues vn (and accumulating at the points 1 and
-1 in the clockwise (counterclockwise) direction. All the estimates below
hold for both series. We proceed from the result of [9] which shows that
eigenvalues of E can be estimated in terms of the even art

of q only.

PROPOSITION 5.5.- Assume , that q(e) (x) = (9 (I x ")J~~OO,~&#x3E;1, and
the bound , (2 . 11 ) is fulfilled for some a &#x3E; (a + 1 )/2. Then

Here " we shall show with the help o of Theorem 5 . 3 that only the fall-off
of the even part of q + is essential.

THEOREM 5 . 6. - Let the bound (2 .11 ) be fulfilled for some a &#x3E; 1. Assume
that for one the signs

and
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Then for the same sign

Proof. - Let, for example, (5.4), (5 . 5) hold for the lower sign. Denote
H_=2014A2014~_. By Theorem 5 . 1 eigenvalues vn of the operator
~ _ = E (H _, Hoo) may accumulate at the points and -1 in the
clockwise direction only. By Proposition 5. 5 they satisfy the relation

! which is equivalent to the bound

Here ~ -+ ::l: 1 ~ i 0 Im ~,~°&#x3E; &#x3E; o. According to (5 . 3) dim E1: ~,~°~)) H,
E == X (H, Hoo), is estimated (up to some fixed constant) by the LHS of
(5 . 7) and hence by This is equivalent to the bound (5 . 6)
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