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Mass generation for an interface
in the mean field regime

François DUNLOP, Jacques MAGNEN Vincent RIVASSEAU

Centre de physique theorique, C.N.R.S., U.P.R. 14,
Ecole Poly technique, 91128 Palaiseau Cedex, France

Ann. Henri Poincare,

Vol. 57, n° 4, 1992, Physique ’ théorique

ABSTRACT. - We consider a two dimensional statistical mechanics model
of an interface in three dimensional space with a weak potential tending
to localize the interface near a preferred plane. For a number of different
such potentials we prove that the two point function decreases exponen-
tially in the mean field regime where the potential is very flat. We estimate
the corresponding rate of decay.

RESUME. 2014 Nous considerons un modele d’interface dans l’espace ordi-
naire a trois dimensions, dans lequel un petit potentiel tend a confiner
1’interface au voisinage d’un plan donne. Pour un certain nombre de
potentiels de ce type nous prouvons que la fonction a deux points decroit
exponentiellement dans Ie regime de champ moyen ou Ie potentiel est tres
plat. Nous donnons aussi une estimation du taux de decroissance.

I. INTRODUCTION

In [DMRR] we bounded the fluctuation of an interface for a gaussian
model with an arbitrarily small attracting potential. In this paper we study
the correlations of this interface and prove that in the mean field regime
corresponding to a very flat potential well for which the quadratic appro-
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334 F. DUNLOP, J. MAGNEN AND V. RIVASSEAU

ximation is valid over a wide range of values of the interface height, there
is an exponential clustering property and the mass or rate of decay is

given by the mean field value.
This result applies e. g. near a second order wetting transition in the

case of long range forces (these transitions are usually of first order, but
second order transitions have also been observed [TGVR]). For reviews
see [D], [G].
We remark that our results are not optimal in the sense that when we

vary the parameters of the potential we do not get in this paper exponential
decay in the correct mass in the complete mean field region; we only prove
the decay rigorously in a fraction of what should be this full mean field
region. To improve on this point is presumably possible but requires a
multi scale analysis together with e. g. the use of Sobolev inequalities. We
postpone this to a future publication. Also it would be very interesting to
investigate regimes in which non trivial exponents different from the

mean field case appear ([BHL], [KZ]). This requires a rigorous multi scale
renormalization group analysis to compute effective constants. It is pre-

sumably not out of reach of present mathematical techniques [R], but we
postpone it also to future work.

In this paper the main technical tool is, in the language of field theory,
a small field versus large field expansion which forces to use a non-

translation invariant propagator. This technique is also necessary for

several of the most difficult models in constructive field theory (e. g. [V],
[CMRV], [MRS]), and the detailed version given in the simpler context of
this paper can be also used as a pedagogical introduction to these more
complicated constructions in field theory.

II. THE GAUSSIAN WELL

Our interface model corresponds to a massless gaussian measure pertur-
bed by a small interacting potential. We have to perform rigorously the
thermodynamic limit. Therefore we want to consider first the massless

gaussian measure in a finite volume A, where for simplicity A is e. g. a

large Then the thermodynamic limit is

simply L -+ oo . The massless gaussian measure is formally proportional to

but such an expression is invariant under global translation of the variables
To have a well defined measure we must break this global

invariance, using some kind of boundary condition at the border of A. A
particularly convenient choice is to use free boundary conditions on the
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335MASS GENERATION

massive propagator C (with a value of the mass m which will be fixed
below to precisely the value expected from the bottom of our gaussian
well) and to make this propagator massless inside A by insertion of the
suitable "mass counterterm";

This rule fits nicely with the Brydges-Battle-Federbush cluster expansion
[B], [R] that we shall use below. Of course any set of bounded boundary
conditions would in fact lead us to the same thermodynamic limit.

Therefore let us introduce C (x, y), the ordinary massive lattice propaga-
tor with mass m2  1 to be fixed later, which has the well known Fourier
representation:

This propagator has also a representation as a sum over random paths
on the lattice which in particular proves that it is pointwise positive in x-
space. It satisfies the estimate

for some positive constant K. m’ is the optimal decay rate of C, defined
by cosh m’ =1 + m2/2. For small m, ~/==~+(9(~). Since we are on the
lattice, there is in fact anisotropic decay and one can prove that the worst
rate, m’, occurs in the lattice directions [see (A. 7)]. This point is studied
in detail in the Appendix.

In the rest of this paper we use often K as a generic name for such an
m-independent large constant. Using free boundary conditions on C we
define: 

-

where d~ is the normalized measure with propagator C (this measure can
be defined directly in the infinite volume limit). In the rest of this paper
expectation values such as ( ) of an observable always refer to its mean
value with respect to some normalized measure; subscripts are used to
remind the reader of the particular measure considered. For instance it
will be convenient to use the notation ( &#x3E; A instead of ( )~.
By an easy gaussian computation the mean value h2x &#x3E; A at any fixed

site x diverges logarithmically as A -+ oo, i. e. as the thermodynamic limit
is performed. We add now a small interacting potential which tends
exponentially to a constant when h2 tends to infinity but tends to confine h
in a neighborhood of 0. This potential is

Vol. 57, n° 4-1992.



336 F. DUNLOP, J. MAGNEN AND V. RIVASSEAU

with a and E both positive (see Fig. 1).

We define the normalized measure:

and we will use the notation for the expectation value with respect
to this measure A.

The regime of parameters which we study is ~ 1 and E/a2  1. The rest
of this paper is devoted to a proof that in this regime the two point
function decreases exponentially and to an estimate of the corresponding
mass gap. More precisely we prove:

THEOREM 11.1. - 
real random variables distributed according to the probability measure

(II. 6 b), i. e. the measure

where ’ , is the gaussian measure ’ of covariance C (x, y) given by (II. 3),
V (h) is given by (II . 6) and m = Assume ’ 0  8 ~ 1. We assume that the
potential is such that

where K is a sufficiently large constant (this means that a is always large
and that if E -+ 0, a -+ oo in a certain way). Under these conditions the

thermodynamic limit o, f ’ the correlation functions exists and satisfy an

exponential clustering property (the truncated correlation functions decrease

Annales de l’Institut Henri Poincare - Physique theorique



337MASS GENERATION

exponentially). The decay rate or effective ’ mass, can be computed in a ’
systematic expansion around ’ the decay rate m’ of C ~which itself by (A. 7)
is of order small m]. For instance , there exist positive , constants
K and ’ c such that:

Let us remark first that the technical condition (II. 7) under which the
theorem is proved is not expected to be the optimal one under which we
should have exponential clustering within the mean field regime (i. e. in
this model a mass of order E/a2). We expect that this theorem in fact
holds under the weaker assumption K . log (1 + E -1)  a. The attentive
reader will trace the necessity for a square root in (II. 7) to the third
case C) in the proof of Lemma 11.5. Here the estimate that we perform
is quite loose. To improve on it we must find a better upper bound on
the L4 norm of h in terms of a quadratic norm. This is provided e. g. by
the regular Sobolev inequality in two dimensions~h~4~K~h~H 1 

where
the HI norm is /~~+~V/!~. However we do not use this kind of
inequality here since it seems to require the use of a multi scale analysis,
so that the size of the gradients is adapted to the size of the boxes in
which the inequality is used.
To prove Theorem II.1 we want to analyze the theory with respect to

a lattice D which is a regular paving of A by squares A of side 
namely the inverse of the expected mass. In the squares where the average
value of h is less than /~, which we call the small field region, the

quadratic approximation to the potential which gives a mass m = /8/~ is
valid. In the rest of this paper the parameter m introduced in (II.2-3) is
therefore fixed to this value In the other squares, called the large
field region, the potential is strictly above its absolute minimum by a
value about E/a. Taking into account the number a2/E of sites in a square,
we remark that large field squares are rare in probability; they have a
suppressing factor e-a. In order to combine these observations into a
proof of the theorem, we are going to perform a cluster expansion with
respect to the lattice D. Here we go.
For each square we will write

where 3( is a fixed function with support in [0, 1 ], which is one on

[0,1/2]. We require also a rather mild technical condition on x:

Vol. 57, n° 4-1992.



338 F. DUNLOP, J. MAGNEN AND V. RIVASSEAU

for some fixed numbers K, (this is e. g. true with q = 2 for a standard
shape such as e -1 ~h) .
We expand and call r the set of large field squares

We insert this expansion (II .11 ) in the numerator and denominator of
the normalized two point function. Furthermore we develop the potential
in the small field region and combine its quadratic piece with the counter-
term (II. 2). The potential of the theory after this manipulation becomes

(by some slight abuse of notations we will also call r the set of sites in
the squares of r). The two point function is then given by:

(remark that in this formula it is the gaussian measure

which naturally appears rather than 
We decompose r into connected components r 1, ..., rN in the follow-

ing way. We consider a large factor M = K . a 1 ~4, and we say that two
squares of D are close if their minimal distance is smaller than M/m’.
When two squares are close in this sense we draw a link joining them
which we call a distance link. Then a connected component ri is a maximal
set of squares of r connected through such distance links (hence such that
two of them can be linked together through a chain of squares of ri, each
of which is close to the next one in the sense above).
The cluster expansion has to be performed with some care because the

local term e + ~ 1 ~2~ X cannot be treated as a small perturbation, when
jc er

we stay inside a given connected region Ti of r. However when we change
of connected region, because M/m’ is large compared to the decay length

typical of C, we do get a small factor. We shall perform an expansion
which exploits this fact to factorize the connected components Ti. We call

Annales de l’Institut Henri Poincaré - Physique theorique
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xs the characteristic function of a set of sites Sand Cr the propagator
corresponding to the normalized gaussian measure 
We want now to compare systematically the covariance Cr to C by

means of the resolvent identity:

From now on let us forget the summation over intermediate points z. We
define new objects ~=0,1, ... , N, called "chains", through the
formulas:

We apply the identity (II. 14) repeatedly and we obtain, in the sense of
operators:

with the convention that~+~=0. When r is made of a single connected
component r 1 these formulas simplify a lot; we have C = C and

Vol. 57, n° 4-1992.



340 F. DUNLOP, J. MAGNEN AND V. RIVASSEAU

Then we define h° and hi, i= 1, ... , N as independent gaussian random
variables with respective covariance Co, 0 and C0393i. The corresponding
normalized gaussian measures are called respectively and

i = l, ... , N. u If we perform the substitution

we have

whe

(II.25) means that the integral of any function f of the variable

h = {/~ ~ E A} with respect to the measure is equal to the same

function integrated with respect to the right hand side measure (II.25) if
the substitution (11.24) is made in f (we used the fact that

Since what appears in (II. 13) is the measure

we have to compute the normalizing ratio Zr/Pr. This is done using the
following Lemma:

LEMMA II. 1. - We have

Proof - We write Pr as

using the fact that the factor Chains does not depend on ho and (II.27).
It remains therefore to prove that

This is just an exercise in expanding both sides of (II.30) into power
series in m2, integrating by Wick’s theorem and identifying the cycles of

propagators on both sides. Indeed on both sides of (II. 30) we get cycles

Annales de l’Institut Henri Poincaré - Physique theorique
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made of insertions m2 ~0393 Joined by propagators C, but on the left hand
side of (II.30) these cycles are simply decomposed according to whether
or not successive insertions of 0393 are of the type or 

Identity (II. 30) is therefore quite the analogue for cycles of the resolvent
identity (11.20).

Using this lemma, we can rewrite (II .13) as

where

is the analogue of (II.26) for the decomposition of r’ as the union of
connected components r~ ,, i’ =1, ... , N’ .
The reason for all this rewriting is that the various propagators

C~7’.~=0,...,N as defined by (11.15-19) are well defined through
absolutely convergent series and have good decay properties. More preci-
sely :

LEMMA 11.2. 2014 For any ç’ &#x3E; 0 (arbitrarily small ) there exists K &#x3E; 0

(depending on ç’ but not on m) such that

Proof : - We use the fact that dist (ri, 1,~) &#x3E;__ M/m’ together with the
estimate (11.4). The conditions that two consecutive indices in (II. 15-19)
have to be different ensure that for M large enough we can extract a
small factor for each of these terms, and keep an exponential decrease
~-~d-~jM-u) I between the ends u and v of each C piece. The triangular
inequality and the convergence of geometric series with ratio smaller than
one completes the proof, if we ensure that log (1 + m - 1) ?’~~’~~1, a
condition which is satisfied by our choice M = K . a1~4 and the
condition (II . 7), which ensures log(l + m -1 )  a 1 ~2 at large a.
We shall also need a lemma to control the normalization factors Zri 1

which appear in (II. 31 ):

LEMMA II. 3. - We have, for some constant c independent of m

where N (h) = m2 ~ is the number of squares in I r I is the number of
sites in r.

Vol. 57, n° 4-1992.
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Proof. - We have, using the explicit formula for the normalization of
a gaussian integral:

In the first inequality we have used the fact that the propagator (II. 3)
is pointwise positive to increase the sums, which were restricted to r, to
the full volume ~2 (except for one, which fixes translation invariance and
gives the volume factor r I). Then we used Fourier analysis. The last
inequality is easy; the term with n =1 gives explicitly the logarithmic
factor, and the other terms are uniformly bounded by 

n~2

It remains to perform a cluster expansion on (II.31). This is done both
on the numerator and denominator of (II . 31 ). We use the formalism of
Brydges-Battle-Federbush (see [B], [R] for reviews). We will first describe
this cluster expansion and give an outline of the main important points
to understand its structure and the reasons for its convergence. Then we
state the main result in the form of Lemma II .4 below for which we give
a more detailed proof of convergence.
We consider e. g. the numerator of (II . 31 ). First we list in an arbitrary

order the set U made of all squares of the small field region plus the N ele-
ments ....F~. Then we introduce a parameter s which in every propa-
gator C in any of the terms of (11.15-19) decouples the first elements
of U from the rest. For instance if this first element is called 1B we write:

(II . 3 6)
When we insert this interpolated covariance into (II . 31 ), the measure 
the factor eChains and the definition of h through (II.24) in the factor

change. Remark that the measures or the normaliza-
tion factor n Zri do not change; indeed these factors are already factorized
over the connected large field regions.
We have to check that inserting C (s) instead of C in the definition

(II.15) of gives still a measure of positive type, so that we have a well
defined functional integral. This is obvious. Then we expand the numera-
tor of (II . 31 ) at first order around s = 0 using the Taylor formula with inte-
gral remainder. The term at decouples 1B from the rest; the remainder
term couples 1B to some other element of U, 1B’ (which again can be a small
field square or some FJ by means of some explicit propagator C inside
the definition of some chain cj, k. Then we consider 1B U 1B’ (or 1B U r~) as
a single new entity in U and iterate. This cluster expansion is described in

l’Institut Henri Poincaré - Physique theorique
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detail in [B], [R]. Rather than to repeat all the details here, we will simply
insist on all the differences with the standard case treated in [B], [R] of a
gaussian measure with propagator C perturbed by a polynomial interaction
(such as h4). The differences are the non polynomial nature of the "inter-
action" factor and the particular structure of the chains 
which do not reduce to a single propagator C.

Let us address these differences now. Each derivation d/ds which couples
some element 0394~U to 0’ E U creates an explicit propagator C in some
chain with its two ends in the prescribed objects A and A’. This is called
a cluster link between A and A’. In the standard case [R], using integration
by parts, we have at the two ends of the propagator a functional derivation

2014 acting 
either on the sources or on the exponential of the interaction,

which creates a so called "derived" vertex (such as 4 h3 in the case of an
h4 Ginzburg-Landau model ) localized at, this end. In our case let us also

call a derived vertex the result of a functional derivative ~ applied to the
interaction term which in our case is 

bh 
pp

Then a cluster link appears as a propagator C created by a d/ds
derivation, with its ends in A and A’, which lies in some chain We
have to describe the factors which lie at the end of this chain. An end of
chain corresponding to an index j in [1,N] has simply a factor 
hooked to it (this is true both for the two ends of the chains in the

exponential term or for one end of the chains of the type or

Cj,0, j, k E [ 1, N] which appear in the replacement of h in (II . 31 ) by
formula (II.24)). An end of chain corresponding to a 0 index (such as
both ends of a Co, ° chain or one end of a or cj, °, j, k E [1, N] chain)

instead has a "derived vertex" hooked to it (after the
5/! 

xr ( ) (

functional derivative has been computed we have to replace h by its value
(II.24) to reexpress this derived vertex in terms of the fields ho and hi,
~-=1,...,N).

Indeed this is directly the result in the case of the end with 0 index of a
or cj, 0, j, k E [1, N] chain and in the case of the two ends of a 

chain this is the result of the functional derivative ~ hooked to the end,
öh 

’

after an integration by parts on ho. Indeed from (11.24) we see that the

action of a functional derivative ~ on a function of h is the same as
8/!

the action of ~ on this function, reexpressed in terms of /!o and
03B4h0

h~,i=l, ...,N.

Vol. 57, n° 4-1992.
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This description of the cluster link is correct up to two further

remarks. In a small number of cases (at most two for a two point function)
the derivation at the end of a chain instead of producing a derived vertex

may hit the source fields hx or lzy. Also a derived vertex may be hit by
further derivations, hence in the most general case what lies at the end of
a chain is really a multiply derived vertex common to several links, or a
source. This is completely standard, although remark that in the case of a

polynomial interaction such as h4, a derived vertex can be rederived only
at most a fixed number of times. In our case the interaction factor is non-

polynomial and a derived vertex can be hit an arbitrary number of times.
However remark that these derivations must be associated to farther and

farther squares and the longer and longer distance factors in (II.33) will
control the associated combinatoric problem.
A slight difference with the standard case which may worry the reader

is that a chain is made of a sum over n of terms containing an
arbitrarily large number n of propagators C. How to control the combina-
toric of choosing on which of these n terms a derivation may act?

This is easy. Because of the inductive rules of the Battle-Brydges-Federbush
cluster expansion, only one propagator C in a given chain sandwiched
between two characteristic functions of two given large field region and

r can be explicitly derived (indeed later these two regions are treated as
a single block). Therefore paying a factor 2 per such sandwiched propaga-
tor we may decide whether it will be derived or not. This sloppy bound is
then easy to control because each such sandwiched propagator gives an

arbitrarily small factor (see the proof of Lemma II. 2).
Finally there is a subtlety here that we have to take into account which

is caused by our definition of distance links between large field cubes.

Because of this definition, a large field region has a halo of radius M/m’
where other large field cubes cannot enter. This is an analogue of the
hardcore condition which is familiar in cluster expansions.

In the end of the cluster expansion we have sets of squares connected

together through explicit cluster links, and the connected large field

regions which are connected together by distance links. Taking all

connections into account (both cluster links and distance links) we have a
collection of connected sets of squares E1, ... , Er called clusters or poly-
mers (whose union must be all of A). We can discard the trivial clusters
made of empty small field squares, whose amplitude is 1, and consider

the non-trivial ones, whose union is no longer A. We claim now that our
functional integral is factorized over these sets. Indeed the only reason for
non-factorization may come now from the normalizing factor in (II.28):

N

but this factor is f1 and since each r i is contained entirely in a
i= 1

single Ek, we conclude that the Ek are factorized. Applying this process to
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the numerator and the denominator of (II. 31) we obtain

where Ax, y (E 1 ) is the amplitude of the connected cluster E 1 containing
the sources x and y (by parity they have to lie in the same cluster if the
interaction is even), and Aø or Aø is a vacuum amplitude associ-
ated to the non-trivial cluster E~, j &#x3E; 2 or Ek. The condition E~. generalized
disjoint family means that the E. are disjoint in the ordinary sense plus
the fact that any large field square in E J is separated by at least M/m’
from any large field square in 
More generally one can derive a formula which generalizes (11.37) to

the computation of any correlation function S of N external sources

hil, ...,/~, as a sum of products of amplitudes, where in the numerator
the union of all amplitudes has to contain all external sources.
To complete the result of the cluster expansion it is standard that we

need only to prove that non-trivial clusters are small so that they can be
resummed. Let us introduce a measure n (E) of the size of the cluster E
which is equal to the number of small field squares plus M2 times the
number of large field squares in E. Then we will prove below:

LEMMA II. 4. 2014 Each vacuum amplitude is bounded so that (if 0 is an
arbitrary origin)

Furthermore the amplitude containing the two external sources at sites x
and y has exponential decay so that

where ç" tends to 0 if a -+ oo .
We could establish more general "tree decay" between sources for

amplitudes containing more than two sources. They are not necessary
however for the proof of our main theorem. In fact we will limit ourselves
to study vacuum amplitudes and prove as usual a result stronger than
(II.38), namely one in which the precise constant e can be replaced by
any other fixed constant, if a is large enough and E/a2 is small enough.
The result (II. 39) follows easily by evaluating Ax; y (E) in the same manner
than a vacuum amplitude, but taking into account that x and y have to
be connected through chains of cluster or distance links. The cluster links
give directly exponential decay of the form (II. 39) and each distance link
give a small factor which tends to 0 as a -+ oo (Lemma II . 6 below).
Combining both effects we get (II. 39).

Vol. 57, n° 4-1992.
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Assuming (II . 38-39) the proof of the theorem is achieved by a standard
Mayer expansion on (II. 37) which removes the constraints of generalized
disjointness in (II. 37) and accordingly computes the normalized functions.
This is completely standard (see e. g. [B], [R]). The only subtlety has to
do with the nature of the generalized disjointness condition. Because of
the halo in this condition one gets an exponential of the number of squares
in the region E plus the surrounding halo in the process of resummation
of clusters linked to E through Mayer links (or overlapping conditions).
This factor is then compensated thanks to our definition of n (E), so that
Lemma II. 4 does indeed ensure the convergence of the Mayer expansion.

If the amplitudes in (II.37) have exponential tree decay between the
sources, this exponential tree decay follows for the truncated correlation
functions computed by the Mayer expansion. In particular in the case of
the two point function this argument achieves the proof of our main
theorem.
We concentrate therefore on the summation of vacuum amplitude which

contains the origin, and give a detailed proof of (II. 38).
The cluster expansion has produced a certain number of explicit fields

hi, z==0,1, ... , N, hooked to the ends of chains to which the derived

cluster links C belong, or produced by functional derivatives 8/8/! acting
on Let us explicit the structure of all these terms.
The outcome of the Brydges-Battle-Federbush expansion is indexed by

a tree T [2, 3] of cluster links between nodes called ...,N~1, which
can be large field regions ... , I-’r or small field squares ~1’ ...,A~
which together form the support of E. We have The tree T

is therefore made of n = r + r’ -1 links L~, /=!,...,~+~-1, each of which
contains a C propagator with ends in two different nodes S~l and Skl. (By
the Brydges-Battle-Federbush process one has n &#x3E;-1 except for trivial clu-
sters whose values is 1 ). This propagator is in fact part of a chain C~
which together with C may contain other propagators and has in addition
some attached factors at the end. Let us describe this in more detail.

The l-th chain Cl has its ends in squares Del and 0394fl which are in E but
can be of course different from and If the chain is of type 
with~’, we have fields h~ and hk attached to these ends and this is the
end of the story. The set of all fields hi, i &#x3E; o, attached to such chains
forms a monomial which we call S.

But if the chain is of type Co, °, or C~ ~ we have instead of explicit

fields h o functional derivatives attached to the ends with 0

index, which have to be applied to the factor We have to perform
these functional derivatives, and in the corresponding fields produced, we
have to replace h by formula (II. 24), which again may or may not produce
eventually chains which link 0394el and 0394fl to a set of final squares Ogl and
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Ohl that contain the final fields /~,/&#x3E;0 associated to the chains which
occur in (II . 24). From the explicit form (II . 11 ) and (II . 12) of we

conclude below that at most five fields can be produced by a functional
derivative, hence the index s takes at most five values (see Fig. 2).

If we put together all the functional derivatives 201420142014 which act
8/~)

in a given square A they must be of the form ( ~ 201420142014 ) , with

~ ~~2~20142 (because there are at most two ends per chain C~ hence
AEE

at most 2~20142 such derivatives).
We compute the action of these derivatives and obtain:

where Bf1 = x if A ~ 0393 and 03C8 = 1 - X if A E r. Q is a polynomial of order
and R is a polynomial of order at most 5 no, 2 times an

exponential of a negative quadratic form in the variables ({/!(~)}, 
This result is obtained using the form (II. 12) of Vr. The exact formulas
for Q and R are tedious to write down, because the Leibniz formulas to
derive products after many iterations become complicated. However to
bound the outcome of (II.40) we need only to keep track of the general
structure of Q and R. First we bound by 1 the exponential of the nega-
tive quadratic form in the variables (~ h (x) ~, x E 0) remaining in R,

and we bound all the factors t or 1- t and the integrals 10 dt coming
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from (II.12) by 1. Second we use the condition (II.10) to bound

where is the characteristic function of [0,1] ] and Û)2 the characteristic
function of [ 1 /2, + oo].

Finally in Q and R we replace h by its value (11.24). This is the step
which generates the squares and we see that as announced there is

only at most 5 such fields per functional derivative.
In this way up to a numerical factor

and up to the explicit value of the chains the functional integral that
remains to be bounded has the form of a certain function 

N N (i)

of the fields, where is the explicit product of all the
t==0 j= 1

fields produced in all the polynomials Q, R, and in the first monomial S
directly attached to the chains in (II . 31 ) considered above.
We want now to show that to each cluster link L~ is associated a small

factor. This factor will come either from the spatial decay of the links
in Lemma II.2 or to some small factors attached to the fields pro-
duced by functional derivatives when they act in the small field region.
Let us explain this point in detail, considering again the particular form

(II. 11-12) of The outcome of a functional derivative ~ in a( ) x~ 
~h (x)

square Del or 0394fl depends on whether this square is a large or small field
square. In the case of a small field square every derivation on acts

either or and produces either 8(/~/~) or
or 8(/~)r~ . In (11.40) we said that we bound the

negative exponentials by one and keep only the produced fields. Therefore
the outcome of one functional derivation is a set of at most 5 fields, which
have then to be expanded according to (II.24). If the square is a large
field square, i. e. belongs to r, the functional derivative acts either

or on and produces or

6(/~)8’~~. Again recall that the negative exponential is bounded by one.
First we remark that from the form of these vertices to each independent

summation over x in a square A we can associate a factor ~/a~ = 1 /~ t~ ~ I
coming either from the factors s and a ~ ~ or a ~ 4 in (11.12) or from
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(II .11 ). In this sense every such summation is properly normalized. Then
in addition to these factors we have in the case vertex produced in a

square an additional factor a - 2 for an h 3 vertex and a - 4 for
an hs vertex. In order to take correctly into account these additional
factors let us introduce a new notion.

We say that a cluster link is a small field link if Sjl and Skl are both in
the small field region. In the other case we call it a large field link. For
every large field link, by our rule we must have 
Therefore we can extract a factor at least /5 from every
such link, still keeping four fifths of the spatial exponential decay in the l
chain for other purposes.

In the case of a small field link both S~l and Skl have to be at a distance
at least M/m’ from any large field square of r. We call the link a regular
link if both squares Llq and are in the small field region and all the
fields produced by formula (11.24) are of the type /?o. In the converse
case we call the link irregular. For an irregular link at least one of the
squares 0 f~, or Ohl has to belong to F. Therefore using the

triangular inequality plus one fifth of the spatial decrease of the 
chains we can again extract a factor at least e T M~s - e ~ ~ a ~~4/5 for such an
irregular link.
The regular links have all their produced fields of the ho type, hence

these fields belong to the production square 0394el or For these regular
links we can use the additional powers described above to attribute
a small factor 1 /  to each end of the link and a small factor 1/AFto
each of the produced fields.
For irregular links or large field links we have, for large a,

~-Ka~/5~-16 Therefore we can attribute also a small factor 1 a to
each of the produced fields, and a factor to the link l and to each of
the links produced by formula (II. 24) (there are at most five of them
per end of l hence at most ten of them). Finally we use condition (II. 7)
which ensures that log (1 + n~c ~ 1)  ~ Each link l and each of the links
C~ produced has therefore in this way an associated factor

= 1//~, instead of the factor log ( 1 + m - ~ ) of Lemma II. 2, and each
vertex produced is normalized by E/a2 and each field produced is normali-
zed by a factor 1/ Ja.

It remains to extract, using (II.4) and Lemma II.2 the remaining
exponential decay from the explicit propagators. We call dl the distance
factor which is the sum of the minimum distance between S3I and plus
if necessary, the minimum distance between S~l and Sk~ and 0 fl, and
between and each 091, and each We can extract, using (II . 4)
and Lemma II. 2 the remaining four fifths of the corresponding exponen-
tial decay from the explicit propagators associated to the l-th chain in
Figure 2.

Vol. 57, n° 4-1992.



350 F. DUNLOP, J. MAGNEN AND V. RIVASSEAU

In this way we can bound the explicit cluster links by a factor

where K is again some constant independent of m, and each vertex produ-
ced is normalized by E/a2 and each field produced is normalized by a
factor 1//~.
The exponential decrease in (II. 40) will be used later both to sum over

the various locations of the squares and regions which form E and also
to control "local factorials" generated by integration of the fields produced
by the functional derivatives, and by the combinatoric of Leibniz’s formula
for derivations of products.
The sums over all combinatoric factors associated with the various

choices in the Leibniz formula are certainly bounded again by a factor
(no !)q for K and q large enough. This simplifies our bound; taking

A

(11.41 b) and (II . 42) into account we collect a multiplicative factor

(with some enlarged value for K) and we have still to bound the supremum
over functional integrals of functions F’ = P’ . S2r E - ‘’r in which P’ is now
a monomial (without sums and prefactors) 

x

The functional integration over F’ is bounded using a Schwartz inequal-
ity to separate the fields in P’ from the rest. This means that we write

(since Qp defined in (11.41 a), satisfies 
We bound first the second functional integral in (11.44).

LEMMA 11.5. 2014 The second functional integral in (11.44) satisfies the
bound:

where K is a positive constant.

Proof. - We remark first that the positive hence potentially dangerous
piece of corresponding to the small field squares of E [see (II .12)]
can be exactly bounded, using the small field condition (01 in Qr 
where we recall that r’ is the number of small field squares in E. This
factor can be absorbed in the constant K in (II.45).
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Let L1 be a square of the large field region r, and K be some large
constant. Either

or

and

or

(C) There is a site x e A and a site y E ~ such that

In the first case we write, using the large field condition co~:

Therefore

The potential then gives the small factor. Indeed we can assume
since a is large; then for and since

e - t -1 for ~1, we conclude that

if a is big enough.
In the case (B) we use the fact that inf to obtain

directly that 

In the case (C) we use the fact that the gaussian measure gives a small
factor when two sites not too far apart very different values. More precisely
we write

Indeed the gaussian distribution corresponding to two sites x and y after
integrating on the others behaves as e-c(hx-hy)2/2 log |x-y|, where c is some
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constant, and if a is large, using the condition
(II . 7) in the Theorem. If we take c K2 &#x3E; 4 (by increasing K) the first

inequality in (II. 55) follows. The second inequality is again obtained using
(II . 7) since a4/E2  a4 e~2~K~ ‘~" is beaten by the small factor In

every case the proof of (II. 45) is achieved.
Let us return to the first functional integral in (II. 44). We perform this

gaussian integration explicitly. Remark that all fields h~ produced for
i = 1, ..., N are in fact of the type (x) hl (x), that is they are localized
inside ri and they are multiplied by a factor m2. The result of Wick’s
theorem is a certain number of graphs with propagators C°~ ° or Cr- We
use first a Schwartz inequality again to bound C~’~(~,~) or 
respectively by (C°~ ° (x, x)) 1 ~2 (C°° ° ( y, y)) 1 ~2 or (Crj (x, x)) 1 ~2 (Crt (y, y)) 1 ~2 .
Then we use the following bound

LEMMA II . 6:

Proof. - (II.56) follows from (II.33). For (II.57) using the random
path expansion of the propagator it is easy to bound x) by
C~2_~~(~x), where y is the point closest to x in the complement of r.
We can consider again that the distribution for the two sites in a massless
gaussian measure after integration of the others is 
The distribution for C~2_~(x, x) is massless except for a factor
~-(i/2)~~ Using this factor and integrating on y we obtain the distribu-
tion for hX and achieve the proof of (II . 57).
Then we remark that in the product (II.44) each field to integrate has

an associated normalizing factor 1/ Ja. Using the fact that at large a

log(1+m-1)a~a we can use these normalizing factors to compensate
again all the factors log (1 + m - 1) produced by gausslan integration and
Lemma II. 6.

n

Using an other fifth of the exponential decrease IT e-(1-03B6’)(4m’/5).dl and

a fraction of the factor IT (11.45) we can beat the product
AEEnr

of all factors log ( 1 + d(x, and m - 2 generated by (II . 57). Indeed each
field is at the end of a chain whose last propagator has length at
least equal to d(x, and 

It remains to bound the local factorials generated by Wick’s theorem
in the gaussian integration of the fields. Our final fields to contract are
localized in squares of the type O9l or and a naive bound would

involve factorials of the numbers of fields localized in such squares. But

using an other fifth of the remaining exponential decrease
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n

TI easier to choose, in the Wick’s contraction process,

the squares 0394el or 0394fl which contain the initial vertex from which the
chain to the contracted field emanate. In this way the factorials of Wick’s
contractions is bounded by (since there are at most five fields

produced per vertex). 
A

Using a standard volume argument we know that from a remaining
n

fifth of the exponential decay ]"[ ~-d-~)~~/5)’~ we can extract a factor
~=1

where q’ can be made as large as we want ([3],
A

Lemma III. 1 . 3). This is because no can become large only when we have
more and more distant squares 1B’ hooked to A by the cluster expansion.
In particular we can take ~’&#x3E;2~+5. In this way we can compensate the
local factorials ~ (no!)2 R+ s.

A

Finally the sums over the positions of the squares in E is also made
n

using the last fifth of the exponential decay ]"[ e-(1-03B6’)(m’/5).dl; the summa-

tion is made according to the natural tree structure T which is the outcome
of the Battle-Brydges-Federbush process. We have also to sum over the
regions i = 1, ... , Y, knowing one of their squares. This is done using
the distance links, and there is therefore an associated factor ]"[ M2.

0394~E~0393

This factor is compensated by the one of Lemma II . 5, since M = K. 
In order to have the small factor in n (E) in (II. 38) we must also extract

a factor e-M2 from each small field square in E. This can be extracted
from a fraction of the factor TI (11.45), since

0394~E~0393

After having extracted this factor we get a final geometric sum over the
number n of elements in E of a term certainly bounded by

where K is independent of a. Taking a large enough we get a geometric
series with ratio as small as we want. This proves in particular the
condition (II. 38), hence achieves the proof of Lemma II.4 and of the
convergence of our cluster expansion.
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III. THE WETTING POTENTIAL WITH A WALL

In order to model the presence of the wall in a wetting problem we
consider now different potentials which are not symmetric, but for which
the method of the last section applies with minor modifications. We shall
not detail as much the proof in these asymmetric cases.

(A) The linear exponentials

The first example that can be considered is a potential made of two
competing linear exponentials (Fig. 3):

The "wall" is the region /!0, which is exponentially suppressed. On
the side h &#x3E; 0 we have fast asymptoticity of the potential to a constant,
just as in the preceding model (but the asymptotic value is reach in a

linear instead of quadratic exponential way). We find that the minimum
is at h* such that ~’~=8. If we write /?=/?-/?*. the analogue of the
Taylor formula (II. 12) is
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The first form will be used in the large field region out of the well, the
second form is suited for a cluster expansion in the small field region
(inside the well).

Therefore the mass, in the regime where the gaussian well is very flat,
is expected to be m = ~03B1. For a fixed value of E, we can make the mass
very small by letting cx -+ 0. In this sense the parameter a plays the role of
a - 2 in the previous section.
Here we need a slightly more complicated small field condition which

states both that the field is approximately inside the well, and that the
exponential in the potential is under control. For instance we can bound
the Taylor remainder in (III. 2 b) using a Schwartz inequality:

Therefore we can choose as the small field condition for a square A of

so that in the small field region we control the Taylor remainder. We
need again as technical condition analogue of (II. 7) a bound which is not
optimal:

Remark again that for technical reasons we cannot cover with our single
scale analysis the complete mean field region, which we expect here to be
given by a condition of the type

Indeed the vertices produced in the small field region are p g 
8h

times exponentials which are controlled by the second part of the small
field condition. Using some simple power counting, such a vertex is
evaluated by + E-1) after integration in a square A. In order to
correspond to a small factor, condition (III.6) is enough and (III. 5) is
more than sufficient. However in the large field region we need to gain a
factor small enough to compensate the normalization. The worst case for
the large field region is when the first function x in (111.4) is replaced by
(120143(), the other case giving a much smaller factor. But performing an
analysis similar to that of Lemma II . 5, in case C) we obtain a small factor
in ~’°" ~/~8(i+e ~) which has to beat a normalization factor similar to
(11.35), hence condition (111.5) is necessary.
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We can state:

THEOREM III . 1. - Theorem II . 1 holds true if V (h) in (II . 6 a) is taken

as in (III. 1) with condition (III. 5) and m=Ea.

(B) The compact wall

A slight modification of the exponential wall (III. .1 ) is to add a cutoff

function n 11 (hx) where 11 is a Coo function which is 0 for hx  0 and 1 if
x

1, in order to model better the fact that the interface cannot penetrate
the wall (see Fig. 4).

The rules of the expansion are unchanged and the only additional

technical problem is when a functional derivative hits an ~ function. This
produces vertices of the type r~’ (h) = h + h*. Such fields correspond to the
large field region, and do not change the range of validity of the expansion.
Therefore Theorem III. 1 also holds for this model.

(C) The Van der Waals potential

The Van der Waals potential for molecular attraction ([D], [G]) leads
to the consideration of wetting potentials of the type:
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The minimum of the potential is at /!*=s 1. The expected mass is
m = E5~2 and goes to 0 with E. There is here a single parameter. We can
put again h = h - h* and write (for /!~0):

We can write again large and small field conditions using (III . 8). However
the situation is simpler here since there is only one parameter. Our cluster
expansion therefore does apply simply for £ small enough:

THEOREM III . 2. - Theorem 11.1 holds true (II. 6 a) is taken
as in (III. 7) with £ small enough and m = 8~.
The case of a Lennard-Jones potential is exactly similar, but with

different values of the exponents in (III . 7).

(D) More general potentials

From the discussion of the specific examples above it is clear that our
method generalizes to any sufficiently smooth potential with a single
absolute minimum strictly below all other local minima, in the regime
where the corresponding well is very flat, i. e. the gaussian approximation
is a good approximation for a rather large range of values of the interface
height. The exact limits of validity of the cluster expansion depend of the
shape and parametrization of the curve giving the potential, so that we
do not state a precise general theorem. Smoothness of the potential
everywhere is presumably not physically essential but for our method it is
a useful technical ingredient, even in the "large field region", because it
allows analytic computation of the functional derivatives, which in our
cluster expansion can act in this large field region. To treat the case of
non-smooth potential is presumably possible but certainly requires some
additional technical work.

APPENDIX

Estimate of the lattice covariance

The inverse covariance of mass m on 7 2 is defined as

so that
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where the sum is over pairs of nearest neighbors and

LEMMA. - Let m~1 and xl &#x3E;_ x2 &#x3E;_- 0. Let m1 and m2 be the functions of
m, xl, x2 defined through

Then

which implies 

where ’ I x - y I is the Euclidean distance and m’ is defined by

Remark. - The slowest decay, at 7i:/4, is given with

Proof. - xl = 0 is easy. We suppose 1 and begin by shifting the
contour of integration in k2. For any m2  m’ we have

We then integrate by residue over The location of the relevant pole is
given by kl = iml (k2) + ki (k2) with

so that
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We now choose m2 so that

The assumption ~i~~~~ implies ~(0)~~ ~~ ~2~~’ ~s required,
and also m1 (0) = 0 (m). Equation (A. 10) implies |k’1 (k’2)|1 03C0/2 and

m1 (k’2) even in k’2. One can then compute dm1(k’2) and check that it is
M/C~

positive for A;~ ~ 0. We then write

which, inserted into (A. 10), using (A. 11 ), gives

so that

We split accordingly the integral over k2:

First

Then

Putting everything together, we obtain the lemma.
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