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ABSTRACT. - We study a piecewise affine non uniformly hyperbolic
map of the interval exhibiting type I intermittency. Using a probabilistic
approach we prove that the occurrence time of long laminar periods
converges in law when suitably renormalized to a mean one exponential
random time.

RESUME. - Nous etudions une transformation de l’intervalle affine

par morceaux mais non uniformement hyperbolique qui presente une
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intermittence de type I. En utilisant des methodes probabilistes nous mon-
trons que Ie temps d’entree dans une longue phase laminaire convenable-
ment renormalise converge en distribution vers une loi exponentielle de
moyenne 1.

I. INTRODUCTION

In this paper we obtain the asymptotic law of the occurrence time of a
long laminar period in a model of temporal intermittency. We consider a
kind of Pomeau-Manneville’s type 1 model at the transition point. This is
a dynamical system defined by a smooth map of the interval [0, 1 ], which
is hyperbolic except for an indifferent fixed point (see [P.M.] for a precise
definition).
The Bowen-Ruelle invariant probability measure of this map is the

Dirac delta measure concentrated at the non hyperbolic fixed point and
Cesaro averages along a typical orbit converge to this measure.
On the other hand, the presence of the non hyperbolic fixed point

produces the following phenomena which was conjectured by
Manneville [M.] and rigorously proven by Bowen [B.] and Collet &#x26; Fer-
rero [C.F.]. If we consider Cesaro averages rescaled by the logarithm of
the time, then for functions whose support does not contain the non
hyperbolic fixed point, we will get L 

1 (but not almost sure cf.
Aaronson [A.]) convergence to the integral of the function with respect to
a new invariant measure which is not normalizable. This 6-finite measure
describes the statistical properties of intermittent events.
We consider the special case of a piecewise affine Markov map. For

this model we give the asymptotic law of the time needed to observe a
laminar period longer than a fixed lengths (when a diverges). More
precisely we prove that when suitably renormalized (by a factors log a)
this time converges in law to a mean one exponential random time. For
the dynamical system this is the time it takes for an orbit to get very close
to the non hyperbolic fixed point.

Before entering into technical details let us discuss briefly the physical
implications of this result. Since the statistics of an exponential random
variable is so peculiar, this precise information should provide a sensitive
test of the adequacy of the model. Also we want to stress the fact that
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having exponential law is a rigorous way of expressing unpredictability of
the occurrence time of the phenomena.

This result will be proven using a probabilistic pathwise approach. We
construct an associated Markov chain which comes out from a symbolic
dynamics with infinitely many states labeled by the set of positive integers.
The model can be illustrated by a flee jumping in one unit of time from
the bottom of a slope to the height k (A;e~) with probability 1 /k (k + 1)
and then slipping down at constant speed. This is a recurrent motion but
since every jump typically takes the flee very high, the time needed to slip
back to the bottom has infinite mean.

In this description the bottom of the slope corresponds to the most
turbulent region of the dynamical system and the laminar phase is situated
at an infinite altitude. In other words, the dynamical system in [0,1] is a
compactification of the infinite states Markov chain. The same markovian
description appeared also in [W.].
As far as we know, [B.H.] and [H.] are the first papers to put in evidence

exponential random law as limit distributions of the occurence time of
rare events. A similar point of view was developed in the so called pathwise
approach to metastability introduced in [C.G.O.V.] (see [S.] for a recent
review of the subject and [G.S.] for a proof of a similar result in the case
of hyperbolic systems).

In the next section we will give a precise definition of the model and
state our main result. In section 3 we prove an a-priori lower bound for
the occurence time of a laminar interval of length longer than a. Finally,
in section 4 we conclude the proof of the main theorem.
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II. MODEL AND RESULTS

Let/be the map of the unit interval [0,1] defined in the following way:
(i ) _ f ’(0) = 0,

(ii ) f is affine and increasing on Ao=[l/2,1] and satisfies/(Ao)=[0,1],
(iii) For any integer ~1, f is affine and increasing on the interval

A,=[l/(~+2), 1/(~+1)[ and 
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The iterations of the map f define a dynamical system on the unit
interval which is a simplified (piecewise affine) version of the mappings
with an indifferent fixed point which appear in the type 1 intermittency
model of Pomeau and Manneville [P.M].

In the Pomeau-Manneville picture the laminar phase corresponds to the
neighborhood [0,1/2[ of the origin, whereas the turbulent phase is descri-
bed by the rest of the phase space. Our main result gives the asymptotic
law of the time it takes for the process to enter a vanishingly small
neighborhood of the indifferent fixed point. More precisely, for any integer

and for any ~e]0,1], let Ta(x) be the integer defined by

We consider Ta ( . ) as a random variable defined on the standard Lebesgue
probability space (i. e. the interval [0,1] equiped with the standard Borel
cy-field and the Lebesgue probability measured). We can now formulate
our main result

THEOREM 1. - The random variable Ta/a log a converges in law to a
mean one exponential oo .

We remark that Ta is also the time it takes for the process to start a
laminar interval longer than a.
The proof will involve an associated Markov chain defined over 

As a first step in the definition of this Markov chain, we construct a
coding (defined except on a countable set) of the unit interval to the set

This coding is explicitly defined (except for the origin and all it’s

preimages) by a map cp (x) _ E N where G)~ satisfies

This coding cp is an isomorphism (in the sense of measure theory) between
the standard Lebesgue space and the probability space with the product
o-field and the probability measure P defined on the cylinders by

where Q : IBJ x ~J -~ [0,1] is the probability transition given by:

Note that although cp is an isomorphism in the measure theoretic sense,
it’s range is not the whole set More precisely, we can define an

l’Institut Henri Poincaré - Physique theorique
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incidence matrix ~:~x~-~0,l}by

It is easy to verify that the range of cp is the set Q of sequences E N

which satisfy for any integer i

The map cp defines a bijection between the above set of sequences and
the points of the unit interval which are not preimages of zero. Note also
that the probability measure P is supported by Q. From now on our
sample space will be Q equiped with the restriction of the product a-field
and with the probability measure P.
For every integer n we will denote by Xn the projection on the

n-th coordinate of the infinite product (i. e. ... ), then
With the above definition offP, the sequence of random

variables (Xn)n is a Markov chain on the integers with transition proba-
bility Q and initial measure  given by

In the isomorphism cp the action of the map f becomes the shift 9~.
This implies that through the coding the time evolution is the same for
the Markov chain and the dynamical system starting with a random
uniformly chosen initial condition. We will also denote by Ta the composi-
tion with cp of the previously defined function Ta.
For the convenience of the reader we will collect a few elementary but

usefull formulae and facts concerning this Markov chain.
Let us define recursively an increasing sequence ’ti of integer valued

stopping times by

and for ~2

This sequence of stopping times is the sequence of successive entrance

times in the state 0. It is infinite since the Markov chain is irreducible
and null recurrent (as follows from the explicit expression of the transiton
probability Q).
We also define a sequence of integer valued random variables by

Vol. 57, n° 3-1992.
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This notation enables us to describe the chain in the following simple
way:

and

It follows in particular that if Xo  ~, then

and

where

J- 1

and the convention that ifJ=l, then ~ 
j= 1

The Markov property implies that the random variables U2, ... are
independent, identically distributed and independent of Xo. In particular
for we have

It is easy to verify that the common law of these random variables is
given by

Note and therefore the Markov chain is null recurrent.
This is a main difference with the case of uniformly hyperbolic Markovian
dynamical systems where one gets positive recurrent chains.

III. PRELIMINARIES

We first introduce some additional notations. Let us call Nn the number
of returns to the state 0 up to time n. This number is given by

Annales de ’ l’Institut Henri Poincare - Physique theorique
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Note also that 

We now define a time scale ~ia associated with the state a by

This number is finite since the chain is recurrent. Theorem 1 will follow
from the following result

THEOREM 2:

The main idea of the proof is the following. The time Ta is much larger
than the time needed to loose memory from the initial condition. Therefore
every unsuccessful trial to overrun level a after the process starts afresh a

new run from the origin. In order to fullfill this program we first need an
a-priory lower bound for Ta which is derived in Proposition 3.

PROPOSITION 3. - There exists an increasing positive . f ’unction y de, f ’ined
on the integers such that

and

In order to prove this we first need two auxilliary lemmata.

LEMMA 4. - There exists an increasing integer valued function l defined
on the integers such that

Proof : - We consider the Laplace transform of the random variable

Vol. 57, n° 3-1992.
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From the independence of the U~’s and Chebychev’s inequality we have
for t~[0,1[

If we set t = 1 - M with M &#x3E; 0 small we get

A nearly optimal choice for u is

and one can check that the choice

satisfies the conditions of the lemma.

Proof. - Using formula (2 . 7) we have for x  a

It follows from the Markov property and the homogeneity of the chain
that this last expression is equal to

and o this concludes the proof of the lemma.

Proof of Proposition 3. - From formula  (3 . 1 ) we have ’ for any integers
r and o y&#x3E;r

Annales de l’Institut Henri Poincaré - Physique - theorique



327UNPREDICTABILITY...

We will now such that both sets which appear in the above
formula have a probability which converges to one when a diverges.
For the first set we use the independence of the random variables Ui

and Xo to obtain

B 
_.- . 

_ /

Therefore this probability will converge to 1 if we choose r (a) in such a
way that

For the second set, we first remark that

By Lemma 4, this last probability goes to one if we choose

We remark that one can simultaneously impose the conditions

Using Lemma 5 we conclude the proof of proposition 3.

COROLLARY 6:

Proof. - We first remark that

By proposition 3, this last expression converges to 1 as a diverges. This
implies that P~y(~), and ’ the corollary follows from (3.5).

COROLLARY 7. - For any fixed time s and ~ fixed state xa, we have

Vol. 57, n° 3-1992.
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Proof : - Using Markov property we deduce for a large

By proposition 3, this last quantity converges to 0 as a diverges.

COROLLARY 8. - There is a positive real number e -1 1  p  1 such that

for a large enough and any integer n we have

Proof - The proof is by induction. For n = 1 the result is obvious

from the definition of ~3a. Assume now that the inequality holds for the
integer n. We will prove it for n + 1. Using Markov property we get

which from the induction hypothesis is smaller than

On the other hand it follows from formula (2. 7) that

Using again Markov property and formula 2. 6 we obtain

This last quantity converges to zero by Corollary 7. Therefore it becomes
smaller than for a large enough and this concludes the proof.
We conclude this section by a lemma concerning the time scale j~.

LEMMA 9:

Proo, f : - By the definition of (3a we have
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Since

we conclude the proof by using the Markov property, namely we have
the inequalities

and this last quantity converges to 0 when a diverges.

IV. PROOF OF THE MAIN RESULT

We come now to the proof of the first part of Theorem 2. The distinctive
feature of the exponential law is its factorization property. In the next
Lemma we will prove that the same property holds asymptotically for the
random variable 

LEMMA 10. - Let sand t be two fixed positive real numbers, then the
following holds

Proof - Using Markov property the above expression is equal to

This quantity is smaller than

which is bounded by

The second term in the above expression decreases obviously to 0 as a
diverges. On the other hand, using formulas (2.6) and (2.7) we can

Vol. 57, n° 3-1992.



330 P. COLLET, A. GALVES AND B. SCHMITT

rewrite the first term as:

Using again formula (2. 6) the last expression is equal to

which converges to 0 by Corollary 7.
Lemma 10 insures that if the law of converges, as a -~ oo then

the limit must be an exponential law (perhaps degenerate). On the other
hand, Lemmata 9 and 10 imply that if t is a positive rational number,
then the limit

does exist and is equal to e-t. Since the exponential law is continuous this
is enough to prove the convergence for all positive real t and this concludes
the proof of (3 . 2).
The proof of (3.3) is based on Lebesgue’s Dominated Convergence

Theorem. We have

Corollary 8 enables us to use Lebesgue’s theorem and we get

This concludes the proof of the assertion (3 . 3).
In order to prove (3 . 4) we use again formula (2 . 6) to get the inequalities

Since the random variables Ui are independent and identically distri-
buted we can rewrite the expectation appearing in the lower and upper
bound in the following way:
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Assertion (3.4) follows from a straight forward computation using the
law of U 1.
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