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ABSTRACT. — The time-delay in a simple quantum mechanical scattering
process is defined to be the limit as r — oo of the difference of the sojourn
times of a scattering state and of the associated free state in a ball of
radius r, with the particle under the influence of a potential W (x). For
W (x)~|x|"*(x>1) at infinity, we use a smooth localization function
with the tail growing like r'~®(8>0, depending on W) instead of the
characteristic function of a ball of radius r and it is shown that the time-
delay exists and satisfies the Eisenbud-Wigner relation.

Risumt. — Le temps de retard (time delay) pour un systéme de diffusion
simple en mécanique quantique est défini comme la limite lorsque r — oo
de la différence des temps de séjour dans la boule B,={xeR"||x|<r}
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90 A. MOHAPATRA, K. B. SINHA AND W. O. AMREIN

d’un état de diffusion et de I’état initial libre qui lui est associé. Nous
considérons des potentiels W(x) a courte portée a décroissance lente
(W (x)~| x|~ avec a>1 lorsque | x| - o0) et nous déterminons I'existence
du temps de retard et la validité de la formule d’Eisenbud-Wigner si la
fonction caractéristique de B, est remplacée par une fonction de localisa-
tion lisse 0,, avec grad 6, (x)=0si | x|/r¢[1,1+r~°] pour un >0 dépendant
de W.

1. INTRODUCTION

Here we continue the work on time-delay and Eisenbud-Wigner formula
following those of [1] and [2]. In these papers, the time-delay was defined
as the limit as r - oo of the difference of sojourn times of a scattering
state of a quantal particle and of the associated asymptotic free state in a
ball of radius r, with the particle under the influence of a potential W (x)
behaving like |x|~27¢ at infinity. For short-range potentials with slower
decay like |x|~' ¢ at infinity, Wang [3] and Nakamura [4] gave proofs of
the existence of time-delay, with sojourn times being calculated with the
help of a C* localisation function y,, where ¥, (x)=x (| x|/r) with x (x)=1
if |x|<1, =0 if |x|=2. From a physical point of view, this is not
satisfactory since as r — o0, the tail of the localisation function grows at
the same rate (linearly) as its main support (i.e. all x for which y,(x)=1.
We use instead a localization function ¢, (defined in Section 2) whose tail
grows at the rate ! ~® (3 postive and depends on the potential) while the
main support grows linearly. For large r, this gives better localization than
that of [3] and [4] though not as satisfactory as the one given by the
characteristic function of the ball of radius r. In [3] and [4], the potential
is assumed to be C* and pseudo-differential operator techniques were
used while we use exclusively commutator methods. We would also like
to mention the work of Jensen [5] in which the equality of the Eisenbud-
Wigner and Lavine’s expressions for time-delay was established for essen-
tially the same class of potentiels though no attempt was made to derive
either of them from the sojourn times. For a survey of earlier works on
time delay, the reader is referred to [6].

It is well known [7] that for short range potentials (which may have
some local singularities, but decaying like | x|™' 7%, £>0, as | x| — c0), the
wave operators exist and are complete. However, for the existence of the
time delay for such type of potentials, one seems to need a modified free
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CONFIGURATION SPACE PROPERTIES 91

evolution similar to that used to show the existence of wave operators for
smooth long range potentials (see Chapter 13 of [7]).

This paper is organized as follows: the Section 2 deals with the notations,
definitions, known results of scattering theory and the statement of the
main result. The next section is devoted to the study of some of the
properties of the modified free evolution and the abstract theorem of
Martin (see Chapter 7 of [7] and [8]) in the present context. The main
theorem is proved in Section 4. In the Appendix we verify the hypotheses
of the abstract theorem and an auxilary result needed for the main
theorem.

2. NOTATIONS AND THE MAIN RESULT

As in [1] and [2], we denote by
Q=(Q1, RS Qn) and l_):(Pla ~'~9Pn)a

the position and momentum operator respectively in the complex Hilbert
n

space # =L?(R"). The free Hamiltonian is H,=P2= Y P? and the total
i=1

Hamiltonian has the form H=H,+ W (Q), where W satisfy the following

conditions:

(i) W is a real valued C3-function on R"
(i) for any multi-index m=(m,, ..., m,), with

0<|m|=Y m;<5 and some a(l <a<2), .1
j=1

D" W (x)|=|om105>. . .amW (x)| <K (1+|x])~I™1=

It should be noted that W need not be spherically symmetric. Under
the hypothesis of (2.1), the total Hamiltonian H is self-adjoint on D (H,)
and bounded below, where D (H,) is the maximal domain of H,. If we
denote the two unitary groups generated by H, and H as U, and V,
respectively, then it is know [7] that the wave operators
Q,=s. lim V}U, exist and are complete so that the scattering operator

to>tw

S=0%Q_ is unitary. Further S commutes with H,. In the spectral repre-
sentation L2[[0, c0), L*(S”"Y); dA] of H,, S is decomposable as
{S(M) }1c 0. ) Where S(A) is unitary in L2 (S®~) for all Ae (0, o0), S®~ 1
being the unit sphere of dimension (#—1) embedded in R". It is also
known that under the condition (2.1) the Hamiltonian H does not have
any positive eigenvalues [9]. In fact, H does not have any positive singular
spectrum.

Vol. 57, n® 1-1992.



92 A. MOHAPATRA, K. B. SINHA AND W. O. AMREIN

We shall denote by A, the selfadjoint infinitesimal generator of the
1
dilation group in L?(R") and observe that A=5(l_’. Q+Q.P) on C7 (R").

In the sequel we use the following notations:
" 1/2
Q=T )" c@=arioprn (ay=arann
j=1

IEI=<Z P?)m, W(a_c)=wo_c)+%)_c.vwo_c),

1/ 1 1
Ayg=—-—P.Q+Q.P[—=].
o=3(jop) -2+ ()
For any n=0, let

@pz{fejf :{(Q> fes# and the Fourier transform f of f has
compact support in R™\ {0 }}. It is clear that &, is dense in J# for every
p20, 2,,€9,, for p;=zp, and 2,cD( A H*), D((Z )*) being the
domain of (& )*, and that A, is well defined on 2,. The symbol K in
the following is used for generic constants.

We need a result on the norm differentiability of S(A) due to Jensen
[10], which we state without proof.

ProrosiTioN 2.1. — Let W satisfies (2.1). Then S(L) is five times
continuously norm differentiable in (0, o0).

This follows from Theorem 3.6 and equation (3.2) of [10].

CoROLLARY 2.2. — Let feD(AM) for 0Zpu<5 be such that
f=V(Hy) f for some Y e CZ (0, c0). Then S feD ({ AHY).

Proof. — The proof is trivial for u=0. For p=35, we note that
5
A’Sf=) 5) ad’, (S)A>~J, where ad? (S)=S and
ji=0

adi (= 1A, . (A S )

' d .
Then the result follows from the fact that (A f),=2i k;lj%+ifl in the

spectral representation of H (see [10]) and Proposition 2. 1.
To state the main result we need to have a few definitions.
Let ¢,(r=1) be a C!-function on [0, co) such that
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CONFIGURATION SPACE PROPERTIES 93

(1) 0=, (w1 for all uel0, ),

1 for 0Zu<l
(i) @,w)= (0 for u=1+cr® 2.2)
for some fixed ¢>0 and 0<0<1, ’
and

(i) |9} <K
for some K>0 for all ue[0, ).

Define P, to be the multiplication operator by the function (p,( |x_|_) in A#
r

and observe that ||P,||=1. We define the sojourn time for the particle in

the fuzzy ball {g_c : (p,<m>;é0} with and without the potential as
r

j dat||P,V,Q_ f||* and j dt||P, U, f||* respectively (f € #). Then the
tir—ngé delay 1. (f) for the fuz—zy ball in the state fis defined as:

5 ()= j PV SR, UL S D . @.3)

The (global) time-delay t(f) in the state f is defined as t(f)= lim 7, (f),
if the limit exists. As we shall show in the sequel, for a suitable dense set
of vectors f, t(f) exists and can be computed in terms of the S-matrix
S (M). The precise result is our main theorem.

. o
MaiN THEorREM. — Let P, be as above with §<

1

and fe9
(xt+2) / T
for some n>0. Then

(i) for each r>1, 1, (f) exists,

@ii) ©(f)= lim 7,(f) exists, and

r = oo

(iii) r(f)=fwd)»(fx, {—iS*(X)%)L—)}fx)

3. MODIFIED FREE EVOLUTION

Here we define and study some of the properties of the modified free
evolution. We set

t o

X (@)= ij W(2sP)ds,

' 3.1
Yi=exp(—iX®), Tr=U, Y},

Vol. 57, n® 1-1992.



94 A. MOHAPATRA, K. B. SINHA AND W. O. AMREIN

where the signs + are to be considered according as ¢=0. Then it is easy
to see that by virtue of (2.1), X} is selfadjoint on the maximal domain
and thus Y and T are unitary operators (though not groups) for all .

LEMMA 3.1:
(i) Y -1 strongly as t > % 00, and
(i) @, =s. lim V*TZ exists and Q. =Q,.

t—>tow

Proof. — Part (i) follows from the inequality
t o
lexp (=i X (k)—1 |§K|f ds(1+2s|k|)™| for k#0
t

and an application of the dominated convergence theorem.
(ii) Let >0 and f € s#. Then

[VFETS f=Q, fISIIVFTS f=VEU f||+]|VFU, f=Q, f|

=[|YF S HVEU f~Qs f |0
as t — oo. The proof for t > — oo is identical. W
* Lemma 3.2. — Let yeCq (0, 0). Then for all teR, we have the

following:
(1) for any multi-indes m, with

1=|m|=4,  |D"XF®V(EP) =K A+][)
for some constant K, depending only on m and \y and not on t and k,
@) [[<QX*YFY(Hy) Q) *||£K,, where K, depends only on p and s
for0=ps4,
(iii) for any integer j (1<j=n) and t#0,
1Q; (Y =D (Ho) {QY | <Ky |#[' ™,

where K, is a constant depending only on \,
(iv) for 12j<n, 0<p3, [[CQ) ™0, X Y (Ho) { Q|| K., where K,
depends on \y and p but not on t.

Proof. — 1t follows from the definition (3.1) and (2.1) that for any
multi-index m with [m|<5 and k#0,

|DMX (k)‘<K[f d5|2sl|"‘|(l+2lsk|)"°‘ |m||

KQa—2)"t|k|"®*ImD forall rteR 3.2)
K(—=1)7127|k|~C*ImD|s|' =% for 1#0. '

Thus (i) follows from (3.2) and the support property of V.
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A simple computation shows that for each j (1=<j<n),
Q. Y1) = > K (m,, my) [071 X (O)"

1=m;+my =4

mj, mp =0, integers
x [P X (B2 Y Q™M™ (3.3)
where p,; and p, are nonnegative integers depending on m, +m,.

Note that for any nonnegative integer /, QY (H,){ Q)" is bounded
1
by Proposition A.2 (i) and that Q)Y (Hy)= > K(m)V; ,(P)QF, with

=0

constants K (m) and ¥; e C§ (R™\{0}). This,m(3 .3) and part (i) leads to
1QF Y ¥ (H)<Q)™*||=K,, (.4)

where K, is independant of . The proof of (ii) is completed from (3.4)
on observing that

IQI*YEWMH) QY™ *||Sn ¥ [|QF Y W (Ho) Q) ™|,
i=1

and by interpolation between p=0 and p=4 (see [11]). The proof of (iii)

follows from (i), Proposition A .2 (vi) and the estimate

|(YE @ =DV (k)| <X @V (kP =K ][]
The proof of (iv) is similar to that of (iii) if we use the part (i) and the
Propositions A .2 (i), (vi). W

We now prove a result similar in spirit to that of Martin [8]. Before
that we need a simple lemma.

LemMa 3.3. — Let Hy, H, Q,, S and P, be as in Section 2. Then for
each r=1

() ||P, U, f||eL*(R, di) for all f €D,

(i) |P, TS f||eL*(Ry, di) for all f €Dy, where R, and R_ are [0, o)
and (— o0, 0] respectively,

(i) ||P, V,Q_ f||eL*(R; dr) for all f €D, and

(iv) 1,(f), as defined in (2.3), exists for all f € D,,.

Proof. — The part (i) follows from the local smoothness [12] of P, with
respect to H,. Since

1P, TE £I=[P QI I[KQYT*YF W (H QK QY™ UL f
where yeC® (0, o) such that y(H,) f=f, the required result (ii) is a

s

1
consequence of Lemma 3.2 (ii) and the smoothness of (Q )" for u>§ .

Similarly (iii) is arrived at by the local smoothness of { Q ) ™" with respect

Vol. 57, n° 1-1992.



96 A. MOHAPATRA, K. B. SINHA AND W. O. AMREIN

1 .
to the total Hamiltonian for p>§. Thus it is clear from (2.3) that t,(f)

exists for every fin 2,. W
THEOREM 3.4. — Assume the hypothesis of Lemma 3.3. Let Sfurthermore
f €Dy be such that
|v.Q_ f—T; flleL*(R_, df) (3.5
and
||V,Q_f—T,+Sf||eL1([R?+,dt). 3.6)

Then
3

()= lim ()= lim ) r(f)

r— o r- o j=1

= lim [dez(”p, T} S f|P-||P, T} fHZ)}
0

r = o

+{ f wdt(IIPrTffIIZ—IIPrUtfHZ)}
+{ f di(|P,T; £~ [P, U, f ”2)}].

Proof. — Since fe2,, 1,(f) is well defined by Lemma 3.3 (iv). We
write

3 ©
L(N= 2= @l @Sy, t)*‘fo atl; (f, 0, 3.7
j=1 -

0
where J;* (g, )=||P,V,Q, g||>*—||P, T g || for 1=0. Since
37 (Lols2fAIlv.Q- =T/ 1
and
IS A ol=2) IV S =T S rl|=2| f || V.Q- /=T S 1]

the results follows by an application of the dominated convergence theorem
to (3.7) and the fact P, converges strongly to [ as r - 0. W

4. PROOF OF MAIN THEOREM

In this section we show that if f and S f €91, 9, for some n>0,
and (3.5) and (3.6) are satisfied, then © (f) and 1 (f) converge to
zero while 1("(f) converges to the Eisenbud-Wigner form as r — co,
thereby proving the main theorem stated in Section 2. The verifications

Annales de I'Institut Henri Poincaré - Physique théorique
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of (3.5), (3.6) and the fact that S f€ 2, .4, for some >0 [depending on
o of (2.1)] when fe 2, are done in the Appendix.
Let @, be as in Section 2 and we write

~ 1
0,=¢? and 6,=0,,,-1,  where A @.1

We also note from (2.2) that
(i) 8,eC'[0, c0), 0<8, (W) =1,

1if0Zu=<1

4.2
0if u=1+c 2V, “.2)

) 8,00= |
(iii) |0, w)|<2K@2v)
It is well known (Chapter 3 of [7]) that for any bounded function ¢ of Q
one has: B

Uro(QU,=Z114,0(21P)Z,,4, 4.3)
where Z,=exp (iQ* 7).
Then an easy calculation as in [1], using the change of variables

s=—-r— and v=§1— (so that 0 <s< oo and O<v<%) and the definition of

P, in Section 2 shows that

j di|[P, T f|P
R+

® ds ~ (P
=j m(Yins)_lf; Zivsev(Li)Zisti(ttvs)—lf)} (44)

0

f dtllP,U,f||2=f & (ﬁzmg@v(—"-">zivsf>, @.5)
R+ 0 4VS2 Ky
and

© ds (. o (IB| =ir” “ i
L 4vs2(f’ev< P >f> [4\, . O, (w) du Rndklkl |7 k> (4.6)

We know that the first two of the above integrals exist for fe 9, by
Lemma 3.3, while the last one in (4.6) also exists for all
feP,=D(Hg ''*). The following theorem is an improvement of the result
in the Appendix of [1] adapted to the present situation. For brevity in the
presentation we adopt the convention that YI =1, which is consistent
with the result in Lemma 3. 1.

=]

Vol. 57, n® 1-1992.



98 A. MOHAPATRA, K. B. SINHA AND W. O. AMREIN

THEOREM 4.1. — Suppose that fe€ %, +p With 0<B<1 and that in (4.2)
0<d<min(ax—1, B/2). Then

lim f " 4ds2[<Y$pf, zzvsév<ﬂ)zhﬂi,,f>—<ﬁ @(ﬂ);ﬂ
voot Jo 4vs s s

(A )=0, (@.7)

where p is either oo or (4vs)~!, and A, is given in Section 2.

Remark 4.2. — Note that since the support of @is contained in the
support of f for all S€D,(nz1), it follows that such an feD(A,) and
thus (f, A, f) is well defined.

The proof of the theorem proceeds via a few lemmas.

LemMmA 4.3. — Let 0<B<1 and let f€eD,,y and geD,. Then for any
real T#0,
1@ =D =Kt P2 |Q[*® 1],
@):
4.8)

(i) |THZ-Df9+i Y (Q;f, Qo)
j=1

=K’

PPN lell @.9)

where the constants K and K’ depend only on B.
The proofs of (i) and (ii) are elementary using the estimate

L G VSR TP
and
[171 (e — D—ix? |20 g | x 22
respectively for any ne[0, 1].

LEMMA 4.4. — Let f€9,. Then for every v>0,
175 Ellenen () (on(2)ca)
4 0 S j=1 N N
1
= _E(f’ Ao ).

The proof of this lemma is exactly as in the Appendix of [1] since
6,(0)=1 and 8, (c0)=0 for any v>0.

Annales de I'Institut Henri Poincaré - Physique théorique
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LemMma 4.5. — Let fe€D, and No=sup {|k|; k in the support of J'}.
~ ~ ~ P 1
Denote by 0-=1—10,. Then 0; <|;|>f=0for s>N, and 0<v<2.
s

This is an easy consequence of the fact that f(k)=0 for |k|>N, while

(f)vl(|—k|—>=0 for |k|<s.
s

Proof of Theorem 4.1. — We shall prove the result for the positive sign
only, the proof for the negative sign being identical. Setting fp=Y;—L fand
using Lemma 4.4, we can rewrite the left hand side of (4.7) as

lim j ds S (v, s), where
0

voot

e s)=4—vls;[<f.,, Ztsév(%')zvsf) (fp, ev( )

)
g for s (G-

)]

Eﬁ[j(l) (v, 5)+ I (v, 9] 4.10)

A

= —ﬁ[ﬂ"”(v, )+ IFD (v, 9. @.11)
\")

In the above,

é(' ‘)(zvs—l)f,,),
SOy, s)=2Re|:<(sz Df, 0 ( ) > 4.12)
z

ok wran()7)]

and #® and @ are same as SO and F® respectively with 8, replaced
by 0:. We divide the range of integration in s into (0, No] and [Ny, o),
where N, is given in Lemma 4.5. Note that by Lemma 4.5, #% (v, 5)=0
for all s>N,. On the other hand, we have

DR S PTG [

Vol. 57, n° 1-1992.
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and by Lemma 4.3 (i),
”lB'(sz_I)fp”Z: Z: “Pj(sz—I)fPHZ

SKE)' P Y QIPY P fIP+8vAs2[<QYYS £ (4.14)
j=1

By Lemma 3.2 (ii), [[|Q['**Y} P, f|| and [{Q)>Y} f] are bounded
uniformly in p for all fe, ;. Since ’iz?)&(u)lgl, (4.11), (4.13) and
u

(4.14) yields
f ds I (v, s) §K,[ij sd—s+vf évJ—»O as v 07,
-B 2
No § No §
Next we deal with the integral over (0, N,]. By Lemma 4.3 1),

No
No dy No  dys
FO(y, 5)|< Z.-D 1|
L 4vs? v S)l_L 4vs2”( 2l

o [N ds 1+ 1+ +
<K v P QP £ ] >0 as v-0*,
0

4vs?

since 0<B<1land [[{Q)'*PY; 1| is bounded uniformly in p for f e Di+p
by Lemma 3.2 (ii).
Finally we write #® =2Re[#? — #9)], where

IP, 9)=(Zy=D) f,, 8, f)+ivs Z Q; f,» Q;8, 1)
and ’ 4.15)
j(ZZ)(V’ 5)=ivs Z: {(ijp’ Qjévfp)_(ij, Q]évf)}

Here we have suppressed the argument | P|/s of the function d, for brevity.
By Lemma 4.3 (ii) we get that

No ds
IPD (v, s
_[) 4vs2” ! v, )

No ds n X
§K‘f 200" LN AN £ @.16)
0 $ i=1
Now by Lemma 3.2 (ii) and the support properties of f,
0 0 5 (IR
1Q;8, £, [1=11Q, 1+ a_Pjev<~s_>ﬂ

P, o(IP|
s+ e (1),

la~]

<K,(1+v7®, (4.17)

Annales de I'Institut Henri Poincaré - Physique théorique
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for fe D, ;. Combining (4.16) and (4.17), we have

No ds No
f 321 S <K, j ds s/ —1 (Vﬁll + V(B/Z)—S)
o 4vs o

—0 as v—> 0" since §<B/2. In (4.15), note that £? (v, s) is identically
zero where p=co and hence for this case the proof is complete. In the
case when p=(4vs)~!, we make the following estimate using (4.17) and
Lemma 3.2 (iii):

|72 91=vs T AN, =D fIIQ0. 4l

QN2 (Y7 —DVH) QY [[[[<Q)8, £}
<K (vs)pr (1 + v =Kj (v + v d) 5%

Thus

No ds 1 No
J Zf(zz)(v’ S) —_<—ZK§ (va—l_,_va—l—a)f Sa—zds
0

o 4vs

—0asv—0" since a>1 and §<a—1.
We end this section by giving the proof of the main theorem stated in
Section 2.

Proof of the main theorem. — As mentioned in the beginning of this
section we shall assume here that for fe 2, ,,, with n>0, S fe 2, ,, for

0<B<§~£—; and that (3.5) and (3.6) are verified for such f, the proofs
being given in the Appendix (Theorems A.10, A.3 and A.15 respectiv-
sely). Thus given & such that 0<8<52;_—+12) , we can find a Be(O,Z—Ié)
such that 8<—[25 and apply Theorem 3.4. And using the notations of the

same theorem, we shall show that 1 (f) — 0 as r —» oo for j=2 and 3.
In fact by (4.4)—(4. 6) we have

1(2) (f) J [(Y(4vs) 1 f Z* ev sz Y(4vs)— 1 f)

Vs TV Vs

-(£ 8, N1 J

. P A
where we have again suppressed the argument u of the function 6,.

=™ =

-1
Since we can find a Be(O, oc_+5> such that 8<5<cx—1 and since by
o
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Theorem 4.1 each of the above integrals converges to —%( fiAgf) as

v—- 0%, we conclude that ©'®(f)— 0 as r — co. Similarly one arrives at
the result lim t® (f)=0.

r = o

We not that (s £.0,8S)=(f, 8, ) and using (4.4)-(4.6) we write

) (f)= j S Vo1 4, 280,20 Y 15)

v vs

—Sf, GVSf)]—r

1
which by Theorem 4.1 converges to —E(S fo ApS f)+%( fLAgf) as
v—>0". Thus by Theorem 3.4, t(f) exists for all feZ,,, and
1
t(f)= —5( f, S*[A,, S] f). Finally we obtain the Eisenbud-Wigner for-

T(f)=de)»<x,{ S*m"sm}ﬁ)

in the spectral representation of H, once we take note of the

Proposition 2.1 and recall that (A, f), =2 li{)i |

mula

APPENDIX

Here we prove the three assumptions made in the proof of the main
theorem. First we collect the known results in the form of a few proposi-
tions and then we prove the ecasiest of the three viz. (3.5). Next we
establish the decay properties of V,_, U, upto the order o+ 1 using commu-
tator method which leads to the proof of the result that if fe Z;,,, then

Sfed, ,pfor0<P< 0%. The proof of (3.6) is long, though not compli-
o

cated. For this part, we omit most of the details since the methods are
identical to those for getting the lower order estimates.

ProrosiTiION A.1. — Let yeCg (0, ©) and pneR,. Then there exist
constants K and K, independent of t, such that

(i) [|[<Q)™* U, ¥ (Ho) Q) H||SK (1+]t)) ¥,

(i) ||[CAYFUVH) CAYH|SK (1+]|1])” “

For proof, the reader is referred to [13] or Lemma 2.4 (ii) of [14].
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ProposITION A.2. — Let either YeCZ (0, ) or Y(A)=(A+w)~! for
some 0>0 such that —oepH)NpMH,y), p(Hy) and p(H) being the
resolvent sets of H, and H respectively. Then for any peR

i) CQ*VH)(Q) ™  (QIPU(H)(Q)Y ™,  (QY AV (Hy)
{ Q> 7" are all bounded operators,
(i) the three expressions in (i) are bounded, when H, is replaced by H,
(i) (QM exp(—it(Ho+m) < QY *||SKA+|z])*! and
[<Q> *exp(—it(H+ )™ ) {QY||SK (1 +][e)*],
(iv) <QX*{ VM)~V (Hy) }{Q>** is a bounded operator.
(v) Let W satisfy (2.1), and let &, e C3 (0, 00). Then for each ne|0, o]
and €>0, there is a constant K such that for all s, te R,
(@) [<QY*EM) VLQ) ™[ SKA+]|z])
®) [<QYMEM)V,_ Uy (H) {Q) H||[SK (1 +][z[) 7+
(vi) Let feD, and let Y, Y,€CZ (0, ©) such that Yy (Hy) f=f and
ViU =V. Then Q; f=V; (Ho)Q; fand A f={, (Hp) A /.

This proposition is proven in Sections 3 and 4 of [2] except for (vi)
which is easy to verify.

TueoreM A.3. — Let fe D, .., for some n>0. Then

JO IV.Q_ T /|| di<co.

Proof. — Using the identity (see Chapter 13 of [7]) :
UrWQ-w@e:P)y,

1 n
=f de,’jp[ ajW(p(_))U,/ijJritAW(pC_))U,,p],
0 ji=1

we have that
[V.Q_f-UY; 1|

éJ‘ dsf dpli_g ”ajw(pQ)Us/p\l/l(HO)Qij_\IJ(HO)f”

+s[[[AW (pQ Uy, W (Ho) Y; f |1, (a.1)
where we have used the Proposition A.2 (vi) with ¥ and {, such that
f=V(H,) fand ¥, y=V. Now the result follows from (a.1) and (2.1) by
using the Lemma 3.2 (ii) and Proposition A.1. MW

Now we give a few preliminary results.

LemMa A.4. — Let EeCY (R). Then
(1) for any real numbers p, and n, with the proterty that p, +p,<a,

(Q) 1y ad} {E(H)~EHo) } Q) is bounded for m=1,2, 3,

(i) <Q *adyEM))Q)>™* is bounded for all peR, and each
m=1, 2, 3.
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(iii) Let p, and p, be as in (). Then for any j (1<Lj<n),
(QYu P{EM)—EH,) } (Q)n, is a bounded operator.

Proof. — Without loss of generality assume that £e C{ (— o, c0), where
o>0 be such that (Hy+w)>1 and (H+w)>I. Let{ be defined by
L) =E&(A"'—w); observe that {e CZ (R) and that support of { is contai-
ned in (0, 00). With Ly=(H,+®) * and L=(H+®) ", we have

E,(H)=C(L)=(2ﬂ)‘1/2jw L@ye dr

and

E-»(Ho)ZC(Lo)=(2n)‘1/2JOO ()™ dr.

Now

(A, EH) =EHy]=(-)@2m)~" r} drg (0 Jtds [A, e CTILW Ly e'to’].

0

The proof for m=1 in (i) is completed by expanding the commutator
above and observing that by Proposition A .2 (i)-(iii)
[KQDpi[A, €™ "I LWL, ™ 1{ Q) p, ||

is bounded by a polynomial in ¢ and s. The proofs for m=2 and m=3 are
identical, and that of (ii) is a consequence of (i) and Proposition A.2 (i).
The proof of (iii) is same as that of Lemma 5 of [2]. W

Lemma A.5. — Let @:R"— R satisfy (2.1) with ®(x)SK (1 +|x|)™,
vza, and let , &, &, € CT (0, o0) such that £, £=E. Then for each pel0, o]
and each €>0, there is a constant C such that for all s, te R

i) [[<QYTFEM) V@ (Q U,y (Hp) ( Q)™ *W|
SCA+|t]) e +]s|) ™o,

where
1 for asv<a+1
k(v)=
2 for vza+l,
and

(i) [[<Q)EM)V,_,[A, & (H)IWU, ¥ (Hy) {Q)* 1|
<CO+[t) e +|s]) L

Proof. — Note that (i) is trivially true for p=0 and is seen to be true
for p=a—1 as follows. By Propositions A.1 and A.2 (v)a, the expression
on the L.H.S. of (i) is bounded by

C(l + | t_sl)—min(p,v—~u(v))+a(1 +IS|)—M(V).
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If | t—s|z |2| then the above estimate is majorized by

C+[e)H e +|s]) ™.
On the other hand if |¢—s|<]||/2 then the same expression is bounded
by C(1+|s]) Y =C(1+|¢]) (1 +]s]|)*" since in this case |s|> |—2t—|

Choose Y, €CZ (0, o) such that Y, Y=\ and set £,(\)=A"1E)
implying £e C§ (0, o0). Then

(A, Vo & (H) @(Q) U, ¥, (Hy)]
=2tHV,_ &, (H) Q@ Uy, (Hp) +2iV,_, &, (H)® U3 (Ho) Hy
+V,_ & (A, QU (Ho) =25V, & (H) { WO +[Ho, @]} U, (Ho)
Vi [A, & (H)] @ U, (Hop) -2

X Jt d vV, WV, & (H) U, (Hy). (a.2)

We premultiply and postmultiply (a.2) by <(Q)>7*&,(H) and by
Y(Hp){ Q) * ™™ respectively, note that jy=0, use Propo-
sition A.2 (i) and (ii), and rearrange terms to get the estimate that for
some constant K, >0,

K, |7][[<QY*EMH) V,_, @ Uy (He){ Q) V||
<[ <QY™ 1V, & (H)® U, (Hg) (Q)~* ||
+[]<QY &, ()& () V,, 0 U, (Hy) (Q)**¢*! ||
||<Q> e, (H)E, (H)V,_[A, OJU VW HHCQ Y™ u(v)”
+]s][[{Q) &, ()& (H) VY, _,
><{W(D_A(D"zivq).P}US\I;(HO)<Q>—a~x(v)”
+”<Q>_u&2(H)V,_S[A, E-'l(H)](DUs‘l’(Ho)<Q>_°'_”("’H

+j dt||[<QY & (H)V,_ . WV,_ & (H)® U,y (Hp)
QY™ ™V (a.3)

Now, the first, second, and third terms in (a.3) are majorized by
constant. |7]7**1*¢|s|7*™ by the estimate given in the first paragraph of
the proof. In the fourth term of (a.3), first we note that by
Proposition A.2 (i) we can essentially ignore the P, in it and that W ®, A®
and V@ are bounded by (1+|x|) oo (1+]x])” (v+2) and (1+|x|)” W)
respectively. For [7— we split these exponents into
vta—1-xkW)(v+1-x (v)) (v K (v)) respectively) and 1+« (v) and use
Proposition A.1 to the right of the expression while on the left we use
Proposition A.2 (v). Since all the exponents v+a—1—x(v), v+1—x(v)
and v—x (v) are greater than or equal to ao— 1, this shows that the fourth
term in (a.3) is bounded by const. |7|7**|s|7'7*™. For |1—s|<]|t|/2,
we use the Proposition A.1 to the right of the expression to get a
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majorization by Const. |s||s| @™ <Const. |7|7**|s]| ™™ since
|s|>]|¢]/2 in this case. Thus the fourth term of (a.3) has the requisite
bound. The fifth term can be handled similarly on wusing the
Lemma A .4 (ii).

In the sixth term for |7—s|>|7|/2, the decay in | 7| is obtained from the
t-integral on using Proposition A.2 (v) a while that in |s| is from the free
group decay. For |t —s|<|¢|/2, the free group decay from Proposition A . 1
gives decays in |s| and || (since | s|>||/2 in this case) while the integrabil-
ity in t is assured by the Proposition A.2 (v) a as before. The proof of
(i) of this lemma is finally completed by dividing by | 7| in (a.3), observing
that the L.H.S. of (i) is a uniformly bounded operator and by interpola-
tion. Note that

EH)[A, &, (H)]
=& (H)adj (&, (H)—&, (Hy)—2i& (H) [HE] (H) —H, & (Hy)]

since &) £=0. Now the proof of (ii) follows easily from Lemma A .4 (i),
Proposition A .2 (iv) and an argument identical to that of (i). W

Remark A.6. — Since A is not a bounded operator, the calculation
(and all similar ones in the sequel) of commutators of A with a bounded
operator is to be understood in the sense of a quadratic from on
9,,%9,, for suitable v,, v,=1. However, it is often the case, as in (a.2)
for example, that the commutator has a bounded extension [e.g. that
given by the R.H.S. of (a.2)].

The next theorem 1is an improvement over the result in
Proposition A .2 (v).

THEOREM A.7. — Let W satisfy (2.1) and &, ye C3 (0, 00). Then for
each 1[0, a+ 1] and €>0, there exists a constant K such that for all s,
teR

@ [[<QY " EM) V,(Q) K1 +[e])7+, .

(i) [(QYMEM)V,_ Uy (Ho){Q)*|[|SK (1 +]r]) 7+

Proof. — Since (i) follows from (ii) on setting s=0 and =1, we shall
obtain both results simultaneously if we do this substitution at each
step. Without loss of generality we assume 0<e<a—1 and choose &,,
V,, &, and write down the estimate as in the proof of Lemma A . 5:

K'[¢][[<QY™* Te(H) V,_, Uy (Hy) Q) 1|
<<QY ™ e, (H)[A, V,_ &, (H) Uy, (Ho) W (He) Q)Y 1|
+s[I<QY ™ E,(H)V,_ & (H) WU (Hy) Q)1
HICQY™* e, (H) V,_[A, &, (H)] Uy (Hp) Q)|

+J [<QY ™ 'g, (M) V,_, WV,_ & (H) Uy (Hp) Q) * *||dr, (a.4)
for some constant K’'>0.
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The first term on the R.H.S. of («¢.4) is bounded by constant.
(1+]|¢])~*** by Proposition A.2 (i), (ii) and (v) b, while the second term
admits an identical estimate by Lemma A.5 (i) with ®=W, v=o and
K (v)=1 (note that for case s=0, y=1 this term is absent). An identical
bound for the third term of (a.4) results from a calculation similar to
that in the proof of Lemma A.5 (i).

The estimate of the last term of (a.4) is not immediate and needs a
commutator calculation viz.

[A, V,_ & (H) WE,(H) V. &, (H) Uy, (Ho)

for suitable choice of &5 and &, in C§ (0, o). A repetition of the arguments
and estimates as above in the proof of Lemma 4.5 leads to the necessary
bound for both cases:

j 1<Q)™*E, (M) V,_ WV, _ & (H) U,y (Hp) Q)" | du
<Const. (1+|¢])7***. (a.5)

This completes the proof. M
The next two lemmas are preparatory material for the result that

-1
Sfe?, 4 for 0<B< % when fe %, ., for some n>0.

Lemma A.8. — Let Q., S be as defined in Section 2. Then Q. map
D +q into D(Q)) while S maps P, .., into D, for every n>0.

Proof. — Let fe%, and ge %, ., for some n>0 such that £ (Hy)g=g
for some £e C§ (0, o0). Then

Q; /. e VU, 9)=(/, EH) VI U,Q;2)+(/, [Q;, E(H) V¥ Ug)

and thus it is enough to show that |(f, [Q;, & (H) V¥ U]g)|<Const. || /]
for all fe 2,. Now,

Qe VI U,1g=[Q; 6 (H) =& (Ho) VI U, g
+2P;& (Ho) Vi U,g =21 VI[P, E(H) - E(H) U, g

t
+2f TdtV¥O,WV,_ E(H)U,g. (a.6)

0

The first part of the result follows by applying the Proposition A .2 (iv)
to the first term, Lemma A .4 (iii) and Proposition A .1 to the third term,
Theorem A.7 (ii) to the last term in (a.6), and letting t —» + c0.
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Let £, g, £ be as before and choose e Cg (0, o0) such that y&=E&. Then
we have

[Q; W (Ho) UF V,.E(H) VEY (H) Ul g
=2P; ¥ (Ho) UF V,EH) VIV (H) U g
+V (Ho) US[Q;, E(H)]V, W (H) U, g
—2ty(Ho) UF [P, E(H) —EH] V.-, y (H) U, g
TV (H) UFV,_ EM)[Q, ¥y (H)]U,g
+2sV (Ho) UF V,_ E(H) [V (H) — (H), P U, g

—w(Ho)U,*a<H>V,JtrdrV:‘ajwvr_s\v(H)Usg. (@.7)

N

The norm boundedness (uniform in s and f) for each of the terms of
(a.7) follows exactly as that for the terms in (a.6). Since

s— lim s— lim y(Hy)UXV,EH)V*y(H)U,g=Sg,

t— +o0 5§ —o
we have te second result. W

LemMA A.9. — Let \, £E€CZ (0, ). Then for t, seR, Bel0, 1] and
each 1 <j<n, there is a constant K independent of s and t such that

11Q;[PW (Ho) U¥ V,_ E(H) Q)P+ || <K (1+]¢])P.

Proof. — It suffices to prove the above estimate for B=1 and then
apply interpolation. For this we note that

[Qj W (Ho) U V,_ 1=1[Q;, W (Ho)] U¥ V,_,— 2ty (Hy) P, U*V,_,
+2fs T (Ho) U*V,_,_.0,WV. drt

J
0

and that by Theorem A .7 (i), J T, WV.EH) Q) ™ !|ldi<o. W

0

THEOREM A.10. — S maps D3qn(n>0) into Di+p for every
Be(0 a—1
Ta+2 )

Proof. — Let fe%, ., and 8€Py,, for B, >0 and let &, ¥ be as in
the proof of Lemma A.8. Set G(t, s)=\ (H,) UFV,E(H) V¥y(H) U,
Then it follows from (a.7) that G (1, s) g and G (z, 5) Q; g belong to D (Q)),
and that by interpolation we have for Be[0, 1]

11Q;[PG (1, 5)Q,g||£K,, independent of ¢ and s. (a.8)
Since

QQ;P £ Gt 9)9)=(/ | QPG (1, Q) +(|Q;* £, [Q, G (1. s)] g)
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and G(s, 1)g=Sg as s— —~ oo followed by t— oo, we shall have the
required result by virtue of (a.8) if we can show that || |Q;|*[Q;, G (z, s)]g]||
is bounded uniformly in ¢ and s for B in a suitable subinterval of (0, 1].

By Proposition A.2(i) and Lemma A.8, it is easy to see that with
Y, €CF (0, 00) such that y, ¥’ =V,

11Q;1PP; ¥’ (Ho) U V, £ (H) VF{ (H) U, g ||

S[[KQYPPY (H) (Q )|
[[<QYM; (He) UF V,.EM) VIV H) Usg |, (a.8)

which is bounded uniformly in ¢, s for Be[0, 1]. Next,

I11Q; P ¥ (Ho) UX[Q;, & ()] V,_, W (H) U, g ||
<|QiP Y H)UF(Q)YF|
X [[<QYPIQ; (E (H)~E(H ) QY1
x|[<QY PV, Yy (H)Ug]||
+2[[| QPP W (Ho) &' (H) U V,_ W (H)U,g]. (a.9)

Setting W=0 (so that o can be taken to be 0) in Lemma A.9 we get
QB (He) U { Q) *||<K (1+]¢|)P while the second factor in the first
term of the R.H.S. of (4.9) is bounded by Proposition A.2 (iv). For
B<a—1, we can apply Proposition A.2 (v)b to get a bound of
(1+]1])'*P~= for the third factor in the first term of (.9) while the
second term of (a.9) is uniformly bounded as in (a.8). Thus the L.H.S.
of (a.9) is also uniformly bounded if 2B <o — 1. The third term of (a.7),
when premultiplied by |Qj|", can be estimated uniformly in norm in a
similar fashion by using Lemma A .4 (iii) for 2 <o~ 1.
Note that since ' (H,) g=0, we have

11Q;[F¥ (Ho) UF V,_ £ () [Q, ¥ (H)] U, g ||
< QPYH) UFV,_ EH)CQ)~PE V|
*[[<QYPETVIQ,E(H)—E (Hp) < Q)1 Per D
H < Q>B(m+ 1)—a+1 Usg”

which is bounded uniformly in s and ¢ by Lemma A.9, Propo-

. . . -1 . L
sitions A.2 (iv) and A.l provided that [3<O(T2 which also implies
o

2P<a—1. The last two terms of (a.7) on premultiplication by |Q;[* can
. . -1 .
similarly be shown to be uniformly bounded in norm if < 9(_-1—3 on using
o

the estimate of Theorem A.7 (ii). W

We are now left with verification of (3.6), for which we need some
lemmas.
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LemMma A.11. — Let &, yeCg (0, o0). Then for each ne(O‘Tl , oL— 1]
. a—1
there is a Be(O, T> such that

[[CAY*PEM) VU Y (Hg)(Q) ™ M||SK.
Proof. — It is enough to show the following:
() ||[|APVFEMH) UV (Hp) Q) P =K, for 0p<I,
(i) [[|APadi[VFEM) UV H)ICQ) ™ MK,
(i) [||A [P adX [VFEH) U ¥ (HpI<Q) > "||<K,,
where B and m are as in the statement of this lemma. Choose
£,€Cg (0, 00) such that &, E=E&. Observe that

adx [V} & (H) U,y (Hy)]

=[A, & (H)]VFEMH) U (Ho) + &, (H) VA, & (H)] U, ¥ (Ho)
+2iVEEH) U, Ho V' (Ho) =21 VFEH) WU, ¥ (Ho)

—2j_'drv,*+,¢1(H)W&,(H)v,u, Y (Hy). (a.10)
0

The part (i) follows from (a.10) by using Proposition A.1, the local
smoothness of { Q ) ~*?* with respect to H and interpolation.

The proof of (i) and (iii) is similar to that of Theorem A.10. It is
easy to see that |A[P[A, E(H)]C(A) P is bounded and that
APV, EH)(Q) P||<K(1+|t])®, and thus by part (i), Propo-
sition A.1 and Lemma A.2v(b), we have part (ii) if a—pB<1+n and
2—a< —1.

The result (iii) is similarly obtained by computing

|APadi (VFEH) U, Y (Hp)(Q)™*™"
and by using Proposition A .2 (ii). For example, one of the terms is

t
fd‘r
0

which is

ern |APE, )V, & HWE M)V,
x WV, EH) UV (H) Q) >l

t
§J dr|t+t|f

0

frdr1<Q>"Wal(H)vr_,,

0

x WV, EH) U Y (H)C(Q)™*™

The first integral on the R.H.S. of the above inequality looks like the
expression (a.5) and thus the above is bounded if a—pB<1+n and
2B—a<—1. W
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Lemma A.12. — Let W satisfy (2.1) and &, yeCg (0, ). Then for
each ne(0, a+2] and €>0, there exists a constant K such that for all s,
teR.

[<QITHEM) V,_ U (Ho) {Q) || SK (1+]z])#*

LemmA A.13. — Let ge %, for some n>0. Then for any ;>0 there
exists 0 <n,<mn, such that

<K(1+|c|)"27m,

r Tdt(AY T2V, E(H)),WV, ¥ (Hy) U,g

— 0

The proofs of Lemma A.12 and A.13 are very long, though not
complicated. For example in Lemma A . 13, we need to compute the double
commutator of A with V,_ E(H)d,WV__ E(H) U,y (H,) and it is here
that we need the five times differentiability of W in (2.1). We do not give
the proofs here because of their lengths and refer the reader to [15].

THEOREM A .14. — Let W satisfy (2.1) and S be the scattering operator
defined in Section 2. Then for ge,,,(n>0) and yeCg (0, ) with
V(Hpg=g,

[<QI™* U ¥ (Hy) [Q;SIg||SK(1+[c])"?7™  with n,>0.

Proof. — In the expression (a.7), if we take limit s > — oo and then
t — oo, then all the terms in the R.H.S. except the last one converge to

zero by Propositions A .1 and A.2 and Theorem A .7 (ii), while the L.H.S.
converges to [Q;,  (Hy) S]g. Thus it suffices to show that

J tdt{Q) U, Y (Hp) V,_ . E(H)O; WV, _ Yy (H) U, g
<K(1+]|oc|) 27"
But this follows easily from Lemmas A.11 and A.13. W

THEOREM A.15. — Let f€D 4., for some n>0. Then
J IV, @ f~TF S7 || de<co.
0
Proof. — A simple calculation as in Chapter 13 of [7] shows that

V,.Q_f-T; Sf=ij V,_(W-WQsP)U,Y,S fds

t

© 1
=ij dsV,_SUSJ dp U5, {VW (pQU,, QY
t 0
+isAW(pQ) Uy, Y }S f,

Vol. 57, n° 1-1992.



112 A. MOHAPATRA, K. B. SINHA AND W. O. AMREIN

so that
0 1

nv,sz_f-'r:anéf dsf d | VW (pQ Uy, QY S £
t 0

0 1
+f sdsf 1AW (b Q) U, Y, S £ |dp. (a.11)
t 0

The second integrand in (a.11) is majorized by

PR Y W (Ho) QY [[KQY ™2 Uy, S f |, (a.12)
where we have chosen YeCg (0, ) such that f=Vy(H,)f Since
S feD(]A[**?) by Corollary 2.2, the second norm in (a.12) is bounded
by (1+s/p)™ % on using the Proposition A.1. This together with
Lemma 3.2 (ii) shows that the second integral is dominated by constant.
(1+1)™°, which leads to the integrability in ¢ for this part in (a.11).

Similarly the first integrand in (a.11) is bounded by

Ko™t T {IKQO™ 1Y 9, X W (Ho Q)™

XCQY U, S £+ [[<QD* 1Y ¥ (Ho) (Q )1 |
X[[{QY™* " Uy, H)Q;S £}, (a.13)

where we have introduced Y, (H,) by Proposition A.2 (vi) and chosen
Y, eCZ (0, o0) such that Y, , =V,. Since the first two factors in (a.13)
are uniformly bounded by Lemmas 3.2 (ii), (iv) and since

[<QI™* U, Sf[sK+][s/p|)™",
it only remains to show that for each j (1<j<n) and for feZ,,,
1<Q>™* ' U, ¥, (He) Q;S f||SK,  (1+]z])* *¢ for some & small and
positive. For such f, SQ; f belongs to D(|A|**") and hence the above
required estimate follows from Proposition A.1 and Theorem A.14. W
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