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ABSTRACT. - The time-delay in a simple quantum mechanical scattering
process is defined to be the limit as r -~ 00 of the difference of the sojourn
times of a scattering state and of the associated free state in a ball of
radius r, with the particle under the influence of a potential W (x). For

at infinity, we use a smooth localization function
with the tail growing like r 1- s (~ &#x3E; o, depending on W) instead of the
characteristic function of a ball of radius r and it is shown that the time-

delay exists and satisfies the Eisenbud-Wigner relation.

RESUME. 2014 Le temps de retard (time delay) pour un système de diffusion
simple en mecanique quantique est défini comme la limite lorsque r ~ 00
de la difference des temps de séjour dans la boule 
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d’un etat de diffusion et de l’état initial libre qui lui est associe. Nous
considerons des potentiels W C!) a courte portee a decroissance lente

(W (x)~|x|-03B1 avec (X &#x3E; 1 lorsque |x| ~ (0) et nous determinons 1’existence
du temps de retard et la validité de la formule d’Eisenbud-Wigner si la
fonction caracteristique de Br est remplacee par une fonction de localisa-
tion lisse 8r, avec si + r - s] pour un 5 &#x3E; 0 dependant
de W.

1. INTRODUCTION

Here we continue the work on time-delay and Eisenbud-Wigner formula
following those of [1] and [2]. In these papers, the time-delay was defined
as the limit as r 2014~ 00 of the difference of sojourn times of a scattering
state of a quantal particle and of the associated asymptotic free state in a
ball of radius r, with the particle under the influence of a potential W (x)
behaving like x I - 2 - at infinity. For short-range potentials with slower
decay like I! 1-1-£ at infinity, Wang [3] and Nakamura [4] gave proofs of
the existence of time-delay, with sojourn times being calculated with the
help of a Coo localisation function ~, where with x (x) =1
if I! 1 ;£ 1, = 0 if x ~2. From a physical point of view, this is not

satisfactory since as the tail of the localisation function grows at
the same rate (linearly) as its main support (i. e. all x for which xr (x) = 1.
We use instead a localization function cpr (defined in Section 2) whose tail
grows at the rate (8 postive and depends on the potential) while the
main support grows linearly. For large r, this gives better localization than
that of [3] and [4] though not as satisfactory as the one given by the
characteristic function of the ball of radius r. In [3] and [4], the potential
is assumed to be Coo and pseudo-differential operator techniques were
used while we use exclusively commutator methods. We would also like
to mention the work of Jensen [5] in which the equality of the Eisenbud-
Wigner and Lavine’s expressions for time-delay was established for essen-
tially the same class of potentiels though no attempt was made to derive
either of them from the sojourn times. For a survey of earlier works on
time delay, the reader is referred to [6].

It is well known [7] that for short range potentials (which may have
some local singularities, but decaying like I! 1-1-£, E &#x3E; 0, as I x I ~ 00), the
wave operators exist and are complete. However, for the existence of the
time delay for such type of potentials, one seems to need a modified free

l’Institut Henri Poincaré - Physique theorique



91CONFIGURATION SPACE PROPERTIES

evolution similar to that used to show the existence of wave operators for
smooth long range potentials (see Chapter 13 of [7]).

This paper is organized as follows: the Section 2 deals with the notations,
definitions, known results of scattering theory and the statement of the
main result. The next section is devoted to the study of some of the
properties of the modified free evolution and the abstract theorem of
Martin (see Chapter 7 of [7] and [8]) in the present context. The main
theorem is proved in Section 4. In the Appendix we verify the hypotheses
of the abstract theorem and an auxilary result needed for the main
theorem.

2. NOTATIONS AND THE MAIN RESULT

As in [1] and [2], we denote by

the position and momentum operator respectively in the complex Hilbert
n

space ~ = L2 (f~n). The free Hamiltonian is Ho = P2 = ~ P~ and the total
.7=1

Hamiltonian has the form H = Ho + W (Q), where W satisfy the following
conditions:

It should be noted that W need not be spherically symmetric. Under
the hypothesis of (2 .1), the total Hamiltonian H is self-adjoint on D (Ho)
and bounded below, where D (Ho) is the maximal domain of Ho. If we
denote the two unitary groups generated by Ho and H as Ut and Vt
respectively, then it is know [7] that the wave operators
SZ ± = s . lim exist and are complete so that the scattering operator

S=Q*Q_ is unitary. Further S commutes with Ho. In the spectral repre-
sentation L~[[0,oo), L2 (S~"-1~); a~,] of Ho, S is decomposable as

{S (À) }Â E (o, where S (À) is unitary in L2 -1») for all À E (0, (0), S~n -1 ~
being the unit sphere of dimension (n -1 ) embedded in It is also
known that under the condition (2 .1 ) the Hamiltonian H does not have
any positive eigenvalues [9]. In fact, H does not have any positive singular
spectrum.

Vol. 57, n° 1-1992.
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We shall denote by A, the selfadjoint infinitesimal generator of the

dilation group in L2(Rn) and observe that on C~0(Rn).

In the sequel we use the following notations:

For 0, let

~={/e~f : (Q~/e~f and the Fourier transform 7 of f has
compact support in [R"B{0}}. It is clear that ~ is dense in J~ for every

!!Ø ~1 ~!!Ø ~2 for and ~c=D((~~), D((~)~) being the
domain of (~)~ and that A° is well defined on The symbol K in
the following is used for generic constants.
We need a result on the norm differentiability of S (À) due to Jensen

[ 10], which we state without proof.

PROPOSITION 2 . 1. - Let W satisfies (2 . 1 ). Then S (À) is five times

continuously norm (0, (0).
This follows from Theorem 3.6 and equation (3.2) of [10].

COROLLARY 2 . 2. - Let 0 _ ~, _ 5 be such that

/= Bt/ (Ho) some ~ E C~ (0, oo). Then S fED (( A ~).

Proo, f : - The proof is trivial for Jl = O. For =5, we note that

/5B 
adjA (S) A 5 - j where ad0A (S) = Sand

Then the result follows from the fact that (A/B=2~-~+~ in the
áA

spectral representation of Ho [10]) and Proposition 2.1.
To state the main result we need to have a few definitions.

Let 1) be a C1-function on [0, (0) such that
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Define P, to be the multiplication operator by the function cp, C in ~

and observe that 1. We defme the sojourn time for the particle in

the fuzzy ball {!: cp, C I x I 1 ~ 0 ~ with and without the potential as

dt~II P, Vt 03A9_ f~2 and dt~ Pr Utf~2 respectively ( f E Then the

time delay iT ( f ) for the fuzzy ball in the state f is defined as:

The (global) time-delay i ( f ) in the state f is defined as i ( f ) = lim ir ( f ),
r - o0

if the limit exists. As we shall show in the sequel, for a suitable dense set
of vectors f, i ( f ) exists and can be computed in terms of the S-matrix
S (À). The precise result is our main theorem.

MAIN THEOREM. - Let Pr be as above with 03B4  
a ’ 1 

and f~D1+~r 

2 rL+2 
J 1+~

3. MODIFIED FREE EVOLUTION

Here we define and study some of the properties of the modified free
evolution. We set

Vol. 57, n° 1-1992.
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where the signs ± are to be considered according as Then it is easy
to see that by virtue of (2.1), Xt is selfadjoint on the maximal domain
and thus Yt and Tt are unitary operators (though not groups) for all t.

Proof. - Part (i ) follows from the inequality

and an application of the dominated convergence theorem.

‘ 

LEMMA 3 . 2. - Let 03C8 E Co (0, 00). Then for all t we have the

following:
(i) for any multi-indes m, with

for some constant K1 depending only on m and 03C8 and not on t and k,
(ii) II  Q )J! (Ho)  Q ) - J! II ;£ K2, where K2 depends only on Jl and 03C8

for 0;£ Jl ;£ 4,
(iii) for any integer j ( 1 ;£);£ n) and t ~ 0,

where ’ ’ constant depending only on B)/,

depends on B)/ but on t.

Proof - It follows from the definition (3.1) and (2.1) that for any
multi-index m with 5 and ~0,

Thus (i ) follows from (3 . 2) and o the support property of B)/.

Annales de l’Institut Henri Physique theorique
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A simple computation shows that for each} (1  j _ n),

where J.11 and 2 are nonnegative integers depending on ml + m2.
Note that for any nonnegative integer l, 

l is bounded

by Proposition A. 2 (i) and that with
m=0

constants K (m) and W., ~eCy(~B{0}). This, (3 . 3) and part (i) leads to

where K2 is independant of t. The proof of (ii ) is completed from (3 . 4)
on observing that

and by interpolation between ~ = 0 and Jl = 4 (see [11]). The proof of (iii)
follows from (i ), Proposition A. 2 (vi ) and the estimate

The proof of (iv) is similar to that of (iii) if we use the part (i ) and the
Propositions A . 2 (i), (vi). .
We now prove a result similar in spirit to that of Martin [8]. Before

that we need a simple lemma.

LEMMA 3 . 3. - Let Ho, H, Q:t, Sand Pr be as in Section 2. Then for
each r &#x3E;_ 1

Proof. - The part (i ) follows from the local smoothness [ 12] of Pr with

respect to Ho. Since

where (0) such that B)/(Ho)/=/, the required result (ii) is a

consequence of Lemma 3.2 (ii) and the smoothness of  Q &#x3E; -II for ~&#x3E;-.
Similarly (iii) is arrived at by the local smoothness with respect

Vol. 57, n° 1-1992.
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to the total Hamiltonian for J1 &#x3E;~. Thus it is clear from (2 . 3) that tr (~’)
exists for every f in D0. []
THEOREM 3 . 4. - Assume the hypothesis of Lemma 3 . 3. Let furthermore

,f E ~o be such that

and

Then

Since/~~ is well defined by Lemma 3 . 3 (iv). We
write

where Jr (g, t) = ~ ~ Pr Vt S2 I i P~ Tt g 112 for t ~ 0. Since

and

the results follows by an application of the dominated convergence theorem
to (3 . 7) and the fact Pr converges strongly to I as r -&#x3E; 00..

4. PROOF OF MAIN THEOREM

In this section we show that if 1 and for some ~&#x3E;0,
and (3 . 5) and (3 . 6) are satisfied, then 1"~2) ( f ) and ~t~3~ ( f ) converge to
zero while i~l~ (_f’) converges to the Eisenbud-Wigner form as 
thereby proving the main theorem stated in Section 2. The verifications

Annales de l’Institut Henri Poincaré - Physique theorique
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of (3 . 5), (3 . 6) and the fact that for some p &#x3E; 0 [depending on
a of (2 .1 )] are done in the Appendix.

Let cpr be as in Section 2 and we write

We also note from (2. 2) that

It is well known (Chapter 3 of [7]) that for any bounded function cp of Q
one has: 

-

where t).
Then an easy calculation as in [1], using the change of variables

~=20142014 and v==2014 so that oo and 0v- ) and the definition of
2r 2

Pr in Section 2 shows that

and

We know that the first two of the above integrals exist for by
Lemma 3 . 3, while the last one in (4.6) also exists for all

. f’ ~ ~o ~ D (H~ 1~4). The following theorem is an improvement of the result
in the Appendix of [1] adapted to the present situation. For brevity in the
presentation we adopt the convention which is consistent
with the result in Lemma 3.1.

Vol. 57, n° 1-1992.
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THEOREM 4 . 1. - Suppose that f~D1+03B2 and that in (4 . 2)
08min(x-l, p/2). Then

where p is either 00 or (4 v s) -1, and Ao is given in Section 2.
Remark 4 . 2. - Note that since the support of Qj,f is contained in the

support of J for it follows that such an/eD(Ao) and
thus ( f, Ao f) is well defined.
The proof of the theorem proceeds via a few lemmas.

where the constants K and K’ depend only on p.
The proofs of (i) and (ii) are elementary using the estimate

and

respectively for any 11 E [0, 1].

LEMMA 4 . 4. - Let f 1. Then for every v &#x3E; o,

~ 

The proof of this lemma is exactly as in the Appendix of [1] since
6,(0)=1 

Annales de Henri Poincaré - Physique theorique
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LEMMA 4 . 5. - and support ~7}-
= - ~ /tp!B =o or s&#x3E;N and 0v 1Then 8~ -L-L 

s / 
This is an easy consequence of the fact for |k|&#x3E;N0 while

Proof of Theorem 4.1. - We shall prove the result for the positive sign
only, the proof for the negative sign being identical. Setting fp = YP / and
using Lemma 4.4, we can rewrite the left hand side of (4. 7) as

lim ds J(v,s), where
v -~ o~ Jo

In the above,

and ~~3~ and ~~4~ are same as and ~~2~ respectively with êv replaced
by 6~. We divide the range of integration in s into (0, No] and [No, oo),
where No is given in Lemma 4 . 5. Note that by Lemma 4 . 5, ~~4~ (v, s) 

= 0

for all On the other hand, we have

Vol. 57, n° 1-1992.
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and by Lemma 4 . 3 (i ),

By Lemma 3.2 (ii), and are bounded

uniformly in p for Since -L~(M) I ~ 1, (4.11), (4.13) and
(4.14) yields

Next we deal with the integral over (0, No]. By Lemma 4 . 3 (i ),

since 0  [i  1 and II  Q )1 + f3 Y: is bounded uniformly in p 
by Lemma 3.2 (ii). 

Finally we write ~~~=2Re[~)-~)], where

and

Here we have suppressed the argument P ~/s of the function 9,, for brevity.
By Lemma 4 . 3 (ii ) we get that

Now by Lemma 3 . 2 (ii ) and the support properties of f,

Annales de l’Institut Henri Poincare - Physique theorique .



101CONFIGURATION SPACE PROPERTIES

Combining (4.16) and (4 . 17), we have

-~ 0 as vO since 8p/2. In (4.15), note that ~22~ (v, s) is identically
zero where p = oo and hence for this case the proof is complete. In the
case when p = (4 v s) -1, we make the following estimate using (4.17) and
Lemma 3 . 2 (iii ):

Thus

-+ 0 as v -+ 0 + since a &#x3E; 1 and 8  a -1.
We end this section by giving the proof of the main theorem stated in

Section 2.

Proof of the main theorem. - As mentioned in the beginning of this
section we shall assume here that for f ~ D 1 + 11’ with 11 &#x3E; o, S f E D1 + 13 for

0  03B2  - and that ( 3 . 5 ) and ( 3 . 6 ) are verified for such f, the proofs
rL+2

being given in the Appendix (Theorems A. 10, A . 3 and A . 15 respectiv-

Thus given 8 such that 0  03B4  1 2) , we can find a E 0,- rL + 2
such that b ¿ 2 and apply Theorem 3 . 4. And using the notations of the
same theorem, we shall show that ( f ) -+ 0 as r -+ oo for j= 2 and 3.

In fact by (4. 4)-(4. 6) we have

tpjwhere we have again suppressed the argument ’2014J I of the function êv.
~

Since we can find a Pe(0,20142014) such that Ö .ê  ex. - 1 and since byB a+2/ 2

Vol. 57, n° 1-1992.
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Theorem 4 . I each of the above integrals converges to _! 2 (/, Ao /) as
v -+ 0 +, we conclude that T~(/)-~0 as Similarly one arrives at
the result lim T~(/)=0.

r ~ 00

We not that (S /, and using (4.4)-(4.6) we write

which by Theorem 4 . 1 converges to 1 ( S .f~ AoSj)+.!.(f, Aof) as

2 2

v ~ 0 + . Thus by Theorem 3 . 4, i ( f ) exists for all f E ~4 +,~ and

r: ) = 1 (.f S* S]f). Finally we obtain the Eisenbud-Wigner for-
2

mula

in the spectral representation of Ho once we take note of the

Proposition 2. I and recall that (Ao /)~ = 2 dh....
áA

APPENDIX

Here we prove the three assumptions made in the proof of the main
theorem. First we collect the known results in the form of a few proposi-
tions and then we prove the easiest of the three viz. (3.5). Next we
establish the decay properties of Vt-s Us upto the order rx + 1 using commu-
tator method which leads to the proof of the result that if/e~+~, then

1 + II for 0  03B2  20142014. The proof of (3.6) is long, though not compli-
rx+2

cated. For this part, we omit most of the details since the methods are
identical to those for getting the lower order estimates.

PROPOSITION A. 1. - Let 03C8~C~0 (0, 00) and ~R+. Then

constants K and K1, independent of t, such that

For proof, the reader is referred 0 to [ 13] or Lemma  2 . 4 ’ (ii ) of [ 14] .

Annales de l’Institut Henri Poincare - Physique theorique
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PROPOSITION A . 2. - Let either ~ E Cp (0, oo) Or W (À) _ (À + co) 
1 for

some 0 such that - co E p (H) n p (Ho), p (Ho) and p (H) being the
resolvent sets of Ho and H respectively. Then for any  E IR

(i) 
 Q &#x3E; -~ are all bounded operators,

(ii) the three expressions in (i ) are bounded, when Ho is replaced by H,
(iii) Q&#x3E;~ and

II  
(iv)  Q &#x3E;~ {W(H)-W(Ho)}  Q &#x3E;cx-~ is a bounded operator.
(v) Let W satisfy (2 .1), and let ç, W E Co (0, (0). Then for each  E [0, rx]

and E &#x3E; 0, there is a constant K such that for all s, t E IR,
(a) ~~~Q~_~‘~(H)vt~Q~ ~‘~~~K(1+Itl)-~+~
(b) ~~~Q~ ~‘~(H)vt-SUS~(Ho)~Q~ ~‘~~--K(1+Itl)-~‘+E.
(vi) Let f~D1 and let W, 03C81~C~0(0, oo) such and

Then (Ho) Q; .f and A f = y (Ho)Af
This proposition is proven in Sections 3 and 4 of [2] except for (vi)

which is easy to verify.

THEOREM A . 3. - Let f E D3 +T1 for some 11 &#x3E; 0. Then

Proof - Using the identity (see Chapter 13 of [7]) :

we have that

where we have used the Proposition A. 2 (vi ) with 03C8 and Bf11 such that
Bf11 W=Bf1. Now the result follows from (a. 1) and (2 . 1 ) by

using the Lemma 3 . 2 (ii ) and Proposition A. 1..
Now we give a few preliminary results.

LEMMA A. 4. - Then

(i) for any real numbers ~1 and ~2 with the that j~~ + J.l2 ;£ a,

(ii)  Q )J! adA (ç (H)) Q ) - J! is bounded for all E rR, and each
m =1, 2, 3 .

Vol. 57, n° 1-1992.
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(iii) Let and be as in (i ). Then for any j ( 1 _ j  n),
 Q &#x3E; Pj{ ç (H) - ç (Ho) }  Q &#x3E; is a bounded operator.

Proof. - Without loss of generality assume that 03BE E Co ( - 00, (0), where
00 &#x3E; o be such that (Ho + (0) &#x3E; I and (H + (0) &#x3E; I. Let 03B6 be defined by
ç (À) = ç (À -1 - (0); observe that 03B6 E Co (R) and that support of 03B6 is contai-
ned in 0,00 . With L = H +00 -1 and L = we have

and

Now

L. f

The proof for m =1 in (i ) is completed by expanding the commutator
above and observing that by Proposition A. 2 (i)-(iii)

is bounded by a polynomial in t and s. The proofs for m = 2 and m = 3 are
identical, and that of (ii) is a consequence of (i ) and Proposition A . 2 (i ).
The proof of (iii) is same as that of Lemma 5 of [2]..

LEMMA A . 5. - -+ ~ satisfy (2 .1 ) with ~ (!);£ K ( 1 + I:! I) -v,
v ~ oc, and let 0/, ç, Çl E Co (o, ~) such that 03BE ç = ç. Then for each  E [0, rx]
and each E &#x3E; 0, there is a constant C such that for all s, t E ~

and

Proo, f : - Note that (i ) is trivially true for ~, = 0 and is seen to be true
for Jl = a -1 as follows. By Propositions A. 1 and A. 2 (v) a, the expression
on the L.H. S. of (i ) is bounded by

Annales de l’Institut Henri Poincare - Physique theorique
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If |t-s|~|t| 2, then the above estimate is majorized by
On the other hand if ~2014~)~)/2 then the same expression is bounded

byC(l+)~)~C(l+)~)~(l+ I s I ) -" (v) since in this case H&#x3E;-’L
Choose such that "0/1 BfJ ="0/ and set ~~)==~~)

implying 00 . Then

We premultiply and postmultiply (a . 2) -0152 Ç2 (H) and by
W (Ho)  Q &#x3E; - 0152 -)( (Y) respectively, note that ~B(/==0, use Propo-
sition A . 2 (i ) and (ii ), and rearrange terms to get the estimate that for
some constant K1 &#x3E;0,

Now, the first, second, and third terms in (a . 3) are majorized by
constant. t ~ - ~ + 1 + £ I s ~ - x (~&#x3E; by the estimate given in the first paragraph of
the proof. In the fourth term of (a . 3), first we note that by
Proposition A. 2 (i) we can essentially ignore the Pi in it and that W C, AC
and VC are bounded by (1+ I ~ B) -(V+0152), (1 + I ~ I) -(v+ 2) and ( 1 + I ~ f) -(v+ 1)
respectively. For ~ t - s I ~ I t ~/~, we split these exponents into
v + a - 1 - K (v) (((v + 1 - K (v)), (v -~- K (v)) respectively) and 1 + K (v) and use
Proposition A. 1 to the right of the expression while on the left we use
Proposition A. 2 (v). Since all the exponents 
and v2014K(v) are greater than or equal to oc -1, this shows that the fourth
term in (a . 3) is bounded by const. For 
we use the Proposition A. 1 to the right of the expression to get a

Vol. 57, n° 1-1992.
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maj orization by Const. since

I s I &#x3E; I t I /2 in this case. Thus the fourth term of (a . 3) has the requisite
bound. The fifth term can be handled similarly on using the
Lemma A. 4 (ii).

In the sixth term for ~/2, the decay in is obtained from the
03C4-integral on using Proposition A. 2 (v) a while that in I s |is from the free
group decay. For ~ t - s ~/2, the free group decay from Proposition A. 1
gives decays in I s (since |s| &#x3E; in this case) while the integrabil-
ity in ’t is assured by the Proposition A. 2 (v) a as before. The proof of
(i) of this lemma is finally completed by dividing by I t |in (a . 3), observing
that the L.H.S. of (i) is a uniformly bounded operator and by interpola-
tion. Note that

since ~~==0. Now the proof of (ii ) follows easily from Lemma A . 4 (i ),
Proposition A. 2 (iv) and an argument identical to that of (i)..
Remark A. 6. - Since A is not a bounded operator, the calculation

(and all similar ones in the sequel ) of commutators of A with a bounded
operator is to be understood in the sense of a quadratic from on

x for suitable vl, ~2~ ~ However, it is often the case, as in (a . 2)
for example, that the commutator has a bounded extension [e. g. that

given by the R.H.S. of (a . 2)].
The next theorem is an improvement over the result in

Proposition A. 2 (v).

THEOREM A . 7. - Let W satisfy (2.1) and oo). Then for
each ~e[0, rx + 1] there constant K such that for all s,

Proof. - Since (i ) follows from (ii ) on setting s = 0 and B)/= 1, we shall
obtain both results simultaneously if we do this substitution at each

step. Without loss of generality we assume 08a-l and choose ~1,
Ç2 and write down the estimate as in the proof of Lemma A. 5:

for some " constant ’

Annales de ’ Henri Poincare - Physique " theorique "
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The first term on the R.H.S. of (a . 4) is bounded by constant.

( 1 + ( t I ) - °‘ + £ by Proposition A. 2 (i ), (ii ) and (v) b, while the second term
admits an identical estimate by Lemma A. 5 (i ) with C=W, v=a and
K (v) =1 (note that for case s = o, ~ =1 this term is absent). An identical
bound for the third term of (a . 4) results from a calculation similar to
that in the proof of Lemma A. 5 (i).
The estimate of the last term of (a . 4) is not immediate and needs a

commutator calculation viz.

for suitable choice of Ç3 and 03BE4 in C~0 (0, oo). A repetition of the arguments
and estimates as above in the proof of Lemma 4. 5 leads to the necessary
bound for both cases:

This completes the proof..
The next two lemmas are preparatory material for the result that

+13 for 0  B  - for some 11 &#x3E;0.
rx+2

LEMMA A . 8. - Let Q:t, S be as defined in Section 2. Then map

EØ 2 +r into D (  Q » while S maps EØ 2 +r into EØ 1 for every 11 &#x3E; o.

Proof - Let f~D1 and for some 11&#x3E;0 such 
for some 03BE E Co (o, ex)). Then

and thus it is enough to show that 1(1, I
for all f~D1. Now,

The first part of the result follows by applying the Proposition A. 2 (iv)
to the first term, Lemma A. 4 (iii) and Proposition A. 1 to the third term,
Theorem A. 7 (ii ) to the last term in (a . 6), and letting ~-~±00.

Vol. 57, n° 1-1992.



108 A. MOHAPATRA, K. B. SINHA AND W. O. AMREIN

be as before and choose (0, (0) such that Wç = ç. Then
we have

The norm boundedness (uniform in  and t) for each of the terms of
(a . 7) follows exactly as that for the terms in (a . 6). Since

we have " te second 0 result. N

LEMMA A. 9. - oo). Then for t, s ~ R, pe[0, 1] and
each 1 -_ j  n, there constant K independent t such that

Proof. - It suffices to prove the above estimate for p =1 and then
apply interpolation. For this we note that

and that by Theorem A . 7 (i ), a~ (H)  Q &#x3E; -(1-1 I I di  00..
0

THEOREM A.I0. - S maps fØ3+T) (11 &#x3E; 0) into D1+03B2. for every

Proo, f : - and for P, and let ç, 0/ be as in
the proof of Lemma A. 8. Set 
Then it follows from (a . 7) that G(t, s) g and G(t, belong to D(Qj),
and that by interpolation we have for Pe[0, 1]

Since
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and G (s, t) g = S g as s ~ - oo followed by t -~ oo , we shall have the

required result by virtue of (a . 8) if we can show that ~|Qj|03B2 [Qj, G (t, 
is bounded uniformly in t and s for P in a suitable subinterval of (0, 1 ] .
By Proposition A . 2 (i) and Lemma A. 8, it is easy to see that with

(0, (0) such that ~r’ = t~r’,

which is bounded uniformly in t, s 1]. Next,

Setting W = 0 (so that a can be taken to be 0) in Lemma A. 9 we get
~ ~ ( Q~ ~ ~ ~r (Ho) LJ* ~ Q ~ ~ I I _- K ( 1 + ~ t I )~ while the second factor in the first
term of the R.H.S. of (a . 9) is bounded by Proposition A. 2 (iv). For

we can apply Proposition A. 2 (v) b to get a bound of

( 1 + ~ t I ) 1 + ~ - °‘ for the third factor in the first term of (a . 9) while the
second term of (a . 9) is uniformly bounded as in (a . 8). Thus the L.H.S.
of (a . 9) is also uniformly bounded if 2pa- 1. The third term of (a . 7),
when premultiplied by I Qj 1(3, can be estimated uniformly in norm in a
similar fashion by using Lemma A. 4 (iii ) for 2 p  a -1.

Note that since ~(Ho)~=0, we have

which is bounded uniformly in s and t by Lemma A. 9, Propo-
sitions A. 2 (iv) and A. I provided that P .::=...!. which also implies

a+2

203B2  03B1 - 1. The last two terms of (a.7) on premultiplication by |Qj|03B2 can
similarly be shown to be uniformly bounded in norm if P  20142014 on using

a+2
the estimate of Theorem A. 7 (ii). M
We are now left with verification of (3.6), for which we need some

lemmas.
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LEMMA A. II. - Let 1;, 03C8~C~0 (0, 00). Then for each 11 E 2’ 
(X - 1

E 0, 2 such that

It is enough to show the following:

where 03B2 and ~ are as in the statement of this lemma. Choose

~eC~(0, (0) such that ~ 1 ~ _ ~. Observe that

The part (i ) follows from (a . 10) by using Proposition A. 1, the local
smoothness of ( Q ~ -°‘~2 with respect to H and interpolation.
The proof of (ii ) and (iii ) is similar to that of Theorem A. 10. It is

easy to see that I A 113 [A, ç (H)]  A&#x3E; - 13 is bounded and that

~A~V~(H)(Q)’~~K(1+~)’B and thus by part (i ), Propo-
sition A. 1 and Lemma A. 2 v (b), we have part (ii ) if a - [i  1 + r~ and

The result (iii ) is similarly obtained by computing

and by using Proposition A. 2 (ii). For example, one of the terms is

which is

The first integral on the R.H.S. of the above inequality looks like the
expression (a . 5) and thus the above is bounded if a 2014 P  1 + 11 and

l’Institut Henri Poincaré - Physique theorique
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LEMMA A. 12. - Let W satisfy (2 . 1) ~ ~ Bt/eC~(0, oo). Then for
a + 2] and E &#x3E; 0, there , constant K such that for 

tE .

LEMMA A . 13. - Then for any ~1&#x3E;0 there
exists 0  112  111 1 such that

The proofs of Lemma A. 12 and A. 13 are very long, though not
complicated. For example in Lemma A. 13, we need to compute the double
commutator of A with and it is here
that we need the five times differentiability of W in (2 . 1 ). We do not give
the proofs here because of their lengths and refer the reader to [15].

THEOREM A . 14. - Let W satisfy (2 . 1) and S be the scattering operator
defined in S’ection 2. Then for gEEØ4+1l(1l&#x3E;0) 00) with

Proo, f : - In the expression (a . 7), if we take limit s -~ 2014 oo and then
then all the terms in the R.H.S. except the last one converge to

zero by Propositions A. 1 and A. 2 and Theorem A. 7 (ii), while the L.H.S.
converges to B!1 (Ho) S] g. Thus it suffices to show that

But this follows easily from Lemmas A. 11 and A. 13..

THEOREM A . 15. - Then

Proof. - A simple calculation as in Chapter 13 of [7] shows that
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so that

The second integrand in (a .11) is majorized by

where we have chosen such that Since

by Corollary 2 . 2, the second norm in (a . 12) is bounded
by ( 1 + s/p) T °‘ T 2 on using the Proposition A. 1. This together with
Lemma 3 . 2 (ii ) shows that the second integral is dominated by constant.
( 1 + t) T °‘, which leads to the integrability in t for this part in (a . 11 ).

Similarly the first integrand in (a 11) is bounded by

where we have introduced 0/ 1 (Ho) by Proposition A. 2 (vi ) and chosen
(0) such that 0/2 0/ 1 = 0/ l’ Since the first two factors in (a .13)

are uniformly bounded by Lemmas 3 . 2 (ii ), (iv) and since

it only remains to show that for each j ( 1 _ j __ n) and for 
E for some 8 small and

positive. For such/, SQj f belongs to D ( I A 13 +11) and hence the above
required estimate follows from Proposition A. 1 and Theorem A. 14..
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