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Complex entropy for dynamical systems
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ABSTRACT. - This paper introduces a notion of complex entropy in a

quite intrinsic way. This number can be attached to a family of linear

symplectic transforms but also to a large class of dynamical systems.

Cet article introduit une notion d’entropie complexe d’une
façon intrinseque. Ce nombre peut etre attache a une famille de transfor-
mations lineaires symplectiques mats aussi a une grande classe de systemes
dynamiques.

1. INTRODUCTION

This paper contains a new effective approach to the rotation number
of a family of linear symplectic transforms. The rotation number appears
to be, in a natural way, the imaginary part of a complex number that we
call since its real part is related to the usual entropy.
This approach is quite intrinsic, and we extend it to the general framework
of second order differential equations attached to variational problems on
a manifold.
A rotation number can be attached to a continuous family of symplectic

transforms. In order to do that one has to deal with symplectic geometry.
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892 F. DELYON AND P. FOULON

Before going into more details, let us say that before us several authors

gave a good definition of the rotation number [7] but in a slightly different
way. They use the fact that the fundamental group of the linear symplectic
group S1 (2 n, R) is Z and that any symplectic transform S has a good
polar decompose.
To be more intrinsic than is generally done (to avoid trivial fibrations

in the case of manifolds), we observe that in addition to a symplectic 2-
form we suppose that we are given a positive complex structure (not
necessarily integrable in general). Let us notice that this additional struc-
ture exists for a large class of dynamical systems including geodesic flows
of Riemannian metrics, and more generally for all systems whose evolution
is governed by a convex variational problem (in particular, Hamiltonain
systems admitting a Legendre transform).
Our approach deals with the set X of Lagrangian subspaces. This set

has been extensively studied, and is known to be the homogeneous space
U(~)/0(~). The famous Maslov class shows that its fundamental group
is also Z.

In part 2, we study the linear symplectic transport of a Lagrangian
space. We first show that for any Lagrangian subspace L and a reference
Lagrangian space V being given we can build a unitary symmetric opera-
tor. This provides a nice representation of U(~)/0(~), leaving aside the
problem of transversality encountered in the definition of the Maslov
index. Then, to a family St, and to L, we associate a complex family Zt of
operators. Using this operator, we define what we call the complex entropy
of a Lagrangian space L. In the linear case, this complex entropy is given
when it exists is defined by:

In proposition 1, we show that the imaginary part 03B1 of 03B3 does not depend
on L. We call a the rotation number of the family St. Proposition 2
explains why this number is the same as the one defined by D. Ruelle,
and in fact more generally shows that there is only one possible rotation
number. At this stage we observe that for explicit computations, the use
of Lagrangian spaces induces simpler calculations. In a recent paper [ 1 ],
using this approach we have been able to obtain estimates on the complex
entropy for quadratic Hamiltonians in the adiabatic limit. For a probabil-
ity space the ergodic subadditive theorem shows the almost sure existence
of a. Then, we observe that the real part h of y is related [5], [6] through
ergodic theory to the sum of the Lyapunov exponents, hence our terminol-
ogy.

In part 3, we deal with manifolds. Using the geometric properties of
second order differential equation, especially the one, coming from a
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893COMPLEX ENTROPY FOR DYNAMICAL SYSTEMS

convex variationnal problem, we show that we can extend the notion of
complex entropy to a large class of dynamical systems. For compact
manifolds, we relate the real part of the complex entropy to the classic
metric entropy of a flow, and this justifies our terminology. The relevant
dynamical systems include in particular the geodesic flows on Riemannian
manifolds. Theorem 3 shows that, in this context, the rotation number

(divided by 7t) is the average number of conjugate points counted with
their multiplicities. This provides the extension of Sturm-Liouville theory.

2. COMPLEX ENTROPY FOR CONTINUOUS PATHS IN Sp (2 n, R)

2.1. Symplectic vector spaces with compatible positive complex structures

Let (E, co) be a real symplectic vector space with dim E = 2 n. In addition,
we suppose we have chosen a complex structure J, and a linear automorph-
ism of E satisfying:

This complex structure is assumed to be compatible (or symplectic) and
positive that is for every ç and ~ in E:

and the scalar product g defined by:

is positive definite (Riemannian). Such a structure is called positive 
tible complex. The possibility of such a choice on a vector space is insured
by the existence of symplectic bases.

2.2. Lagrangian spaces and complexifications

A Lagrangian space L is a maximal isotropic vector space for co, i. e.

co (ç, 11) = 0 for every ç and ~ in L. These spaces play a particular rule
because if V is Lagrangian then:

with the corresponding projectors.

One easily checks that the projectors satisfy:

Vol. 55, n° 4-1991.



894 F. DELYON AND P. FOULON

This gives a complexification of E that we will write V~: any vector ç in E
can be split into:

Thus, ~ can be represented as an element z of V by:

Let us remark that there is a natural Hilbertian inner product on V:

Furthermore, = v1 + J v2 and ~ = ui + J u2, we can also express gc as:

which is the standard complexification of Lagrangian spaces. Two Lagran-
gian spaces, L and V, give rise to two possible complexifications of E and
so induce an isomorphism U : V. Using the two possible decomposi-
tions ç = /1 + J /2 = v1 + J v2 and (6), (7) we see that:

and thus vl + iv2 = (P" - (/1 + il2). Notice that we use only the restric-
tion of Q" and P" to L. So, U : L’ -+ V is provided by:

For the sake of brevity we will denote P"/L -+ V by P and Q"/L : L ---~ JV

by Q.

LEMMA 1. - The operator U : Lc ~ yc defined above is that is

where the transposed operator
is defined with respect to the metric g given by (3). Hence,

The real part is clearly the identity, and the imaginary part is the wellk-
nown Wronskian which vanishes because L is Lagrangian.

The map U : LC is a unitary symmetric operator
for which the complex determinant is well-defined. This number belongs
to the unit circle, and we call its argument the between Land V.

2.3. Complex entropy

Let us consider a given continuous family St of linear symplectic
transforms (with respect to ro) and a fixed Lagrangian space V. Through
St, a Lagrangian space L is mapped onto a Lagrangian space Lt. Let

Annales de l’Institut Henri Poincaré - Physique theorique



895COMPLEX ENTROPY FOR DYNAMICAL SYSTEMS

be the complexified of the restriction St/L : L --+ Lt. Now, let us

define the operator 2t : L~ --+ VC by:

where U (LJ : L~ --+- V is the unitary operator associated to the pair (Lt, V)
as above. The family of operators Zt can be written as

where

(the superscript c denotes the natural complexification), Pt, Qt are the
projectors of Lt onto V Q+ JV.

DEFINITION. - Consider a continuous family St of linear symplectics
transforms of a space E endowed with a compatible positive complex
structure J. Let V be a fixed Lagrangian space. To a given Lagrangian
space L, we associate the number y (L) given by:

when it exists the number will be called the complex entropy of L.

Remark. - only the determinant of Zt Zt is relevant since it is an

endomorphism of LC (in fact an automorphism).

PROPOSITION 1. - When it exists, the number 0152=Im(y(L)) does not
depend on the chosen Lagrangian spaces Land v. This number will be

called the rotation number of the family St.

Proof of proposition 1. - Since Zt = U we have:

log (det (Zt Zt)) = log (det (St/L)‘) + log (det (U (Lt)T U (Lt)), ( 14)
4

and the first term is real. Thus, we have to prove that, when it exists, the
number:

does not depend on L. We shall study the relative "angle" between
Vt = St (V) and Lt = St (L). Thus, we use the unitary operator Ut : t
defined as in (10). The following diagram is obviously commutative:

Vol. 55, n° 4-1991.



896 F. DELYON AND P. FOULON

Thus we have:

log (det [UT (Lt) U (Lt)]) -log (det [UT (Vt) U (Vt)]) = log (det [Ui Ut]). (16)

Now, let us suppose that the argument of det [Ui Ut] varies by more than
2 ~ ~. Then, necessarily one of the eigenvalues of the symmetric unitary
operator UTtUt (they can be followed continuously) should have crossed
1 at a certain time, say ’to So, there exists ç in L~ such that 
Writing the congugated equation and noticing that (U~ Ut)* = (U; Ut)-1
we see that ç* also satisfies the same relation, thus admits a real
eigenvector ~ with eigenvalue 1. Let us remark that, by construction, we
have:

where p03C4 and q03C4 are defined as in ( 10) with the pair (L’t’ V-r). ( 17) yields:

which implies that ~(~)==0. Thus ç lies in The intersection is
invariant by St. Thus S-r- 1 (ç) was in and so still a eigenvector
associated with the eigenvalue 1. Consequently, the eigenvalue 1 and its

multiplicity are invariant. This shows that either an eigenvalue is different
from 1, and then it can never cross 1 or is equal to 1 and then remains 1.

Thus, the argument of det [Ur Ut] cannot vary in time by more than 2 n 7c.
Therefore, the difference in ( 16) is bounded by 2n n which ends the proof
of Proposition 1.

Let us now discuss the existence of the limit ( 15) in the framework of
probability theory. Let (Q, P, Tt) be a probability space with a continuous
P-preserving shift Tt. And let S (t, co) be a continuous (in t) and measurable
(in ro) family of linear symplectic transforms satisfying:

Then, it is well-known that for any Lagrangian space L, the real part of
y(L) exists with probability one. Now, if we consider any absolutely
continuous measure v on the set of Lagrangian spaces, then v-a. s. this
limit is equal to the sum of the positive Lyapunov exponents. Furthermore,
this limit is invariant under the shift and thus a. s. constant in the

ergodic case. The situation is simpler for the rotation number since it does
not depend on L: if we set:

we have:

Annales de ’ l’Institut Henri Poincare - Physique theorique



897COMPLEX ENTROPY FOR DYNAMICAL SYSTEMS

since ( 16) was shown to be bounded by 2 ~ n. And the subadditive ergodic
theorem ensures that 03B103C9 exists with probability one and does not depend
on L by Proposition 1. As previously is invariant under the shift and
thus is a. s. constant in the ergodic case.

2.4. Properties of the rotation number

PROPOSITION 2. - Let Sl (t) and S2 (t) be two continuous family o.f’ linear
symplectic transforms satisfying S1 (o) = S2 (o) = Id. We suppose that the
rotation numbers 03B11 and a2 exist. Then, the rotation number a of the family
S2 (t)° S1 (t) exists and is equal to 03B11 + a2.

Proof - Let L be a Lagrangian space and Lt=S1 (t) L. Let

U1 (t) : L~ ~ LC and U2 (t) : (S2 (t) ~ Lt be the unitary operators
defined as in ( 10). Then, setting U = U 2 0 U 1 we have:

By definition, the second term in (23) is al. Thus we have to prove that
the first term is C’t2’ The difficulty is that the initial Lagrangian space Lt
depend on t so that this limit is not, a the rotation number of

S2 (t). The following lemma ends the proof of Proposition 2.

LEMMA 2. - Let St be a continuous family of linear symplectic trans, f ’orms
[satis, f ’ying S (0) = Id] and Lt be a continuous , family of Lagrangian spaces.
Then the rotation number a St is equal to the relative rotation number of ’
S(LJ with respect to Lt.

Proo. f : - Let us study the motion on the interval [0, T]. Let
be defined as in (10), then the winding number

w (T) = up to time T modulo 27r is the angle beetween

and Lp, that is the argument of det (UT (T) U (T)). Let us

consider now the continuous family Lt, ~ = L~t + ~ 1- a,~ T (which verifies

Lt, 1 = Lt, Lt, o==Lr and L~ ~=L~). The winding WÀ (T) does not depend
on À modulo modulo 2 ~) and is a

continuous function function of À, hence is constant with respect to À. In
particular, the winding number is the same for the family Lt and for the
Lagrangian space Lp. The limit T -~ oo ends the proof of the Lemma 2.

Vol. 55, n° 4-1991.
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Proposition 2 shows that the rotation number defined by D. Ruelle is
the same than ours. Let us recall that his rotation number for a family St
is the rotation number associated with the unitary transform Ut of the
polar decomposition in St = St|Ut. Thus we know that the rotation num-
ber of St is the sum of the rotation numbers of the two families St| and
Ut. We need the following lemma:

LEMMA 3. - The rotation number of a continuous family St of symmetric
positive symplectic transforms is zero.

Proof - If St is symmetric positive definite for every ç in V we have
g (Ç, S~(Q)&#x3E;0. Thus never lies in JV and so never vanishes.
Then formula (17) shows that -1 can never be an eigenvalue of the
unitary operator associated with the pair (St (V), V). Thus the winding
number is bounded This ends the proof.

Consequently the rotation number of a continuous family of symplectic
transforms is equal to the rotation number of the unitary family of
operators associated to the polar decomposition (left or right). For explicit
calculations, our approach is easier since it avoids the difficult problem
of effective polar decomposition of symplectic transforms. Moreover, in
the case where the family St is given by a differential equation, it is simpler
to follow the evolution of a Lagrangian space (only for an n-dimensional
space) rather than solving the problem for all the operator St.

3. COMPLEX ENTROPY FOR SECOND ORDER
DIFFERENTIAL EQUATIONS

3.1. Geometric properties of second order differential equations

Let M be an n-dimensional manifold and F : TM -~ IR a Lagrangian (F
is positively homogeneous of degree 1 on the fibres). This function defines
a variational problem when we want to extremize the action:

It is well-known that any Lagrangian can be mapped onto an homogen-
eous variational problem. The geometrical structure of these problem has
been tackled in [2] and we just recall there some basic results without
proofs. The convenient space to study the variational problem is not the
tangent bundle TM but rather the homogeneous fibre bundle HM (the
fibre of the tangent half-lines). The Euler-Lagrange solution is a vector
field X on HM. This vector field is of particular type and is called a
second order differential equation. This second order differential equation

Annales cle l’Institut Henri Poincaré - Physique theorique
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indues a splitting of THM into the 3 supplementary bundles:

with the associated projectors,

The bundle VHM is the vertical e., made of spaces tangent to
the fibres of HM (it does not depends on X). The bundle hX HM is called
the harizontal bundle associated with X. There exists an almost-complex
structure IX on VHM~hXHM. If we assume that the Lagrangian is convex
on the fibres (then one speaks of a Finsler structure and, this includes
Riemannian geometry), then there exists a 1-form A on HM which is a
contact form, that is a volume form. The volume
form is invariant under X and dA induces a symplectic structure on

VHM~hXHM. Furthermore, the complex structure IX is positive compa-
tible [the metric defined as in (3) is positive definite], and VHM, hXHM
are Lagrangian and related by /~x HM = IX (VHM).

3.2. Complex entropy

Let cpt the one-parameter pseudo-group associated with X and its
linearisation. The bundle VHM~hXHM is invariant under and
furthermore the action of T cpt on it is symplectic. In order to apply the
results of the first part, we need a parallel transport to identify the spaces
at different points. It is proven in [2] that along any orbit r of X on HM,
there exists such a parallel transport i~ leaving VHM and h~ HM invariant.
Now, being given a point z in HM and a Lagrangian space LZ in

VHMz~hXHMz, we define the operator Zt : Lcz~03C4t(Vz)c by:

We thus define the complex entropy for any Lagrangian space L at the
point z as in ( 13). Let us remark that, by construction, this entropy is

invariant, that is:

for every t in IR and z in HM. Now, everything works as in part 1. In

particular, Proposition 1 is in force and, following the previous remark,
the rotation number is a dynamical invariant. By (22), the real part of
the entropy h (L, z) is determined by:

Now, we suppose that M is compact without boundary. A convex
Lagrangian is given, and we normalize the diffuse measure fl. Following

Vol. 55, n° 4-1991.
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Oseledec, for a C 1 flow, cp : [R x HM ---+ HM, there exists a subset Q in
HM of full measure, invariant by (p, and such that, for any z in Q, there
exists a unique splitting satisfying:

Furthermore, the limit h z) in (22) exists for any subspace LZ satisfying
does not depend on LZ, and is the sum x(z) of the

Lyapunov exponents. D. Ruelle [6] has proven that, if Jl is an invariant

probability measure, the metric entropy h~ (p) satisfies:

if cp is C2 and  absolutely continuous. Then, following Pesin [5]:

This justifies the name "complex entropy".
As in the linear case, the ergodic subadditive Theorem provides a simple

proof of the existence with probability one of the rotation number 0152 (z).

3.3. Conjugate points: generalized Sturm-Liouville theory

The conjugate points naturally appear in the framework of geodesic
flows on Riemannian manifolds and this notion can be easily extended
[3] to the case of Lagrangian systems. Let z be a point in HM and r the
orbit of z under the flow defined by the Euler-Lagrange equation. The
points conjugate to z in HM are the points cpt (z) such that:

One can evaluate the number of z-conjugate points for t &#x3E; 0 taking into
account their multiplicities (the dimension of the intersection). Their time
average number is linked to the rotation number through the following
theorem:

THEOREM 3. - For the Euler-Lagrange equation X of a convex variational
problem, the average number o, f’ conjugate points (counted with their multipli-
cities) to a given point z in HM is equal to where a is the rotation

number of z (whenever it exists).

. 
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Remark. - According to the precedent paragraph, when M is compact
the limit of Proposition 3, exists on a set of full measure.

Proo. f ’ of the theorem. - Before starting the proof we need to recall
(without proofs), some facts [2]relative to the special case of second order
differential equations. To a second order differential equation on HM is
attached a a first order differential operator yX called dynamical derivation
satisfying for every vector field ç over HM an any differentiable function f
the relation

(iii ) Yx leaves the splitting RX~VHM~hXHM invariant;
(iv) the dynamical derivation yX commutes with the almost complex

structure IX on VHM~hXHM. The parallel displacement is done relatively
to 03B3X.

If X is the Euler Lagrange of a convex variationnal problem then yX is
compatible with the metric g, that is for two vector fields ç, 11 on HM

Let z be a point in HM, ç any vector in Tz HM with decomposition
03B6=aX+Y+h relative to the splitting RX~VHM~hXHM, for the vector
field 03B6t = T cpt (Q the following relations [2] (known as the Jacobi equation
in the Riemannain context) are satisfied

Relation (28) and (29) are essential to understand the particular properties
of second order differential equations. We will not discuss here these
equations, let us just say that ex is a field of linear endomorphisms of
VHM, and is called the Jacobi endomorphism of the second order differential
equation.

Proof of theorem 3. - Choose a point z in HM, a Lagrangian space L
over z and suppose that there exists Y in Then using ( 10)
and observing that Q(Y)=0, P (Y) = Y, we see that Y is an eigenvector
with eigenvalue 1. Thus, the result follows the fact that for second order
differential equations, any eigenvalue 1 necessarily moves in the positive
sense on the unit circle.

Indeed, let £ be a small time, on the eigenspace associated with the
eigenvalue 1 the evolution (after parallel displacement) is provided [using
(28), (29) up to order £2] by Noticing that for any vertical
vector Y the 2-space generated by Y and IX (Y) is invariant by P and Q
(this is also true for any restriction of this two operators to any Lagrangian
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space) we get:

for Y in the previous eigenspace. Thus the eigenvalues 1 behave for small
time 8 like 

By continuity we can follow the set G of the eigenvalues of U~ U~ on
the universal covering and build n continuous function fi, n~i~1 by
labeling the set G with the convention Our precedent
argument shows that f (t} can never decrease of more than 203C0 so there
is a monotonous increasing integer function such that

27r~~/~27r(~+ 1) and ki is the number of times ~ has crossed 1. Thus,
on the interval [0, T] the winding number (15) satisfies,

This ends the proof.
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