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858 S. T. ALL J.-P. ANTOINE AND J.-P. GAZEAU

among families of coherent states, and also to the concept of quasi-
coherent states, or weighted coherent states. The general considerations
are applied to the specific example of the Wigner representation of the
Poincaré group 21 (1,1) in one space and one time dimensions. A whole
class of equivalent families of coherent states is derived, each of which
corresponds to a continuous frame, in the sense of I.

RisumE. — Le concept de triplet reproduisant, étudi¢ dans le premier
article de la série (I), permet de donner une définition générale d’une
représentation de carré intégrable d’un groupe. Cette définition s’applique
au cas d’un espace homogeéne du groupe et généralise diverses tentatives
antérieures d’obtenir de telles notions. Elle méne naturellement, entre
autres, a une notion d’équivalence entre familles d’états cohérents, ainsi
qu’au concept d’états quasi cohérents ou états cohérents avec poids. La
théorie générale est ensuite appliquée au cas spécifique de la représentation
de Wigner du groupe de Poincaré 2!, (1,1) d’un espace-temps de
dimension 1+ 1. Une classe entiére de familles équivalentes d’états cohé-
rents est obtenue, et chacune d’entre elles définit un repére continu, selon
la terminologie introduite dans I.

1. INTRODUCTION

In this paper, the second of two [1], we continue the study of generalized
coherent states. The aim is to build a theory that is general enough to
cover several cases which are physically relevant, but beyond the scope of
the standard approach of Perelomov ([2], [3]). The prime examples are the
coherent states associated to some representations of the Galilei or the
Poincaré group, and more generally to semi-direct products G=V A S,
where V is a vector group and S a semisimple group of automorphisms
of V (this is the case treated, for instance, by DeBiévre [4]).

The starting point, in I, was the consideration of the operator integral

J F(x)dv(x)=1, 1.1

where, in general, X is a homogeneous space G/H of a locally compact
groupG, v a G-invariant measure on X, and {F(x), xeX} a family of
projection operators in a Hilbert space # that carries a unitary irreducible
representation (UIR) U of G. The convergence of the integral in (1.1) (in
the weak sense) is then taken to be the definition of the square-integrability
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COHERENT AND QUASI-COHERENT STATES 859

of the representation U. It was argued in I that (1. 1) should be generalized
in two ways: first, F(x) should be taken to be a positive-operator valued
function F:X—» Z(#)*, and on the r.h.s. of (1.1), the identity
operator I must be replaced by a bounded invertible positive operator
AeZ(#)*. Thus we arrive at the central notion of a reproducing triple
{#,F, A}, which is in fact quite independent of the group-theoretical
context it stems from.

In its most general form, a reproducing triple {Ji” , F, A} consists of a
Hilbert space 4, a locally compact measure space (X, v), a v-measurable,
positive-operator valued function F : X - % (#)*, and a bounded posi-
tive, invertible operator A€ % (#)™, such that, in the weak sense,

J F(x)dv(x)=A. (1.2)

Starting from this, we showed in I how the space # can be embedded
isometrically into a space of vector-valued functions, which is a reproduc-
ing kernel Hilbert space, containing an overcomplete family of states — pre-
cursors of coherent states, so to speak. An order relation may be defined
among such families, and it leads to a natural notion of equivalent families
of states. The whole construction simplifies if the operator F (x) has con-
stant, finite rank equal to #n, in which case we use the notation { H,F, A },,.
Especially interesting is the particular case where, in addition, the inverse
operator A~ ! is also bounded; then we call {Jf , F, A},, a frame, since it
generalizes to an arbitrary measure space (X, v) the concept used, in the
discrete case, in the theory of nonorthogonal expansions ([5], [6]). Finally
we briefly indicated in I how this general setup may be realised in the
original group-theoretical problem.

In this second paper we will develop this latter aspect in full detail. In
Section 2, the mathematical structure described above is used to obtain a
general definition of square integrability of a group representation, not
on the group itself, as usually done, but on an arbitrary homogeneous
space X=G/H. A connection is made with K-representations of groups.
The main result of this section is a deeper analysis of coherent states
(the overcomplete family obtained in I). In particular we show how the
dependence of the whole construction on the choice of a section o : X - G
may be circumvented by using the notion of equivalence mentioned above:
different sections lead to different, but equivalent sets of coherent states.
We discuss also some geometric features of families of coherent states.
Section 3 is devoted to a detailed application of the theory to a specific
representation of the Poincaré group in one space and one time dimen-
sions, 21 (1,1), namely the Wigner representation of mass m>0. This
completes the analysis of this particular representation of 27, (1, 1), begun
in our previous papers ([7], [8]). We display a class of sections of
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860 S. T. ALL J.-P. ANTOINE AND J.-P. GAZEAU

2% (1,1) which lead to equivalent families of coherent states, and, more-
over, each of which defines a nontrivial continuous frame, as described in
I. We also construct a general Wigner transform, in the context of a set
of generalized orthogonality relations. Finally Section4 makes contact
with the literature and indulges in some speculation on future work.

2. SQUARE INTEGRABLE GROUP REPRESENTATIONS AND
COHERENT STATES

In this section we use the mathematical formalism set up in I to give a
general definition for the square integrability of a group representation,
and to analyze some of its consequences.

2. A. Square integrable group representations

Let G be a locally compact group, # a Hilbert space (overC) and
g U (g) a (strongly) continuous unitary irreducible (UIR) representation
of Gin #. Let H=G be a closed subgroup and

X=G/H 2.1

the left coset space [9]. We shall denote by x the elements of X, which are
cosets, gH, g G. We suppose that X carries a (left) invariant measure v
[actually it is enough to assume the measure v to be quasi-invariant; this
allows the formalism to be extended to certain infinite dimensional groups
(see Section 4 below)]. Let

c: X-G 2.2)

be a (global) measurable (Borel) section, and F a positive operator on #

with finite rank ». Suppose that F has the diagonal representation
F=) Aju)<ul, weH, A>0,

PRELACT } 2:3)

Qwlujy=8;  i,j=12,...,n,
and denote by P, A#™* the projection operator and the subspace (of H#):

P=_§11ui><ui|’} (2.4
Nit=P ¥

Using the operator F and the section o, define the positive operator
valued function F, : X - £ (#)*:

F,(x)=U(c (x)) FU (o (x))*. 2.5

Annales de Ulnstitut Henri Poincaré - Physique théorique



COHERENT AND QUASI-COHERENT STATES 861

DeFinTioN 2.1. — The representation U is said to be square integrable
mod (H, o), if there exists a positive operator F, of finite rank#n, and a
bounded positive invertible operator A, on #, such that { #, F, A_ b is

a reproducing triple, that is, one has f F,(x)dv(x)=A,, in the sense of
X
weak convergence. In this case we call F a resolution generator and the

vectors
n=F12y, ue N, 2.6)
admissible vectors mod (H, ). We also say that the section & is admissible

for the representation U.
In particular, we shall be interested in the admissible vectors

n'=A"7u, i=1,2, ..., n, 2.7

with A; and u; as in (2. 3).
Note that if U is square integrable mod (H, o), it is also square integra-
ble mod (H, ¢’), where o’ is any other section for which

Ag= J Fo (x) dv (X)=J U (o’ (x)) FU (o (x))* dv (x) 2.9

exists as a bounded positive operator with positive, self-adjoint inverse
A_'. In particular, consider the section o,, for any ge G, obtained from
the section ¢ as:

c,(x)=c(x)h(g, g7 . x)=go(g”'.x), (2.9)

where g~ x is the translate of the point xe X (considered as a homogen-
eous G-space) under g~ €G, and 4 : G x X - H is the cocycle

h(g, x)=c(g.x) " 'go(x). (2.10)

Notice (1) that, if g is not the identity element of G, the transformed
section o, always differs from o. Now, since

J F,(x)dv(x) =f U x)FU (o (x)*dv(x)=A,, 2.11

(*) This is most easily seen by comparing the present situation with that described in [10].
Indeed (in the notation of that paper), if G,=H and the homomorphism A:G, - H is the
identity map, then the principal bundle E, reduces to the canonical bundle G - G/H and
the cocycle £ (g, x) coincides with the transformation function p~!(g, x). Furthermore, by
Corollary 1 of [10], the existence of the global section o: G/H — G implies that A extends to
a smooth map A:G — H. By Corollary2, h(g, x) is independent of x iff A is a homomor-
phism, which happens only if G is a direct product G=K x H. Finally, by Corollary3,
h(g, x)=e, Vg, x, iff A\(H)=e, i.e. H={e}. Thus we always have c,#c if g+#e.

Vol. 55, n® 4-1991.



862 S. T. ALL J.-P. ANTOINE AND J.-P. GAZEAU
we see that
j U@ U@ (x)FU((x)*U(g)*dv(x)=A,, (2.12a)
X

where we have defined

A, =U(@AU(®* (2.12b)
On the other hand,
go(x)=o,(g.x)=0c(g.x)h(g, x), (2.13)
so that
U@ U(c(x))=Ugo(x)=U(c,(g.x). (2.14)
Using (2.14) in (2.12) and the invariance of the measure v, we get,
f F., (x)dv(x)=Acg, (2.15q)
X
where
F,, (x)=U(c,(x)) FU (o, (x))*. (2.15b)

Thus { #, F, , A, }, is a reproducing triple and U is also square integrable

[) . .
mod (H, o,), ¥ geG. Moreover, corresponding to any one of the sections
G, define the POV-measure a, (A) [seel, Sec.2; #(X) denotes the o-
algebra of Borel sets of X]:

a,, (8)= j F,,0dv(), AcB(X),
" 0, (0=A,,

(2.16)

Then, we have the generalized covariance condition (analogue of the
imprimitivity relation of Mackey [11]):

U(g)a,, (M) U(g)*=a,,(g.4), g ¢g€G, (2.17)

where, again, g. A denotes the translate of the Borel set Ae % (X) through
g.

2.B. Coherent states

Thus, the definition of square integrability adopted here does not depend
on the choice of a single section o, but rather on a whole class of sections,
which includes the set &g (c)= { G, geG}, and which, in a sense to be
made precise below, are all equivalent. We observe, at this point, that our
definition of square integrability is much more general than usually found
in the literature ([2], [12], [13]). Note that if H= G is a subgroup for which
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t}‘le quotient space G/H is compact, then U is trivially square integrable
mod (H, ©), for any measurable section . If G itself is compact, U is of
course square integrable in the usual sense, and our construction is not
needed. In other words, the interesting cases arise only when X (thus also
QG) is non-compact.

Let us construct the overcomplete family of states (OFS) associated to
the triple { #, Fy, A, } [seel,(2.9)]. From (2.3), (2.5) and (2.7) we get

FG(X)z‘Z )“iluc,i(x)><uo,i(x)l=.2 |n£x(x)><n:‘r(x)\’ (2 18)
Ug, i (x)=U (o (x))u;,
nir (x) =U (0 (X)) ni = }\‘il/2 uo, i(x)'

The support P, (x) of F,(x) and the subspace A", corresponding to
P, (x) are also related to P and A"+ [see (2.4)] by:

Ps(x)=U(c (x)) PU (o (x))*,

(2.19)

2.20
N ew=U(c(x)) /. ( )
Since, by definition [see also (2.11)],
J Zlni(x)><ni(x)|dv(x)=Aca (221)
X i=1
the set
C,={NLw=Ulc(x))n'|i=1,2, ..., n, xeX} (2.22)

is an OFS. We call & a family of coherent states, M. . Actually, since
for any section o' in the class & ;(c) we could construct such a family
&, of coherent states, it is useful to define the set

&= U &,=U{U@nlecG) (2.23)

¢' e ¥G (o) i=1

of all coherent states mod (H) for the representationU. Any family
S, 0’ € ¥ (o) will then be called a section of coherent states in &,

The standard definition of square integrability (see, for example, [13])
found in the literature, for discrete series representations, is given in terms
of admissible vectors in the following way: a vector ne# is said to be
admissible if the matrix element (U(g)n|n ) is square integrable, as a
function over G, with respect to the Haar measure p. If such a vector n
exists, and n#0, one can prove a resolution of the identity of the form

NJ [n,>{n,ldn®=1 m,=U(@n, (2.24)

N being a constant, and the representation is then said to be square
integrable. One can, moreover, show in that case that the set of admissible

Vol. 55, n° 4-1991.



864 S. T. AL J.-P. ANTOINE AND J.-P. GAZEAU

vectors is dense in # and that, in particular, if n is admissible then
U(g)n is also admissible, V ge G. In the more general situation envisaged
in this paper, we could also adopt a similar definition of square integrabil-
ity if we were to allow the operator A, in the reproducing triple
{#,F,, A,}, to be unbounded (though still positive, densely defined and
having an inverse). In fact we have the following result:

ProposiTiON 2.2. — Suppose that 6 : X - G is a continuous section and
that there exists a finite set of vectors n'e #, i=1,2, .. ., 1, such that

(i) the set Mgy =U(c())N'|i=1,2, ..., n,xeX} is total in #;

(ii) for each o' € ¥ ;(0), the integral

F)=3% | [KU@ @)n'|n*)|2dv(x) (2.25)
i=1 Jx
is finite, for all k=1,2, ..., n.
Then the operator A, defined through the weak integral
As=| X Mo {Miwldv(), (2.26)
X i=1

is strictly positive and self-adjoint on a dense domain D(A,) = H, and has
a positive densely defined inverse. [
The proof is given in the Appendix. We could now use the relation

Fo(x)= ). [n& > (N ] (this is not necessarily a rank n operator, since
i=1

the vectors 1 ,, need not be linearly independent) and define a reproduc-
ing triple { A, F, Ac}. But then the last inclusion in (I-4.8) may no
longer be valid. Hence, for the purposes of this paper, we shall continue
to define square integrability by Definition 2. 1.

Suppose that U is square integrable mod (H, o) and consider the isome-
tric map (see(I-4.9, 4. 10)] W_ : # - #_:

(We @), (x)={ng | D) (2.27)
where as a set # <=L (X, v; C"), and as a Hilbert space it has the scalar
product

(P|¥).=3 | ®;(x0)A, "), (x)dv (), (2.28)
i=1 JX
where
AJt=W A7 WL (2.29)
On
U H,,< L2(X, v; C"), (2.30)
9'eG

Annales de I'Institut Henri Poincaré - Physique théorique
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o, being given by (2.9), let us define the following representation of G:

U@: U #£,-> U #,, } @2.31)

g9eG g eG

O @Y,,)x)="Y,,-1, (€ ' %).
This is the natural representation of G, generated by U inside L* (X, v; C").
It is an example of a K-representation. Properties of such representations
have been studied in ([14]-[16]). It is sometimes possible to extend U(g)
to the whole of L2(X, v; C"), but the extension may not be globally
unitary ([7], [17], [18]). On the other hand, the image U, of U under the
unitary map ch, is clearly unitary. For this we have, for all ¥ eHs, and
o=W_ Ty

U, =W, U@EW,;',
(U, (8) ); () ={ M5, | U () ®).
Note, that in (2.32), if the vector U, (g)'¥ is considered as lying in

H ooy—1,0 then we retrieve (2.31). Moreover, denoting by U, the globally
unitary representation on L* (X, v; C"):

U @Y x)=¥YE "%, ¥Yel’X, v;C", (2.33)
we easily establish, using (2.31)—(2.33) that:
W, U@=U,)W

(2.32)

Vg, g eG. 2.34

o147

2. C. Weighted coherent states or quasi-coherent states

Suppose that U is square integrable mod (H, o) and let {#, F_, A_},
be the corresponding reproducing triple. Let {#, F', A'},, be another
reproducing triple, and denote by &'={n}} the corresponding OFS.
According to Definition 2.2 of I, &' is said to be weighted with respect
to &, if there exists a (weakly) measurable operator valued function
T:X = & (), such that

F'(x)=TX)F,(x)T(x)*, VxeX. (2.35)
Then we write, as in I
S'<E,. (2.36)

In that case the vectors of the OFS&'={n/} are expressed in terms of
the coherent states {1/}, after weighting by the operator T (x) and
mixing by a certain matrix (x) [see (I-2.21)]. For this reason we shall call
the N weighted coherent states (i.e. weighted w.r.t. the coherent states
N’ ). Note that coherent states such as the nJ,, are labelled by points
6(x)eG coming from a section, in fact, for fixed 7, they constitute the
orbit U (o (x))n’. Hence, the weighted coherent states m) are not true
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866 S. T. ALL J.-P. ANTOINE AND J.-P. GAZEAU

coherent states unless there exists a section o':X — G for which
Ni=U(c’ (x))n", V xeX. For that reason, we shall also refer to them as
quasi-coherent states.

At this point, we would like to mention that in all this construction the
group structure of G has not been exploited (except in the definition of
the section o, and the K-representations). Through the representation U,
the group has provided us with a Hilbert space and a nice set of vectors,
n. w=U(c(x))n". It is more the manifold stucture of G that is important
in the construction, and this structure persists even when we consider
quasi-coherent states instead of coherent states.

Quasi-coherent states are especially useful when {#, F,, A }, is a
frame, that is, A, ' is bounded. Then indeed, using the quasi-coherent
states N =T (x) N} ), With T(x)=A; 2P (x), we recover the resolution
of the identity (tight frame):

JmeMﬂ,

o, (2.37)

F'(x)=) [nH (]
i=1

We will perform this construction explicitly in Section 3. B below for the
case of the Poincaré group 2!, (1, 1) (thus generalizing results obtained
in [8]). Another example may be found in the recent work of
Torrésani [19], who has applied the present formalism to the affine Weyl-
Heisenberg group and has obtained very interesting generalized wavelets
(“wavelet packets”).

2. D. Equivalent coherent states

We end this section by introducing the notion of equivalent sets of
coherent states, and a geometric interpretation of such equivalence. Since
all reproducing triples considered here have constant, finite rank, any two
of them are comparable. Let o, 6’ : X - G be two admissible sections for
the representation U, that is, there exist operators F, A, F',
AL e L (#)*, with rank F=n, rank F'=n’, such that { #, F,, A_}, and
{#,F,, A}, are reproducing triples. Let S, and S, be corresponding
families of coherent states. Then, according to the discussion in I,
Section 2, S, <&, if n<#’, and &, and &, are equivalent if n=n" (even
if F#F', provided they have the same rank). This observation allows us
to get rid of the annoying dependence of the whole construction on the
choice of a section. Indeed, if we consider two coherent state systems &
and &, constructed from the same operator F, with two different admissi-
ble sections o, o', they are equivalent. For instance, the section of coherent

Annales de I'Institut Henri Poincaré - Physique théorique
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states S, , coming from the reproducing triples {#, F,, A, },, geG
[see (2. 153], are all equivalent.

The equivalence of &, and &, means that, for every xeX, there exist
(non-unique) bounded operators T, (x), T, (x) such that,

Fo (X)=Tgq (%) Fs (%) Tors ()%,
Fo (X) = Ttm’ (X) Fc’ (X) To‘o" (X)*

More precisely, the transition operators T, T, define a one-to-one
mapping between the basic coherent states; one has indeed, for all
i=1,...,nand xeX:

nfr' (x) = To"o’ (x) n:-; (x) and ndls (x) = Tco" (x) ni' (x)* (2 . 39)
The simplest choice for the transition operators is that given by the
relation (2.28) in I, namely:

Tos (0)=U(c" (x)) PU (o (x))*, (2.40)

where [P is the projection on (Ker F)*. For instance, if P=|n){n|, then
we get simply T,.o (X) =| Mg 9 » { No v |- In particular,

Too ()=U(c(x)) PU (o (x))* =P, (x), (2.41)

the projection on (Ker F_ (x))*. Moreover, if o, o', o’ are three admissible
sections for U, the corresponding transition operators obey the chain rule:

Tyrg () Ty () =T, (x), VxeX. (2.42)

Thus, in this precise sense we may say that the set of coherent states
associated to the representation U does not depend on the choice of the
section.

If G is a Lie group and o is a smooth admissible section, then the
family S, has remarkable geometrical properties. Note, however, that if a
global smooth section o : X — G exists, then the principal bundle (G, X, ),
where n: G — X=G/H is the canonical surjection, is trivializable (that is,
isomorphic to a product bundle). This is not too surprising: exactly the
same situation arises, for instance, in gauge field theory [10], where many
physically interesting cases correspond in fact to trivial principal bundles
[see also Footnote (1)]. If ¢ is smooth, then &, generates a (trivializable)
vector bundle through the frame fields x— nf,(x),i =1,2,...,n Denote
this bundle by B(S,). It is a bundle over the base space X, with fibres
isomorphic to C" [but it is in general not associated to the principal bundle
(G, X, m), since there is no natural representation of H on C"]. Indeed,
the fibre over xe X is spanned by the n basis vectors n’ wi=12,...,n
The canonical projection 7, : B(S,) — X has the property,

;1 (x)=E,(x)*[C"], VxeX, (2.43)

where E_(x)*:C"— #, is the map given in (A.13), written out for the
particular section G.

(2.39)

Vol. 55, n° 4-1991.



868 S. T. ALL J.-P. ANTOINE AND J.-P. GAZEAU

Consider now a second smooth admissible section ¢’, with resolution
generator ', and suppose that S ,~S_.. Then by the preceeding discus-
sion, there exists a smooth map T:X — & (), such that [see (2.35)]:

Fo()=T (x) F (x) T (x)* (2.44)
and for which T:B(S,) » B(€,) is a bundle isomorphism:

B(S,)>B(S,)
ne .y (2.45)
1dy
4

In other words, equivalent families of coherent states constitute fields in
isomorphic C"-bundles.

In the Appendix we collect some formulas for reproducing kernels,
isometries, etc., related to reproducing triples of the type {#, Fy, A, }.
[See expressions (A .10) to (A .16)].

3. THE CASE OF THE POINCARE GROUP #'. (1, 1)

We undertake in this section a rather comprehensive analysis of the
coherent states of the Poincaré group 2", (1, 1) in one space and one time
dimensions, based on the theory developed in the last section. We shall
look at a specific representation of this group, corresponding to a particle
of mass m>0. The work here is an extension of that begun in [7] and
continued in [8], and we shall freely use the notation and concepts introdu-
ced there. As mentioned in [7] and [8], and we reiterate here, the restriction
to one spatial dimension is a matter of computational and notational
neatness alone. Exactly analogous results are obtainable for the four-
dimensional Poincaré group 2, (1, 3) (see, e. g., [18]).

Elements of 2, (1, 1) are denoted by (a, A,), where a=(a,, a)eR* is a
space time translation and A, a Lorentz boost. The representation U, in
question is defined on the Hilbert space

H =LV, dkko) (3.1
and acts via the unitary operators U, (g), g€ G:

U,@dB)=e* oA, k), g=(a, A, } (3.2)
k.a=kya,—k.a. '
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3. A. Affine sections and families of coherent states

To construct coherent states, we consider again the homogeneous space
I'=2" (1, 1)/T where T is the subgroup of time translations. I' has global
coordinatization (q, p) € R?, and the (left) invariant measure is dqdp. The
action of ', (1, 1) on T is given by:

(a, AY).(q, p=’, p) (3.3a)
with
P'=MAp, (3.3b)
q'=l%(poq+mz_\;‘g). (3.30
[¢]

Here, as in [8], 1=t is another notation for the space component of the 2-
vector .
We fix now the particular section o,: T — 2, (1, 1):

oo (@, =00 . A), p=(/p>+m’, p) (.4

(this section was called B in {7]). Any other measurable section then has
the form

o(q, P=00(¢ P (/@ p) 0), D (3.5

where f is a measurable R-valued function. Writing (Caution: g does not
denote a unit vector!):

we easily see that

do="2f (@, p)
m

R 3.7
q=q+£f(q, p); G-7
m

p=p
Actually, for reasons which will become clear in a while, we shall consider
a class of sections for which fis further restricted. First we impose that

f (g, p) be a continuous affine function of q (such sections will be called
affine), i.e. take the general form

f@p=0@+q.0(p) 3.3

where ¢ and 0 are continuous functions of p alone. In fact these two
function play very different roles. The function ¢ (p) gives an additional
freedom in the choice of admissible sections, but otherwise it is completely
irrelevant. In particular, it has no influence on the square integrability of
the representation U, mod (T, o) since, as we shall see below, ¢ drops out
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of the calculation. In fact we shall eventually set @ =0. If necessary, an
arbitrary function ¢ may always be reinserted by a further multiplication
from the right by ((¢ (p), 0), ) in (3.5) (this is a kind of gauge freedom).
With @ =0, the formulas (3 .7) imply that the section coordinates ¢=(¢,, q)
satisfy the relation:

- _ pod-0() .9)
m+p.0(p)

For fixed p, this means that choosing 8 amounts to fixing a particular
reference frame in g-space. Several concrete examples are displayed in the
figure below in the form of a diagram, inspired by [8].

,§>

! .’ A &B
” %=
AN cshm / / L’ pf'
. WA ~ 7
A / e GDB — a():jL
A / /, / po""m
A /\\\ ! II / o —
e==dN B -
\\ , ’// /—/_/- A _O
A 7754 T — qo-— A
= q
GO

Reference frames in g-space (section coordinates)
corresponding to the various sections :T" — 2% (1,1) described in the text.
P g Y

The second restriction we will impose is that the part of the translation
2-vector ¢ which is linear in q (i. e. ¢ |, =0) be space-like. A straightforward
calculation shows this condition to be equivalent to any one of the
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following equivalent inequalities, valid for all pe ¥}

_PoTP _gpy<PotP (3.104)
m m
’9(13)—B <P (3.10b)
m m
|6(p) po| <|m+0(p).p| (3.10¢)

Actually the function 0(p) may be further restricted. In the full (1+3)-
dimensional case, q, p, 0 are 3-vectors; since g, must be rotation invariant,
it follows that 6 (p) must be proportional to p, i.e.

0= L2(p|), 3.11)
m

with A a dimensionless scalar function of | p|. Alternatively we may rewrite
(3.9) as

do="LLa(|p)), (3.12)

0
in terms of another scalar function of |p | The relation between A and @
is given by
2 )\’ 2
o=-Po = MO (.13)
m?+3.p? ps—op*

In terms of these, the inequalities (3.10) read simply:

Jo(lph]< L5
o]
|7\.(|p|)—1|<|I:)|. (3.14)

When conditions (3.10) are satisfied, one gets l+_p..9(p);é0 (the L. h.s.
m

is in fact positive, see the proof of Theorem 3.2 below), i.e. the map
o:T - 2" (1, 1) is injective, and then q and p can be solved in terms of
the section coordinates ¢, p(=p). In terms of these, the (left) invariant
measure reads:

-1
do=[1+3.e(p)] dq dp
m

= 1= o(|p)) |dadb. (3.15)
Po
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An arbitrary element (¢, A,))e# (1, 1) has the coset decomposition
[according to 2, (1, 1)/T]:

(q. A= <<O, q— Lop, Ap>> << "o 0), I). (3.16)
Po Po

On the other hand, with g=(a, A,) and writing
go(q, pP=(’,A,), (3.17)

we get:

, 1
Go=apt ;f (q, P) (AxP)os

. 1 (3.18)
q=at+tAqt ;f(q, P) AP,

p,=Akpa

where ¢=(0, q). Combining (3.10), (3.13) and (3.18) a straightforward
but tedious computation shows that if o satisfies (3.10) the o, satisfies it
also.

It was shown in [7], [8] that the representation U, is square integrable
mod (T, o) when =0, or 6= 0, (the section obtained in [8] by contrac-
tion from the de Sitter group and denoted there by f,). We shall show
here that U, is square integrable mod (T, o) for any ce%,, when &,
denotes the class of all sections o obeying the two restrictions stated
above: o is affine, i.e. fis continuous and of the form (3.8), with an
arbitrary ¢, and the part of ¢ linear q is space-like, i.e. 0 satisfies the
conditions (3.10) (obviously, both o, and o, belong to the class &,). As
mentioned above, the class &, is stable under the action
(a, A): o0 A, of 2, (1, 1).

For convenience we first particularize to the case of 2, (1, 1) the general
Definition 2.1 of admissible vectors.

DeFINITION 3.1. — A vector e, is said to be admissible mod (T, o),

c €% ,, if there exists a positive bounded operator A, admitting a positive,
self-adjoint, densely defined inverse A ', and such that

J JFo(@. pdadp=A,, (3.19)
R

where

F.(q, p=U,(c(q, p))|n)<{n|U,(c (g p)* (3.20)
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To find vectors which are admissible mod (I', o), it is necessary to look
at integrals of the type:

12(¢,\II)E<¢|AG\I!>=J2<¢|Fc(qyp)\lf>dqdp, o, vet” (3.21)

Actually, it is convenient to start with the more general integral

I,(Ny, Nas 9, \lf)=j (U, (c(q, )N |9
RZ

x{U,(o(q, P)n,|V)dqdq, (3.22)
from which I? (¢, ) may be obtained by setting n; =n,=mn. Now,
L
k

0

Ic(nla nz, (ba\l"):j dqdp[J elk‘inl(Ap_lk) (k)
R2 v
x J e-""-‘fnz(A;‘k'hv(k')—j’:f'],
v 0

which after a rearrangement, and use of Fubini’s theorem, can be brought
into the form:

’

dk dk
I,(Ny, Mo §, )= dqdpk— T exp[i(k—k')~£¢(l’)
0 m

R2 X9 x Vb 0
+i{(ko—ka)’ﬁe<p)—(k—k')<1+le(p))}.q]
m m

XNy (A, N, (A, TE) $RW(K)  (3.23)

In arriving at (3.23), use has been made of (3.7) and (3.8). At this point,
let us introduce a change of variables, k+— X:

k
X (k)= — °”°e(p)+k<1+3.e(p)>. (3.24)
m m
For this to be a one-to-one map, the condition
aX 1 ~1
—=—[ko=0(p).(A, " K)]#0 for any k,p (3.25)
dk  k,

has to be satisfied. But then we have the result (proof in the Appendix):

THEOREM 3.2. — Let o be an affine section, with a continuous function
0 (p). Then the following three conditions are equivalent:

@) %>Ofor any k, pev";

(it)

9(,,)_%@;
m m
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(iil) the part linear in q of the 2-vector q is space-like. T

Theorem 3.2 justifies the introduction of the class & ,: these are precisely
the sections for which square integrability of U,, may be proved explicitly,
by the same calculation as the one performed in [8] for the section o,.

Indeed, for oce.%#,, the change of variables (3.24) is one-to-one. Also
note that in this case,

X (k)=X (k) implies k=k' and ko=k. (3.26)

Hence, for ce %,

Lo (Mg, M2 ¢,\If)=2nj dpﬁ dX
RZx ¥ 0 JR
ik—k). 2 1 e
Xexp[l(k k)~mcp(p)]ko_e(p).(l_\p_1]95(X(k) X (k"))

xn; (A, k), (A, TE) ()Y (k) (3.27)
Using (3.26), we see that whenever I (n, n,; ¢,V) converges as an
integral, we have
d &k 2mp,
v xvi Po ko ko_e(P)'(/_\p—l/S)
xny (A, M, (A TR §R) W (k). (3.28)

Changing p into—p, using the fact that A,k=A,p and the invariance of
the measures, we obtain:

I,(Ny, N2 9,0 =

dp dk -
I,(Ny M2 0, 0) = P LAk D (D) RV KR (3.29)
v xvit Po ko
where the kernel <7 (k, p) is given by
-1
o (k, p)=2nM_.
ko—8(A, " K).p

This kernel is strictly positive for all k, pe ¥",; and any 0 obeying (3. 10).
This fact results from Theorem 3.2, since

dX Po _
0<—=2n—[A (k, A\, I 1 3.31
T ko[ (k, Ay I p)] (3.31)

where £ is the space inversion operator £ :p=(py, p)—F p=(py, — P)-
Notice the identities:

INI =N =Age  NIp=—Ap=A Tk (3.32)
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More than that, the kernel 7 satisfies the following inequalities, which
result from (3.10q):

2
2T o= B <o ks )< (po+ B (3.33)
m m

for all k, pe ¥, and any 0 obeying (3. 10), in particular, for any section
ce % ,. This relation will be crucial in the sequel.

First it implies the next lemma, which settles the question of convergence
of (3.29). On 4, define the self-adjoint (unbounded) operators P,>0
and P:

Py & (k)=kq ¢ (k), (3.34q)
Pé(k)=k¢(k), (3.34b)

for any state ¢ in their respective (dense) domains. Note that the states
in 2 (P}/?) are precisely those with finite energy.

LemMMA 3.3. — The integral 1,(ny, n,; ¢, ) converges, for all §, e A,
iff Ny, N2 €2 (PY/?). More precisely we have the estimate:

|Io(m, N2 ¢’ ‘l’)l <%!<¢|‘l’>|-l<n2l(})o+lpbnx>|- 0 (3.35)

Using this lemma, we can identify the admissible vectors as the finite
energy states 1 € 2 (P3/%). Hence the representation U, is square integrable
mod (T, o) for all ce¥,. Actually we can go further and obtain a
complete characterization of the reproducing triple { #,, F,, A}, where,
according to (3.21), A;=A? yields the decomposition over coherent states
(the integral converging weakly):

A2=f U, (c(g p)|n>{n|U,(c(q, p)*dqdp, (3.36)
[RZ

THEOREM 3.4. — A vector neH, is admissible mod (T, o), for any
o€y, iff NeD (Py/?). The operator A=Al is a multiplication operator
given by:

(As W) (k)= Ag (k) (k), (3.37)

ANK)= f (k. DI (p) 2 (3.38)
Vo Po
it is bounded and positive, and has a bounded inverse. Hence the reproducing

triple {%w, F,, A}}} is a frame, with constant rank n=1. The frame bounds
m(AD), M (AD) obey the following estimates, independent of c€ & :

m(Ayzmm),  M(AH=M(n), (3.39)
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Po|P| n>52n<-—P°—’Pl> . (3.400)
m m n

Mm)= sup M(AY)=2r <M> .0 (3.40b)
m n

ceFA

where

mm)= inf m(A)=2n <n

ceSA

Note that A? (k) in (3.38) can also be seen as a mean value
AJ(k)={ A (k, P)),. (3.41)

The proof of Theorem 3.4 is immediate. First, putting n,=n,=n in
(3.29), we may rewrite the integral I? (¢, V) in (3.21) as:

new=| FBAMEYOS (3.42)
2 o
di
=f+ +;fp?‘”dk’p)ln(p)l%(k)wk), (3.43)

which proves (3.37) and (3.38). The rest follows from the inequalities
(3.33), which imply:

m()[[¢PCCoIATO XM M9 (3.44)

We emphasize that the quantities m (1), M (1) give estimates which are
valid for all sections in &,. For any given o, the actual frame bounds
may be sharper, as will be seen in the examples described below. The
width of the frame class (see I, Section 5) is given by:

_M@)-mm)_{|P|),
Mm)+mMm) <Py),
An interesting open question is whether there exists a vector n which

minimizes this width.

In fact it is possible to find couples (o, n) such that the corresponding
frame is tight, i.e. such that A7=1. As a first example (see Table A.1 in

w(n)

(3.45)

the Appendix), consider the section opp corresponding to 6(p)=£. For
m

this choice, the kernel .« (k, p) does not depend on k, so that the operator
A} is a multiple of the identity, and the frame is tight for any admissible

n.
More generally, start from (3.42). Since

1
(Ax 1I’)o =—(kopo—k.p),
" (3.46)

_ 1
Ay 1g=—(kop—kp0),
m
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the kermel &7 (%, p) may be rewritten as

_2n [ _kipo=0(A, k)
A, (k, p) mPo[l ko/p—e(/_\i”—‘)]

Inserting (3.47) into the integral (3.42), we obtain the expression:

2
L (. 1) =" (Po ), (4 W)
- k[ kjpo—=0(A, " k) 2
LWdpko[ko/p_e(/_\;lk)]ln(p)l SRV (k). (3.48)

If m can be chosen in a way which makes the integral on the r.h.s. of
(3.48) vanish, for all ¢, Y€ #,, then using the normalization

(3.47)

2T By =1, (3.49)
m

we see from (3.37) and (3.48) that
Al=1 (3.50)

This precisely was the case envisaged in [7]. However, for arbitrary c € &,,
there may not exist any nontrivial ne 2 (Py/?) for which the integral on
the r.h.s. of (3.48) vanishes. An example is the section o, considered in
[8]. In that case, in fact, the spectrum o (A?) of A7 is always continuous,
whatever state n is used (see also the Appendix). We summarize these
results in a proposition.

ProposiTION 3.5. — Let &, denote the class of all affine space-like
sections ¢ : IT' = 2% (1, 1). Then:

(1) &, is invariant under the action of 21 (1, 1);

(2) &, contains at least one section of each of the following types:

(i) for any admissible vector m, one has Ad=L\1, thus the frame is tight;

(ii) omne can find an admissible vector m such that AY=M\I1, but not all
admissible vectors lead to tight frames;

(iii) for any admissible vector m, the spectrum of Al is purely continuous;
in that case, the frame is never tight. [

An interesting open question is whether &, contains in fact a unique
section of any of those types.

Sections of coherent states can now be constructed for any ce€%, and
any ne2 (Py?). One obtains:

6tx'::{T]c(q,p)=‘Jw(0-(q9 P))'ﬂl(‘la p)el"}, (351)
J |nc(q.p)><r|o(q,p)|dqdp:A2' (3~52)

From the discussion in Section 2.C, it is clear that the sections of coherent
states S, c €&, are all equivalent.
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3. B. Weighted coherent states or quasi-coherent states for 2%, (1, 1)

Now, given any section of coherent states S, c€%,, it is possible to
find weighted coherent states, as defined in Section 2:
Ng,p= T (€:P) Mo (q, ») (3.53)

with (q, p)— T (q, p) € &£ (¢ ,,) a measurable operator valued function, such
that the resolution of the identity holds:

fln;,.,><n.’,,p|dqdp=l. (3.54)
r

To see this, let us return to the integral I (n,, Ny ¢, V),
N N2€2PY?), &, VeH,, defined in (3.22). Taking n,=mn,=n in
(3.28), this integral becomes

dk
L (6 V)= @ Ee e n [N OFFEY . (359

vmxvm Po Ko
where
271 p,
ko—0(p).(A, ' k)
To go from (3.55) to (3.54), clearly we have to “divide” by the factor

¢, (k, p) [this makes sense, since ¢, (k, p)>0]. The precise result needed
here is the following (proof in the Appendix):

=</ (k, A, I p). (3.56)

¢k, p)=

LEMMA 3.6. — For any ce%, and for each pe?V )., the operator
C,(p) 2=c, (P, p)~ /2 defined by the relation:
(Co ()™ ) (k)= (cs (K, p)) 12 ¢ (K), (3.57)

is positive, self-adjoint and defined for all $e 2 (P§?). O

Now we are ready to construct weighting operators T (q, p), as discussed
in Section 2.6 above. Let Py g »=IIM]"?(MNoq.p? {Ne @, »|) denote the
one dimensional projection operator (in J#,) corresponding to the vector
No (. p)- SinCe Z (P§/?) is stable under U, (2), Vge 2 (1, 1), we see that

T(q’p)=”nllﬁlcc(p)_l/2 l]:Dcs(q,p) (358)

is a bounded operator on #,, as a consequence of Lemma 3.6. Thus
defining n, , as in (3.53), it is easy to derive (3.54), following essentially
the steps leading from (3.21) to (3.28), but using the weighted density
function

F,(q,p)=T(q,p) F,(q.p) T (q.p)* (3.59)

in place of F, [see (2.35) and (3.20)].
This completes the construction of coherent states for the UIR U, of
2% (1, 1). Comparing with the general theory of Section 2, the reproducing

Annales de I'Institut Henri Poincaré - Physique théorique



COHERENT AND QUASI-COHERENT STATES 879

triples in the present case are of the type { A, F,, A },-;, c€,.
Moreover, using the weighted coherent states 1, ,, we obtain the reproduc-
ing triple { #,,, F, 1},_,. In this case, for any Borel set A of the phase
space I', the operators

a(A)=J F,(q,p) dqdp
A

are quantum mechanical localization operators with (¢|a(A)$) giving
the probability of localization of the system in the set A when in the state

We note in passing that if the four-dimensional Poincaré group had
been used, reproducing triples with n=2 (or, more generally, n=2s5+1)
could have been obtained.

. 3. C. Orthogonality relations and the Wigner transform

Finally we obtain some general orthogonality relations for the sections
ce¥ . Let B, (s#,,) be the Hilbert space of all Hilbert-Schmidt operators
on J,,, with scalar product:

CP1lP2) @y e =tr[p¥ P2l (3.60)

Consider the linear span of the set of all vectors in %, (), which are of
the form

Pen=l9>(n|,  det, mea(Py?), (3.61)
that is, Hilbert-Schmidt operators with separable kernel
Po.n (k. D=0 ()M (p). - (3.62)

This set, which we denote by #,®2 (Pj/?) (the overbar meaning a
complex conjugation), is clearly dense in 4, (4,,). On this domain define
the operator &7 :

(Ao Py, ) (ks D)= (k, p)d ()N (p). VK pe?,  (3.63)
with o (k, p) as in (3.30). Then, combining (3.22) and (3.29) we obtain

J tr[U,, (o (g, P))* Py, o, ] tr[U,, (o (q, p)* py, ,,1 da dp
r

=< Py, IJZ{,, Py, n2 >932 (#) (.64
Since o/ (k, p)>0, Vk, p, [/, (k, p)] ! exists, and one has [see (3.33)]:

L o= oD <L ke ) <——(po+[p). (3.69)
2nm 2nm
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Using this fact we define the positive operator <7, ! on 4, (#,) by giving
its action on all vectors of the type p, ,€ #, &% P):

(L7 0y, ) () <[l s 240D
ko—0(A, ' K).p]|” —
= -——t =" k . (3.66
[ TN YT, (3.66)
Let us now define the Wigner transform map W : #,R2 (PL?)
— L2 (T, dqdp):
¥ p) @, p=tr[U, (c(q,p)* 5 *p]. (3.67)
Then from (3. 64) it immediately follows that
(i) # is a linear isometry, and hence can be extended to %, ()
(H py |sz >L2(r)=<P1|Pz >ga2(x*w), (3.68)

for all py, p,, €%, (), and
(ii) the following  orthogonality  relation holds for all
P1, P2€H QD (Py):

J tr[U,, (o (q,p)* p;]tr[U,, (5 (q,p))* p,] dq dp
I
=< v‘%;/z P1 | J?{;/z P2 >gaz ()" (3.69)

It is clear that (3.69) includes, as special cases, the orthogonality relations
studied in [7] and [8]. Furthermore, these relations may be used to construct
a relativistic Weyl transform, for any section o€ % ,, as was done in [7]
for the particular section o,. We leave the details to the reader.

4. CONCLUSION

Relativistic coherent states have been treated before in the literature,
from various points of view. The type of coherent states we have analyzed
here, and also in [7], were first introduced by Prugovecki [20], in the study
of massive spin 0 particles in a phase space setting, generalizing the
corresponding nonrelativistic states obtained earlier [21]. Among other
things, these coherent states allowed one to formulate a relativistic quan-
tum mechanics on phase space with a positive, covariant conserved current.
However in [20], only the section o, is (implicitly) used and the group
representation problem is not considered.

A different approach was taken by Kaiser in [22]. There, the starting
point is the observation that positive energy solutions of the Klein-Gordon
equation [in (n+1) space-time dimensions] are boundary values on the
Minkowski space R"*! of functions holomorphic in the forward tube
T=R"*1+iC, where C is the forward lightcone in R"*!. Thus one obtains
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a family of states (ST={ez, zeT}, that transform covariantly under the
Poincaré group 2, (1, n):

(a, Ne,=en, 40 V(a, Ne2!, (1,n), VzeT, 4.1

and have a number of interesting properties. In fact, specializing to n=1
and identifying z=g—ip/m*e T, with (g, A;)=o(q,p), one sees easily that
e, coincides with the vector 1, . = U, (5 (q, p) no, Where 1, is the particu-
lar vector n, (k) =exp (— k,/m). It is interesting to notice, from the explicit
transformation law (3.2), that this vector m, is the only one in
L%(v"), dk/k,) that leads to an (anti)holomorphic function, namely
e, (k)=exp (izk).

However, the family S is much too big (T is therefore called an
extended phase space) and a restriction has to be made to a subfamily
S;={e, zeX}, where X is a submanifold of T of real codimension 2;
one takes for T either the set P,={z=x—iyeT : x°=0, yev}, A>0}
or, more generally, £=S—i¥",, with S a hypersurface in R"** of space-
or light-like type. Clearly this amounts exactly to a restriction to the
section o, in the first case and to a certain section o, essentially of affine
type, in the second one. Thus, quite naturally, each family S of coherent
states generates a resolution of the identity. Thus (for n=1) the coherent
states in [22] are a special case of ours, corresponding to the particular
vector m,, but this choice seems to have a special physical relevance. The
group-theoretical underpinnings of the problem are also not discussed in
[22].

More recently Unterberger ([23], [24]) has rediscovered the coherent
states of [22] and used them as a basic tool for his comprehensive relativis-
tic generalization of Weyl’s operational calculus (under the name of Fuchs
and Klein-Gordon calculus). In particular, he obtains appropriate resolu-
tions of the identity, by selecting suitable submanifolds of T. An interesting
aspect of Unterberger’s work is it geometrical content. Indeed the tube
domain T is a homogeneous space for the conformal group SO, (2, n),
TS0, (2, n)/SO(2) X SO (n), and a Riemannian globally symmetric space
[25]. However, T is not a homogeneous space for 2% (1, n), and the
restriction to 2% (1, n) of the relevant (discrete series) representation of
SO, (2, n) involves a direct integral decomposition ([24], [26]); this is a
major difficulty in the derivation of the Klein-Gordon calculus.

Thus Unterberger’s approach suggests a class of spaces X for which the
present analysis applies, namely the Riemannian globally symmetric spaces
of noncompact type ([2], [25]). Indeed, if X=G/H is such a space, in other
words, a noncompact classical domain, then there exists a smooth global
section ¢ : X — G [25], Theorem VI.1.1, and hence the principal bundle
G - X=G/H is trivializable (see Section 2). Typical examples, besides T
itself, are SU(1,1)/U(1) (already discussed in [8]), or SU(2,2)/
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S(U(2) x U (2)). In the general case, G is a connected noncompact semi-
simple Lie group and H is the maximal compact subgroup of G. As
pointed out already in [7], there is a considerable literature about the
realization of the discrete series (i.e. square integrable) representations of
G on the corresponding symmetric space G/H (see for instance [27]-[29],
and the references contained in those papers). On the other hand, in the
case of a Riemannian globally symmetric space of compact type, X=G/H,
no smooth global section X — G exists (although a global Borel section
always does), but our construction is of course not needed, as pointed out
already in Section 2.

Another class consists of semi-direct products G=S A V, with V a
vector space and S a semisimple subgroup of GL(V), as considered by
DeBiévre [4]. Such groups usually arise by contraction from those of the
preceding class, which do have a discrete series (the simplest case is the
contraction SO, (1, 2) - 21 (1, 1) studied in [8]). This explains why they
have representations square integrable on a coset space G/H.

In fact there is a close relationship between our approach and that of
[4], and we feel it interesting to discuss it in some detail [30]. The key
point is that the family of affine sections ¢ introduced in Section 3 is
in one-to-one correspondence with the so-called parallel bundles of [4].
Furthermore sections with spacelike ¢ correspond to the admissible parallel
bundles of [4], Definition 2.2, as follows. We recall that, in the case of a
general group G=S A V, the coordinate transformation corresponding to
(3.24) is nonsingular only on a piece of the orbit X, namely a neighbor-
hood U, of a base point x,eX. Then one proves easily the following
statement:

LEMMA 4.1. — Let ce¥, be an affine, spacelike section. Then
the corresponding parallel bundle is admissible and U,=7" x, for all
pey .y, O

One should notice that such a regular situation results from the restric-
tion that ¢ be spacelike; if one drops it, a nontrivial neighborhood U,,
must be introduced, and the admissible vector n must have its support
restricted to U, . The same holds true for other groups, such as the
Euclidean group E(2) analyzed in [4], no matter what section is chosen.
Finally one should notice that the calculation of the integral
I, (M, N2 ¢, ) in (3.22) coincides with the calculation made in the proof
of Theorem 3.2 of [4]—and the similar calculation made in [7].

We should also mention the work of Bohnké [31], in which discrete
frames associated to the Poincaré group (in any dimension) are con-
structed, and that of Klauder and Streater [32], who circumvent the lack
of square integrability of the Wigner representation by using a reducible
representation, obtained by taking a direct integral over the mass m.
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Where do we go now? As indicated in the introduction, the mathematical
structure developed here and in the preceding paper [7] is broad enough
to encompass an array of applications. In a succeeding paper we intend
to analyze spin coherent states and Dirac coherent states, within the
framework of the full Poincaré group 2! (1, 3). In these cases the density
functions F,(q,p) involve rank-2 and rank-4 operators F, respectively.
Further work is also underway on the construction, within the present
theory, of general relativistic frames [33], that is, frames corresponding to
the Galilei and the anti-de Sitter groups, in addition to the Poincaré case;
a description of squeezed states of light using sections in the semi-direct
product of the Weyl-Heisenberg group with the metaplectic group [34];
and the construction of coherent states for certain infinite dimensional
groups (diffeomorphism groups of manifolds) [35]. Another problem is
the application of the present analysis of the massless case; the 1+3
dimensional case is straightforward, but in 1+ 1 dimensions new difficulties
appear, because 2-D massless fields require an indefinite metric, and the
method has to be generalized further. Massless Poincaré coherent states
have been obtained recently by Moschella and one of us [36] and the
extension to a conformal setup is under study. Another open problem is
a general analysis of the K-representation (2.31) and its possible connec-
tion with general orthogonality relations of the type (3.66)-(3.67).

Finally, a characterization of group representations which are square
integrable in the sense of Definition 2.1 would be highly desirable. In
particular it would be useful to obtain a criterion for determining when a
given representation is square integrable. Such results could have bearing
on problems of quantization ([35]-[40]).

APPENDIX

A.1. Proof of Proposition 2.2

On #, consider the formal operator

A = Z lni(x)><ni(x)1dV(x)- (A.1)
X i=1

Define vectors n) e #

n;:U(g)’nl’ gEG’ i=1,2, A (B (A‘z)
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Since U is irreducible, this set of vectors is dense in # (assuming, of
course, there is at least one 1'#0). Then,

<n£lAcn£>:.Z [KU@ MW |NL ) |?dv(x)

X

=‘§ Kn;'lu(x)|nj>,2dv(x)

=2 | Kn5, i wIn' D] av(x),
i=1 JX

by (2.9) and the left invariance of v. Hence, from (2.25),
(nj|An)>=F(o,-1)<o0, (A.3)
and thus A, is densely defined. Clearly A, is also positive (since, as we

show next, it is self-adjoint). Let 2 (A,)<# be the largest set on which
A, is defined. For any ¢e % (A ), we have

<<19|A6¢>=§1 (Mo |92 dv (). (A.4)

Hence, if (¢|A;¢>=0, then {n. |9 )>=0, for each i=1,2, ..., n and
for (v—) almost all xeX. But since 5: X — G is continuous, the function
x—{Nk | is continuous. Also the measure v is invariant. Hence
{Ml9)>=0, for all xeX, and i=1,2, ..., n. Since by condition (i),
the set {nc } is total, this means that (’p 0 Thus A, is strictly positive
on Z(A,). We prove that it is closed.

Indeed, consider the map W,: % (A,) - L*(X, v; C") given by

(Wc¢)i(x):<ncix(x)|¢>‘ (A.5)
Let {¢,}2, be a sequence of vectors in Z(A,), converging strongly to
deA# and suppose that {y,=W_¢,}2, converges strongly to
YyeLl?(X, v; C") in the norm of L2(X, v; C". Then, {, also converges
weakly in L?(X, v; C") to \ and the sequence of norms ||, ||z x. v; ¢ iS
bounded. Also, by the continuity of the scalar product in 5, the sequence
of complex numbers { {n; |9, > }s=, converges to {n. | ). Hence,

nl(x) <nc(x)[¢> (A6)
VxeXand i=1,2, ..., n Thus,
Vi) ={M5 |9 (A.7)
and since yeL?*(X, v; C"), this means that ¢€ Z (A,). Hence,
W, o=V (A.8)
and, therefore, W, is a closed map. Also, from (A.4) and (A.S5),
[WodlI*=< oA 4>, (A.9)
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Ve (A,), which implies that A is closed on 2 (A,), hence self-adjoint.
Finally, since A, is strictly positive and self-adjoint on 2 (A,), it has a
positive self-adjoint inverse A !, which is also densely defined. [J

A.2. Some explicit relations for { #°, F, A_},

In the special case of a reproducing triple { #, F,, A_},, arising from
a representation U of G, which is square integrable mod (H, o), the
various operators entering in the general construction developed in 1[4]
assume special forms. We list here, for reference purposes, several relevant
formulas, corresponding to I-(A. 18), (21)-(23).

First the basic isometry now reads W_: # — # < L?(X, v; C"), with

(Wo 9 () =27 (| U (s (x)* ¢, (A.10)

with »; and A, i=1,2, ..., n, given by (2.3). The expression for the
inverse map is now:

w;lo=Y x;ﬂf ®;()A; U ()|u,ddv(x),  (A.11)

V®e #,. Similarly, the evaluation map E(x) (comparel, Fig. A.2) and
its adjoint become E_(x):# — C":

EG(X)=__Z A ey (u; | U (o (X)), (A.12)
E (x)*= Y M2 U(c(x)|u; ) el (A.13)
F, ()=E, (9" E, () (A 14)
Finally, the reproducing kernel K¢ for # is [seel, (3.23) and (4.12)]:
K (x, »)=E, (x) A; ' E; ()%, (A.15)

K:‘;(X, y)=<€,~IKG(X, y)ej><[2"
=) (| U (o ()* AT U (e (0w ). (A.16)

A.3. Proof of Theorem 3.2

The equivalence between (i) and (iii), under the three variants (3.10),
results from a straightforward calculation (see Section 3).
We show (ii) = (i). Inserting the relation
_ 1
A llg=—(p0k—k0p)
m
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into (3.25), we see that (i) is equivalent to the inequality:

’ﬁe(p).k<ko(1+£.e(p)> (A.17)
m m

Assume (ii). Since k <k, for any ke ¥, we may write

Pog(p). k< 22[0(p) | ko< ko» by(3.100).
m m

1+2 o(p)
m

Now the quantity 1+£.6(p) does not vanish, again by (3.10¢), hence it
m

is always positive (since it equals 1 for p=0 and 0 is continuous). Thus it
equals its absolute value and (A.17) is proved.

Conversely, assume (i) to be true, i.e. (A.17) is satisfied, for all k,
peEY L

1+2 o) > Poop). X
m m ko

This holds, in particular, in the limits k - + oo, where —li — +1. For

0
k —» + o0, we get:
m +
e(p)<_=30_p,
Po™ P m
while the limit k - — oo yields:
. —
0> ———=-"oP
Potp m

By (3.10a), this is precisely the condition (ii). O

A.4. Proof of Lemma 3.5

As shown in Section 3, one has ¢ (k, p)>0 for all k, pe?”}, thus
¢s(k, p)~ Y% is well-defined. Next, for fixed p, consider the function
oYk - R™* given by

a(k)=ko—0(p).(A, ' k). (A.18)
Clearly, a (k) — oo, either as k — 0o or as k » — 0. On the other hand, a
standard computation shows that a (k) attains its minimum at
k= m+0(p).p
o _ 211/2
[1+20().p/m—0(@)1"" | .19
_ Mpo
m+06(p).p
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The minimum is
o . =m[1+20(p).p/m—0 (73" (A.20)

min
Thus, as a positive operator, C,(p)~'> has spectrum
[(otin/2 T Po) /2, 00). Moreover, writing ¢, (, p)”Y? as:

) (/_\;1/9]”2

ey (k, p)~ 12 =kY? : A.21
(k, p) 0 [2”0 anp ke ( )

and noting that, for fixed p, (A, 1k)/k, is bounded in k, we immediately
see that 9 (C,(p)~Y?)=2(P}/?), and that on this domain C, (p)~ Y% is
self-adjoint. [

A.5. Some explicit examples of affine sections

For the sake of completeness, we list in Table A.1 below the parameters
corresponding to be concrete sections that have been used in earlier work,
namely:

— o, the section of reference, introduced in [7] and also used implicitly
by Unterberger ([23], [24]);

— o,, the so-called deSitterian section derived in [8];

— Oppg, the section used by DeBievre [4]; )

— Oy the section underlying the work of Bertrand and Bertrand [41].

The last section is a limiting case, it does not belong to &,; indeed, for
this choice, the inequalities (3.105), (3.10¢), (3.14) become equalities,
corresponding to the fact that the vector élim is now light-like (see the
Figure in Section 3.A).

By (3.38), the sixth column in Table A.1 yields the function Aj (k) for
the various sections, and this in turn specifies the operator AJ. The results,
which are summarized in the last column of the table, are the following
(a more detailed discussion will be given elsewhere [33]):

(i) for the section Gy Zﬁ AN (K)={Py )~ kk (P ),; thus for a general
n 0

admissible vector n, one gets a continuous spectrum

G(—;%AQ)Z'[<PO>“—’I<P>n|,<P0>n+I<P>n“; (A.22)

however, if n is chosen such that (P ), =0 (typically, if n (p) is an even
function (see[7]), or, mimicking 3-dimensional terminology, a “rotation”-
invariant function), then the spectrum collapses to a single point and the
frame becomes tight. An example is the vector Mg (p)=exp (—po/m) used
in [22] (see Section 4);

(ii) for the section o: an explicit calculation shows that the range of
the function A"(k) is always a full interval, which however depends

Vol. 55, n° 4-1991.



S. T. ALI, J.-P. ANTOINE AND J.-P. GAZEAU

888

aJ wldon] w| 4] ] 14] w N4
(1% @) |+5C0a> “|al-Cad] Al I I T ) T B A VL
| | snonunuo)) 0 (1°d-d°y)d—(d"y)|d| | d(d-y) °d| d-b -~ od od ! |d|+°d) d ‘o
w od od w
u/ o . 0 : — —=% — ga
{0 ) ;wiuog d @) w b - I I d o
pareordwos azow: 0 £ (g > j — w40 of (w +°d)yw Od+ ) w |w+°d op w0 | w4 °d w4 °d
(Cod) “lluflud:o="Ca> y - il wg Oy 4 (d ) +(dy) | d'b T - od w d o
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on the state mn, as in the previous case. If (P), =0,
0'<2ﬁ A:})=[m||n 12, {Py Dyl If (P}, #0, the situation is more compli-
n

cated, several cases must be distinguished, but, for any admissible state 1,
the spectrum of A is purely continuous and the frame is never tight;

(iii) for the section opg: the kernel o/ (k, p) does not depend on k,
hence the function A? (k) is constant; thus A is a multiple of the identity
and the frame is tight;

(@iv) for the section oy, : the spectrum of AP is purely continuous,
namely:

(72 A2)= 1Py~ [P0 CPa)y (P,

As a final comment, we may remark, by inspection of Table A. 1, that
the section oy yields distinctly simpler results than the others. The reason
is that it is the only one which is Lorentz invariant. Indeed opy is specified
by the invariant condition (¢.p)=0, and this is actually the way in which
it was introduced in the paper of DeBiévre [4].
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