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Square integrability of group representations
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I. Reproducing triples and frames
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ABSTRACT. - A connection between a class of positive operator valued
measures on a Hilbert space and certain reproducing kernel Hilbert spaces
leads to the concept of a reproducing triple. Any such object generates an
overcomplete family of vectors, which has most of the attributes of the
familiar coherent states. A particular case of such a triple is the notion of
frame, which, in a discrete situation, coincides with the structure underlying
nonorthogonal expansions. The abstract machinery developed here will be
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830 S. T. ALI, J.-P. ANTOINE AND J.-P. GAZEAU

used in a second paper to give a general definition of a square integrable
representation of a group and the associated coherent states.

RESUME. 2014 En faisant Ie lien entre une classe de mesures a valeurs

operateurs positifs dans un espace de Hilbert et certains espaces de Hilbert
a noyau reproduisant, on est mene au concept de triplet reproduisant.
Tout objet de ce type engendre une famille surcomplete de vecteurs

possedant la plupart des proprietes des etats coherents traditionnels. Un
cas particulier d’un tel triplet est la notion de repere (« frame ») qui, dans
Ie cas discret, coincide avec la structure sous-jacente aux developpements
en fonctions non orthogonales. Le formalisme abstrait developpe ici sera
utilise dans un deuxieme article pour definir de façon generale une repre-
sentation de carre integrable d’un groupe et les etats coherents associes.

1. INTRODUCTION

This paper continues the work begun in two previous publications
([ 1 ], [2]), in which the problem of square integrability of group representa-
tions, and the existence of coherent states, associated to these representa-
tions, had been studied. Apart from a few general considerations, the
focus of these two papers was the Poincare group ( 1, 1 ) in one space
and one time dimensions. The objective was to arrive at a notion of

square integrability for a group representation, which is broad enough to
encompass all the classical results on the discrete series representations
for locally compact groups, the Perelomov theory of coherent states for
Lie groups ([3], [4]) as well as results obtained, in the context of quantiza-
tion on phase space ([5]-[8]), for the coherent states of the Galilei and the
Poineare groups - the states in question being labelled by points in certain
homogeneous spaces of these groups. A related problem is that of obtain-
ing appropriate orthogonality relations for square integrable representa-
tions - in this broader sense - which would then also enlarge the notion
of the formal dimension of a square integrable representation.

In this work, which consists of two papers, we extend the concept of
square integrability and explore some consequences of this generalization.
A fairly comprehensive mathematical scheme is presented which, even
apart from its relevance to group representations and harmonic analysis,
could be of use in other areas of current activity, such as signal analysis,
wavelet transform theory and the theory of frames ([9]-[15]). We also
return to the Poincare group, ~ + ( 1, 1 ), and explicitly compute how the
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831REPRODUCING TRIPLES AND FRAMES

coherent states associated to a particular representation depend on sections
of the group - the latter being considered as a principal bundle over one
of its homogeneous spaces.

In all the usual treatments of coherent states for locally compact groups
([3], [4]) the central object is an operator integral

on a Hilbert space ~f which carries a unitary, irreducible represention
(UIR) of the group in question. Here X is, in general, a homogeneous
space of the group, v an invariant measure on it and I, the identity
operator on J~. Each F (x), x E X, is a one-dimensional projection operator.
These operators F (x) can then be used to map the Hilbert space ~f
isometrically onto a subspace of L2 (X, v). This subspace is distingu-
ished by the fact that it carries a reproducing kernel, which implies that

is actually a space of (continuous) functions. The operators F (x),
together with ( 1. 1 ), also define a positive operator valued (POV) measure
(see below) on the Borel sets of X.
To get a more effective tool, in order to analyze a much wider class of

coherent states than has been accessible so far (in particular those of the
Poincare group ( 1, 1 ) obtained in [ 1 ], [2]), it is necessary to generalize
( 1.1 ) in two ways. First, one has to drop the condition that F (x) be a
one-dimensional projection operator, and replace it by a more general
bounded positive operator; secondly, the identity operator I has also to
be replaced, in general, by a positive, bounded operator A admitting an
inverse. This also means that the POV-measure mentioned above has now
total measure equal to A. In Sections 2 and 3, we shall first study such a
POV-measure and show how notions of overcomplete families of vectors
and reproducing kernel Hilbert spaces arise very naturally in this abstract
context, even when there is no group action on X. The key concept here
is that of a reproducing triple ~ ~f, F, A}, where F and A are the operators
discussed above. The main result is that, given such a triple, one can
construct an overcomplete family of states (generalizing the usual coherent
states) and an isometry from J~ onto a Hilbert space of vector-valued
functions. We also introduce a natural notion of equivalence between
reproducing triples.

Then, in Sections 4 and 5, we specialize the discussion to the case where
each F (x) is an operator of finite rank, constant for all x E X. An interest-
ing situation arises if, in addition, the inverse operator is required to
be bounded - in that case we will call the triple {H, F, A} a frame.
Indeed, if we assume that X is a discrete space, with v the counting
measure, our structure coincides with that introduced under the same
name in the study of nonorthogonal expansions ([ 10]-[ 13]). Thus our
construction may also be viewed as a unifying one.

Vol. 55, n° 4-199L



832 S. T. ALI, J.-P. ANTOINE AND b J.-P. GAZEAU

In Section 6, we give some brief indications on how this general formal-
ism is used in the case of coherent states. There, X is a homogeneous space
G/H of a locally compact group G and F (x) is obtained by transporting a
fixed operator F covariantly with respect to a UIR of G. The systematic
discussion of this application is postponed to Paper II [16], together with
a general treatment of the case (1, 1). In this way we will obtain a
substantial generalization, and also a better understanding, of our previous
results ([1], [2]).

2. POV MEASURES AND REPRODUCING TRIPLES

As stated in the Introduction, we study in this Section the connection
between certain POV measures and reproducing triples.

Let Jf be an abstract, separable Hilbert space over C, X a locally
compact space, 84 (X) the o-algebra of all Borel sets of X and v a positive,
regular Borel measure on P4 (X) with support X. Denote the
set of all bounded operators on ~f, and the positive cone of

A positive operator valued measure on X (see for example [5] or
[ 17]) is a map a : ~ (X) -~ ~ (~) + satisfying:

The POV-measure a is said to be regular if, the positive Borel

measure ~,~ : ~(X) -~ !R~,

is regular. We shall assume that this is the case, that is, we shall consider
regular POV-measures only. If in (2.1 b), the operator A is the identity,
the POV-measure is said to be normalized. Suppose now that there exists
a weakly measurable positive operator valued function F : X -~ ~’ (~~ +
such that, 

the integral being defined weakly. Then a is said to have the bounded

density F. If in addition we assume that A-1 exists as a positive ( possibly
unbounded), densely defined, self-adjoint operator on ~f, in that case we
call {H, F, A } a reproducing triple, over (X, v), for reasons which become
clear shortly.

Annales de l’Institut Henri Poineare - Physique theorique



833REPRODUCING TRIPLES AND FRAMES

We ’ proceed o to show how overcomp!ete sets of vectors can be " buitt

F, A}. For each let be the null space 
" of F (x),

and ~ its orthogonal complement. Let be the projection
operator onto %;:

On %1. define the new scalar as:

Let be the closure of ~~ in the corresponding norm. Note, that if
the spectrum of F (x), restricted to J~, is bounded away from zero, then
(.(.)~ gives just the graph norm of F ~x~ and is equal to J~ as a set.
This, for example, would be the case if F (x) were a finite rank operator.
In general, however, densely.

Since J~ is dense in we may introduce an orthonormal basis

~ ’~~ ~x~~ ~ = ~ ~ ...,~(x)} in with each being the

dimension of In that case,

and o the set of ~ector~ ~ ~~ ~x~ ~ ~ ~x~~~~ ~~ (x~, ~ = 1, . , . , ~~x~ ~ is an

orthonormal basis of (for the original scalar product of ’ Set

and

Then 6 "looks like" a set of coherent states, for we have the result (proof
in Appendix):

PROPOSITION 2.1. - For each x~X, one has:

sum converging weakly; the set 6 is an overcomplete of states
ih H, in the sense that

the integral converging weakly, and for any 03C6~H, ~’x|03C6&#x3E;=0, ~~’x~G,
implies that 03C6=0. 0

Thus, in the general situation envisaged here of a reproducing triple
{ F, A}, the resolution arf the identity in (1.1) is replaced by the

55, n° 4-1g91.



834 S. T. ALI, J.-P. ANTOINE AND J.-P. GAZEAU

"resolution of the positive, bounded, invertible operator" A given by
(2.11). There does nevertheless exist an OFS 6 with all the usual proper-
ties [4].
For each x E X define a map E (x) : J’f -~ ~x by:

Let E (x)* : be the adjoint of E (x). Clearly.

It is straightforward to verify that in terms of the elements of S, we have:

where the bra vector (vi (x)| is the dual of |vi (x)) with respect to the Kx
scalar product ( . I . )x. Combining (2 . 14) with (2 . 10) and (2 . 11 ) we also
get

Suppose now we are given two different reproducing triples ~ ~, F, A}
and F’, A’} over the same measure space (X, v). How do they
compare? First, there is a natural notion of subordination, which is given
in terms of generalized intertwining operators.

DEFINITION 2 . 2. - The density function F’ : X ~ 2 (~) + is said to be
weighted with respect to the density function F : X ~ ~ (~) + if there
exists a (weakly) measurable operator valued function T : X ~ J2f 
such that

Of course, the operator T (x) need not be unique.
In order to exploit such a relation, we have to restrict further the density

operators F (x), F’ (x). Let us assume that both F and F’ take values in
the of positive compact operators. This applies, in particular,
when F (x) or F’ (x) have finite rank for all Then, for each 
we may write a spectral decomposition of F (x), resp. F’ (x) :

Annales de l’Institut Henri Physique - theorique



835REPRODUCING TRIPLES AND FRAMES

where the eigenvectors {ui(x), i=1, ..., d(x)} of F (x) constitute, as

above, an orthonormal basis of and similarly i =1, ... ,

d’ (x)} c %:1-, with J~~ = Ker F’ (x). Then we may re-express (2 . 17) as:

Here and in the sequel, all sums converge weakly, by Proposition 2. 1.

Thus, writing

we obtain

where are the d’ (x) x d(x) matrix elements

It also follows from (2.18) and (2. 22) that

From (2 . 23) it appears that the vectors of the OFS 6’ = { 1l~} of the
reproducing triple {H, F’, A’ } are given in terms of those of the

of the reproducing triple {H, F, A}, after weighting by
the operator T (x) and mixing by the matrix t (x) [with elements 
This justifies the terminology: the OFS 3’ is weighted w. r. to the OFS 6.
We denote this relation by writing

The relationship - is clearly transitive and reflexive, that is, - is an order
relation. Thus we get a natural notion of equivalence:

DEFINITION 2 . 3. 2014 Two reproducing triples ~ ~, F, A} and

~ ~, F’, A’}, with compact density functions F, F’ : X-~(~)~ and
corresponding OFS 6, ~ are said to be equivalent if 6’-6 and 6-6’.
Then we write 6 ~ @’.

In that case we have, in addition to (2.17), the relation

Vol. 55, n° 4-1991.
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with another measurable function T’ : X --~ ~° (~). From (2 .17) and
(2.25) we get:

The simplest solution to (2.26) is

In fact, most OFS will be comparable in the sense of the order relation
~. Take, for instance, 6 and S’ such that ~(~)~~(~-), for all then
6’ - 6. Indeed, define

so that

Then the relations (2 . 17) and (2 . 21 ) are immediately verified, so that
indeed 6’ « 6. Notice that the particular choice (2 . 28) for the operator
T (x) is characterized by the relation T(~-)=)P’(~)T(~){P(~).
Assume now that d’ (x) = d (x), then C~’ ~ C~. In particular, the

choice (2 . 28) for T (x) and T’ (x) leads immediately to the simple relations
(2.27). This concept of equivalence of reproducing triples and OFS has
an interesting application in the theory of generalized coherent states

developed in Paper II [16].

3. THE FUNDAMENTAL ISOMETRY : REPRODUCING KERNEL
HILBERT SPACES

The next step in the analysis is to show how a reproducing triple
naturally leads to a reproducing kernel Hilbert space. Consider the Carte-
sian product n ~"X of the spaces We equip it with its natural

x~X

structure of vector space and observe next that this vector space contains
a subspace .A of v-measurable vector fields ([18]-[20]). Indeed, let

{~ °° 1 be a countable set of vectors which is total in ~, and for each
~ define an element n by

jcex

Annales de l’Institute Henri Poincaré - Physique theorique
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We define also the set:

Then we have the following result (praof given in the Appendix):

LEMMA 3 . 1. - The 1 c is a fundamental
x~x

sequence of v-measurable vector fields, that is:
(i) ‘d m, n, the function .~ ~ (~c) ~ (x))~ is v-measurable ;

x E x, the set of vectors {03A6n (x) }:= 1 is total in 

Hence, the set A is a subspace of v-measurable vector fields, and it is

independent o. f ’ the particular basis { 03C6n} chosen. D

Thus, the family of Hilbert spaces {Kx I together with the set
A, defines a measurable field of Hilbert spaces on the measure space
{X, v}, and hence [18], we can define the direct integral space,

Vectors C are equivalence classes of elements in which are
xeX

measurable in the sense of (3.2) and satisfy

If is the dimension of then it follows from the general theory
of direct integral Hilbert spaces ([18]-[20]) that the function x ~ a~(x~ is v-
measurable. is constant (including then every is isomorphic
to a fixed Hilbert space .Ye 0’ and then (X, v; ~t°Q~. This will happen
in most practical situations, including those described in Sections 4 and 6
below. On the other hand, it is easy to cook up (rather artificial) examples
to the contrary, for instance, by taking d(x) to be piecewise constant.

It is the space ~’ in which we shall identify a subset of vector-valued
functions of x~X (with values in which will then be made into a
Hilbert space, isometrically isomorphic to Notice that, as a conse-
quence of Lemma 3.1, while ~ could depend on it does not depend
on the choice of the basis ~ ~~ ~ .
We first define a linear map wK : ~f in the obvious way:

Vol. 55, n° 4-I~91.
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The reason for the subscript K will soon become apparent. WK is bounded,
and in fact, since, by the definition of the norm in ~,

by (2. 15), (2. 6) and (2. 5), we see that

in view of (2. 16). Thus,

On the range of WK in ~ we can define the inverse map

WK 1 : Ran (W K) ~ ~f, since by (3 . 5) and the strict positivity of A, WK is
injective.

It was assumed, for the reproducing triple {H, F, A}, that A -1 exists
as a closed, possibly unbounded, but densely defined positive operator.
Since its inverse A is bounded, the spectrum of A -1 is bounded away
from zero. be the domain of A-1, so 
densely, and consider its image in ~. On
W K [22 (A - 1)] define the operator

and on Ran (W K) define

LEMMA 3 . 2. - In the Hilbert space Ran (WK) (closure in the ~-norm),
ÅK is a bounded positive operator and ÅK" 1 is a positive essentially self
adjoint operator which is the inverse of ÅK (on the appropriate domains). 0

(See proof in the Appendix.)
We denote by AK the closure of ÅK and by AK 1 the self-adjoint

extension of ÅK" 1; its domain D (AK" 1) is a dense subspace of Ran (WK).
On WK [fØ (A -1 )] let us use the positive operator AK-1K to define the new

scalar &#x3E;K and the associated norm as:

Let

be the completion of WK [2fi (A - 1)] in this norm. Then ~K is a Hilbert
space, and o it will turn out that as a set it is contained in ~. Indeed let us

Annales de l’Institut Henri Poincare - Physique theorique
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compute the norm of W K as a map from fØ (A -1) into For any

~EfØ(A -1),

by (A. 8) and (3 . 7). Thus, as a mapping from ~ (A-1) to W K is
an isometry (and hence has norm 1 ). We can therefore extend WK by
continuity to the whole of Yf as a unitary map, WK : ye K. This also
means that

Thus we have proved:

THEOREM 3.3. - The range of W K is complete in the ~.~K norm, hence
it is a Hilbert space, denoted :Yf K, and W K : ~ -~ unitary map. D

Furthermore, since by Lemma 3 . 2, 1 is a positive self-adjoint opera-
tor with a bounded inverse AK, its spectrum is bounded away from zero.
Hence, the norm is equivalent to the graph norm of AIZ 1/2, which
implies and therefore, by (3 . 12):

Note also that now, as a map from HK to H, W-1K 1 is unitary, hence
coincides with the adjoint of WK : Jf -+ Moreover, the closures AK
and simply become unitary images of A and A-1, so that in parti-
cular,

[compare with (A. 10)].
Now, the elements in being vectors in are equivalence

classes (modulo sets of v-measure zero) of vector valued functions 1&#x3E;, of
for v-almost all x. However, in each equivalence

class [1&#x3E;] we can choose a function l&#x3E;K’ such that VxeX, and
this choice, [0]-~CK can be made linearly for all vectors in 

Indeed, let us define the evaluation map EK (x) : Ran (W K) -~ as follows:

Then, in any equivalence class [~], we can choose the vector valued
function ~K for which

We shall always assume this to have been done and look upon Ran (W K)
as a space of Kx-valued functions of x. The action of the evaluation map
then very simply becomes:

Vol. 55, n° 4-1991.



840 S. T. ALI, J.-P. ANTOINE AND J.-P. GAZEAU

which justifies its name. Note that is linear, but may not be bounded
in the of However, being the composition of the
bounded with the closed map W K 1, it is certainly closed.
Thus the crucial point to note in Theorem 3.3 is that it achieves a

unitary map of the original Hilbert space Jf onto a space which
consists of vector valued We now that HK is a reproducing
kernel Hilbert [21]. First note that the images and a (A) [see
(2.3)] in under W K are:

where is the evaluation map in (3.15), but now considered as

a linear map ~~ (x~ : and E~)* : is its adjoint.
Moreover, it follows from (3.18) and (3.15)

Equations (3.18) and (3.19) shoulds be compared with (2.15) and (2 .16)
respectively. Also, (3 . 19) and the definition of WK imply that

’3’hus, ~ ~K, is also a reproducing triple - one that is unitarily
equivalent to the original reproducing triple { ~, F, A} in the sense that
there exists a unitary map WK : ~f -~ ~f~ for which

To construct a reproducing kernel on define a linear operator

for each pair We first note that K(x,y) is well defined,
for all i and all Otherwise it is defined under

integration to y over elements in However, even when

r~x ~ ~ (A-1), K (x, y) could be unbounded, but in all the cases that we
shall consider, the spaces are finite dimensional and then
K (x, y) is necessarily bounded. Next we see, from the way in which

is defined [see (3.15)-(3.17)], that for any measurable vector field
[such as x H ~K (x), (v (x) ~ K (x, is a

measurable function on X x X.

Furthermore, if we set

Annales ’ cle Physique theorique



841REPRODUCING TRIPLES AND FRAMES

then the following relation is easily verified:

Summarizing, we have the proposition:

PROPOSITION 3.4. 2014 Given a reproducing triple {H, F, A}, nae cart

associate to it a unitarily equivalent
FK, where the Hilbert carries a K; 

~ix~D (A - 1), V i, V x r X, latter is given by linear operators
K x, .~’~ ~ ~y ~ ~’~~ 

(i) 

(ii) 

~.~j E Jfy,

Condition (iii) is satisfied even when 1l~ f Çfi (A - 1). 0

Equation (3.28) is equivalent to the relation:

which is the reproducing property. This also justifies the subscript KL on
all quantities WK, etc. related to ~f~ that we have been

using all along, as well as the term "reproducing triple" for { ~f, F, A }
Finally, we write for the image of the [see (2.9)] in 

so that 6K is an OFS for Also, by (2.8) and (3.15)-(3.16),

while, by (2.10) and o (2.11),

both the sum and the integral being defined weakly in 

Vol. 55, n° 4-1991.
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4. THE CASE OF FINITE, CONSTANT RANK

In this section we specialize the above results to the case where, for
every x E X, the operator F (x), in the reproducing F, A}, has
the f ’inite constant rank n. This implies that the direct integral J~ is

independent of the particular set A in (3.2). Then each N|x is an n-

dimensional subspace of H, and for each x E X, there exists an orthonor-
mal basis { i =1, .... ~ } in ~x such that

The corresponding o. n. basis {~(~), ~’=1, ...,~} for ~x (which is also
clearly n-dimensional) is then [see (2.7)]:

and the elements of the OFS C are given by [see (2.8), (2 . 9)]

The weak measurability of ~t-~F(~) then implies that, for each i,
is a measurable field of vectors in ]"[ Jf~.. Hence we can define

XEX

a measurable field of unitary maps where W (x) : is

given by

Using these, we can map the direct integral Hilbert space ~
[see (3 . 3)] unitarily onto L2 (X, v; C"), the Hilbert space of all Cn-valued
measurable functions on X which are square integrable w. r. t. v. Indeed,
denoting this map by W : ~f -~ L2 (X, v; C"), we get

so that, componentwise,

We small denote the image of in L2 (X, v; ~n) by 

and by W~ the corresponding unitary map ~f ~ ~~:

clo /7/7S////// Physique theorique



843REPRODUCING TRIPLES AND FRAMES

Similarly, denoting the images of F (x) and A in ~K by FK (x) and AK.
respectively, we see that { FK, is a reproducing triple. Moreover
~~ is also a reproducing kernel Hilbert space, with kernel

given in terms of its matrix elements by

Again y) is well defined if we interpret the right-hand side of (4.12)
as a bilinear form on 6 x (3:

[see the discussion following (3.23)].
We then have, E X and i, j = 1,2, ... , n [see (3 . 26)-(3 . 29)]:

Here, as in Section 3, we have defined the evaluation map EK (x) : C":

so that

for all f E and i =1, 2, ... , n. Also,

etc.

We collect together, in the Appendix, some explicit expressions for the
various operators WK, E(~), etc., as well as displaying the relation-
ships between the different maps, isometries, etc., diagrammatically.
For a reproducing triple with constant, finite rank ( = n) density F (x),

we shall henceforth adopt the notation { Jf, F, A }n-
Clearly the notion of equivalence introduced in Section 2 applies fully

in the present context. F, A}n F’, A’ ~n, be two such
reproducing triples, with corresponding OFS 6 = { 11~, i =1, ..., ~ }, resp.
6’ = { 11;, ~’== 1, ..., ~/}. As shown in Section 2, n’ ~~ implies that 6’ - S.

Vol. 55, n° 4-1991.



844 S. T. ALI, J.-P. ANTOINE AND J.-P. GAZEAU

We may choose the intertwining operator T (x) as in (2.28), so that
T (;c) = P’ (x) T (x) P (x) is of rank n’.

In particular, for n‘ = n the operator L~’ (x) T (x} ~ (x} is, for all 
an operator of rank n, on its range. With the choice (2.28) for
T (x) and the corresponding one for T’ (x), one gets

on P~ M ~f, an
thus the relations (2.17), (2.21) become:

Thus we may state:

PROPOSITION 4 . 1. - Let {H, F, A F’, A’}n be two reproduc-
ing triples on (X, v) with the same constant, finite rank n. Then the two
triples are equivalent, and there exists a measurable family of rank n,

invertible operators {T (x)}, that give the equivalenee between the corre-
sponding OFS i = 1, ... , n ~ , resp. i = 1, ... , n ~ :

5. FRAMES

Especially interesting is the case where F (x) has finite rank n, ~x~X
and both the operators A and A - 

1 
are bounded. Then we call the triple

{~f, ~~, and the basic relation (2.11) reads:

Actually, in the literature for example, [10]-[13]), the term "frame" is
only used when the space X is discrete. If we take X={ 1, 2, ... } and v
the counting measure, Equation (5.1) becomes

and this is indeed the very statement that {r~= 1,... n, k =1,2, ... } is
a frame in the usual sense. Thus we have here a genuine generalization of
the familiar concept of a frame which plays such an important role in
wavelet analysis ([!!]-[ 14]).

Let us denoted by 03C3 (A) the spectrum of A, and hy m (A), M (A) the
bounds of o (A):

Annales # de l’Institut Henri Poincaré - Physique " theorique "
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SO that

and both m (A) and M (A) belong to cr (A). Similarly,

and M(A)-l, m(A)-lEcr(A-1).
With these notations, the relation (5.1) reads now, 

i. e. m (A) and M(A) are the familiar bounds ([ 10], [11]).
Clearly, the frame is characterized by the family of measurable maps

T~:~t2014~T~e~f(~=l,2,..~); hence we shall often denote it by
~ ~ ~ ~~ As ~ ~ .

Given a frame F{~i, A, n}, the frame is A’, n}, where
~"=A"~~’(~=1,2, ...,~) and A’ = A -1. In other words, the dual frame
is the reproducing triple { F’, where

is also a positive bounded operator of rank n. Clearly, the frame bounds
of ~ ’ are M (A) - 1 and n~ ~A~ T ~ . In the discrete case, the dual frame is a
crucial ingredient for various reconstruction formulae ([t0]-[12]); in the

present language, this means expanding elements of ~f in terms of those
of ~‘’K, by a suitable approximation (truncated power expansion) of the
operator Wi. 1.
The width of the frame F{~i, A, n} is the number (called 

in [12])

Clearly, 0~~(~)1, and ~v ~ ~ ) measures the spectral width of the
operator A. The frame F is called tight if w ( ff ) = O. In this case, A = X I,
with ~&#x3E;0. Notice also that a frame and its dual frame have the same
width:

The interest of this parameter is that, in the discrete case ([10], [tt])? the
reconstruction formula is an expansion in powers of w (~). When the
latter is convergence is very fast and the reconstruction series can
be truncated after a small number of terms, often a single one. In concrete
applications, this is the main ingredient of the efficiency of wavelet analysis
for the resynthesis of signals (sounds, images). We will see in Paper II
[16] that, in an explicit, non-discrete situation (Poincare coherent states),
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the width has a physical meaning, being related to the nonrelativistic
approximation.

In the case of a frame, the whole construction simplifies. Consider first
the general discussion preceding Theorem 3 . 3. Since A and A -1
are the K-norm 1/. I/K is equivalent to the
norm induced by ~P on Ran (W K). Therefore, by (3 . 13),

that is, is a closed subspace of~
This is the situation familar in the usual case, A = I (corresponding to a
normalized POV-measure [5], [ 17]). Next we go isometrically into
L (X, v; C"), via the map W, as in Section 4, and consider the bounded
linear L2 (X, v; ~n) defined in (4.10) :

On [H], the frame F defines the inner product

where is the inverse of W:#, considered as a map from ~f to W:#, and CÎ&#x3E;K’ ~K~W~[~f]. Since A -1 is positive and bounded away from zero,the norm ~.~F on WF[H] (which is the image of the K-norm on is
equivalent to the norm inherited from L2 (X, v; C"). Hence W~[~f]=~fis closed in both norms and is a reproducing kernel Hilbert space, with
projection IPK:

and reproducing kernel given as in (4. 12):

Thus we have, for each v; C"):

and for every BÎ1K E ~f~:

The reproducing kernel K in (5. 13) will be called the frame kernel for
the frame F. Two frames ff" and F will be said to be kernel equivalent if
they have the same frame kernel K. Denote by this equivalence class.
Clearly, if ff" and F are kernel equivalent, then The
properties of this equivalence relation are summarized in the followingtheorem, the easy proof of which is left to the reader (see also [22]).
THEOREM 5 . 1. - Two frames F {~i, A, n } and F{~i, A, n } are kernel

equivalent iff there exists a bounded operator T E ~ (~), with bounded
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inverse T-1 E:£ (~), for which

In particular, a frame ~ and its dual frame ~’ are kernel equivalent. In
each equivalence class [~ ]K, there exists, up to unitary equivalence, a
unique A, n ~ which is i. e. ~’=~’, ~ that
A=A-1=I. 0

Comparing this result with Proposition 4 . 1, we see that kernel equiva-
lence is stronger than equivalence: two frames of the same rank are always
equivalent, with a measurable family of intertwining operators {T (~)},
but they are kernel equivalent iff the function T : X -~ J~ (~) is constant.

6. APPLICATION TO COHERENT STATES AND OUTLOOK

The results obtained in Sections 2 and 3 apply potentially to many
fields. Most promising, in our opinion, is the generalized notion of frame
discussed in Section 4. However, the main domain of application, and
actually the motivation of this work, is to the construction of coherent
states. This theory will be developed at length in the accompanying paper
[16], yet it is instructive to give here already its main features.

Let G be a locally compact group (quite often a Lie group) and U a
strongly continuous unitary irreducible representation in a Hilbert space
~. As is well-known ([3], [4]), the properties of coherent states associated
to U are linked to its square-integrability. In order to be general enough,
we will take for X an arbitrary coset space G/H of X, assuming it carries
a G-left invariant measure v (actually it is enough to assume the measure
v to be quasi-invariant ; this allows the formalism to be extended to certain
infinite dimensional groups [26]). Let 6 : X -&#x3E; G be a measurable section
of G and F a positive operator on H with finite rank n. Then we define a
positive operator valued function F (j : X -~ !£ (~) +, and the corresponding
POV measure, by transporting the operator F covariantly under U, that
is:

We say that the representation U is square integrable mod (H, cr) if together
with F, there exists a positive, bounded, invertible operator Aa such that
{ J~, Fa, Aa ~n is a reproducing triple. In particular we get
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To get coherent states, we simply diagonalize F:

and define the vectors

where we have defined the particular admissible vectors:

Then the family of coherent states

is an overcomplete set of vectors, which has all the expected properties.
In the simplest case, X is G itself, v the left invariant Haar measure

and F = 111 &#x3E;  11/ the projection on a single vector rf. Then 11 is admissible
or U is integrable (in the usual sense) if

where ~9 = U {g) ~ and A is a bounded positive operator (usually A = I),
in other words, if the integral

converges for every ~ E ~f. This is for instance the case for the representa-
tion of the affine group that leads to the theory of wavelets ([ 14], [23]).
Notice that, if 111 1 and 112 are both admissible, then the more general
integral

also converges, for all ~, (by the Schwarz inequality). In operator
terms, this amounts replacing the positive operator F in (6.1) by the
non-self-adjoint, rank one, operator F12 = 1111 &#x3E;  1121. Such operators are
routinely used in signal analysis [24], where r) 2 is the analyzing wavelet,
111 1 the reconstruction wavelet, and the two need not coincide. In our
context, integrals of the type (6 . 9) lead to generalized orthogonality
relations, that will be discussed in [ 16] for the case of the Poincare group.
The next case is that of Perelomov [3]. Given taken to be
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the subgroup of G that leaves 11 invariant up to a phase:

The square integrability condition then reads

where the integrand depends indeed only on the coset by (6.10).
The coherent states are again the vectors in the orbit of r~ under U:

This is the situation described at length in the monograph of Perelomov
[3J, e. g. for the Weyl-Heisenberg group (canonical coherent states), the
compact simple Lie groups Ie. g. SU (2)] or the discrete series representa-
tions of noncompact simple Lie groups [e. g. SU(1.1)]. In the latter case,
representations of the continuous series may also be used, but these are
not square integrable and then the corresponding coherent states, still
defined by (6.12), lack many of the useful properties of the previous cases.
The interesting aspect of the general theory developed here is that it

applies to more general situations, such as that of the Poincaré group, or
more generally semi-direct products SAV of a vector group V by a
semisimple group S of automorphisms of as described by DeBievre
[25]. This general construction will be developed at length in the next
paper [16], and then applied explicitly to the Poincare group ( 1, 1) in
one space and one time dimensions. Thus we recover and put into perspec-
tive our earlier results ([I], [2]). The main point is that the whole construc-
tion now depends on the choice of the section cr. However, we shall get
rid of this dependence by using the equivalence relation defined in
Section 2 above: replacing one suitable section by another one will amount
to going from one set of coherent states to an equivalent one. Furthermore,
we will exhibit, in the Poincare case, a class of sections that lead to non-
trivial, i. -e. non-tight, frames.

APPENDIX

We collect in this Appendix proofs of some results, theorems, etc.

mentioned in the body of the text, as well as some related results.
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A . 1. Proof of Proposition 2 .1

To establish (2.10) in the weak sense, let (j)~e~f. Then

since F (x), being a positive operator, has a well-defined square root. Next,
~’= I, ...,~(~)} is an orthonormal basis for by (2.7) itfollows ,=1, ...,~(~)} is an orthonormal basis for

Thus,

Inserting (A. 2) into (A. 1 ) and using (2 . 6),

which proves (2. 10). The relation (2 . 11 ), in the weak sense, then follows
from (A . 3) and (2 . 1 b).

Finally, be such Then, by (2 . 11 ),for any ~e~f, (~)A~)=0. But since A is strictly positive, this implies
0

A. 2. Proof of Lemma 3 .1

(i ) The measurability of follows from the weak
measurability Indeed,

by (3 . 1 ), (2 . 6) and (2 . 5), and the assertion is obvious.
(ii) Since the set { 03C6n }:= 1 is total in H, it is total in every subspace of. In particular, {P (x) 03C6n }:= 1 = { (x) }:= 1 is total in But

N|x~ Kx densely,. hence we can find an orthonormal basis, v. x }d(x)i=1,for Kx [having dimenslon d (x)], with each vector vi (x) being a finite
linear combination of vectors from the (x) }:= 1 (e. g., by a Gram-
Schmidt orthogonalization process). Thus, for any vx (x))x = p,b n, implies (vx I vi (x))x = 0, b i and therefore vx = o. Thus {03A6n (x) }~n=1 is
total in Kx.
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It then follows from (i ) and (ii ), and Lemma IV. 8.10 in [ 18], that the
set A defined in (3 . 2) is a subspace of v-measurable vector fields. Suppose
now that { ~} is another total set. Since each B~ is a linear combination
of the ~m’s, and measurability of D~ (x) depends only on P (x), it follows
that the functions are also v-measurable; 
generates the same set A. 0

A. 3. Proof of Lemma 3 . 2

For any C e Ran (WK),

by (3.4) and (3. 8),

by (2.15) and (2.6).
Thus

by (2 .1 b). Now consider the adjoint ’ of WK. Then

Moreover, E Ran (W K) and B(1 E ~f,

Thus,

Furthermore, 03A6=WK03C6, for Thus, writing WK03C6 for C in
(A . 7) and using (3 . 4), (2.12) and (2 . 1 b) we find
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and thus

Putting (A. 9) into (A. 5), we get, 

Hence ÅK is bounded on Ran (W K) and can thus be extended by continuity
to a bounded self-adjoint operator AK on the Hilbert space 
(closure in the We next show that A~ is a positive operator.
Indeed, Bj P E Ran (W~

Since Ran is dense in Ran (WK), this implies that Inciden-
tally, (A. 9) also implies that

Next, ÅK is defined on (A -1 )J. Since D (A-1)~H densely and
WK is continuous [see (3.6)], it follows that WK [22 (A -1)] c Ran (WK) den-
sely. Since is closed, its restriction to WK[~(A -1)] is closable; WKand A I being closed, it follows from (3 . 7) that Å( 1 is also closable.
The fact that AK and ÅK 1 are inverses on appropriate domains follows
from (3 . 7) and (3.8). Finally, the positivity is also clear since, as
shown below, it is essentially self-adjoint, and since, for any

-’)] c Ran (WK), one has

To show that ÅK 1 is an essentially self-adjoint operator, it is enough to
note that it has deficiency indices (0, 0). Indeed, let with 
and suppose there exists a 03A6~Ran(WK) such that

for arbitrary Then 
~f, using (3.7) and (A. 8) we find that (A. 14) implies

’ 
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Thus, by the strict positivity of A, we and therefore

0~=0, by (3.5). Since is dense in this implies that

ÅK 1 has deficiency indices (0, 0), and thus is essentially self-adjoint. 0

A. 4. Some explicit formulae

Among the different isometries and other maps, introduced in Section 3,
the following relations hold (the symbol W always denotes a Hilbert space
isometry, and Id implies the inclusion (i. e., identity map) :

From these diagrams and the various expressions given in Sections 2
and 3, the following are easily computed:

the integral being defined weakly, and

again the integral being defined weakly
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Denoting the image of the OFS G in (2. 9) under WK by K, we have
[see also (3 . 30)]:

For the elements in these sets we adopt the notation

Furthermore, E 6K has the components

In terms of these, the maps EK (x)*, and E (x)* become [see (2 . 14)]:

where " the canonical basis in C":

If {~f, F, A} and { ~, F’, A’} are two reproducing triples, with both
F (x) and F’ (x) having the same finite rank n, the following
diagram is commutative: --- 

.

where K, K’ denote the reproducing kernels for F and F’~ respectively.
Explicitly ~

~’x(i=1, 2, ... , n; x~X) being the OFS F’, A’}.
ACKNOWLEDGEMENTS

One of us (STA) is indebted to the Institut de Physique Theorique,
Universite Catholique de Louvain, where most of this work was completecl.

clc. l’Institut Henri Poincaré - Physique théorique



855REPRODUCING TRIPLES AND FRAMES

He would like to thank the Institute for its hospitality. The authors
also benefitted at various times from discussions with A. Grossmann.

H. D. Doebner, A. Unterberger, P. Michor, H. Feichtinger. S. Andersson
and M. Holschneider.

[1] S. T. ALI and J.-P. ANTOINE, Ann. Inst. H. Poincaré, Phys. Théor., Vol. 51, 1989, p. 23.

[2] S. T. ALI, J.-P. ANTOINE and J.-P. GAZEAU, Ann. Inst. H. Poincaré, Phys. Théor.,
Vol. 52, 1990, p. 83.

[3] A. PERELOMOV, Generalized Coherent States and their Applications, Springer-Verlag,
Berlin, 1986.

[4] J. R. KLAUDER and B. S. SKAGERSTAM, Coherent States-Applications in Physics and
Mathematical Physics, World Scientific, Singapore, 1985.

[5] S. T. ALI, Rivista Nuovo Cim, Vol. 8, #11, 1985, pp. 1-128.

[6] S. T. ALI and E. PRUGOVECKI, Acta Appl. Math., Vol. 6, 1986, p. 1.

[7] S. T. ALI and E. PRUGOVECKI, Acta Appl. Math., Vol. 6, 1986, p. 19.

[8] S. T. ALI and E. PRUGOVECKI, Acta Appl. Math., Vol. 6, 1986, p. 47.

[9] A. GROSSMANN and J. MORLET, S.I.A.M. J. Math. Anal., Vol. 15, 1984, p. 723.

[10] R. J. DUFFIN and A. C. SCHAEFFER, Trans. Am. Math. Soc., Vol. 72, 1952, p. 341.

[11] I. DAUBECHIES, A. GROSSMANN and Y. MEYER, J. Math. Phys., Vol. 27, 1986, p. 1271.

[12] I. DAUBECHIES, I.E.E.E. Trans. Inform. Theory, Vol. 36, 1990, p. 961.

[13] Y. MEYER, Ondelettes et Opérateurs I, II, Hermann, Paris, 1990.

[14] J.-M. COMBES, A. GROSSMANN and P. TCHAMITCHIAN Eds., Wavelets: Time-Frequency
Methods and Phase Space, Proc. Marseille, 1987, Springer-Verlag, Berlin, 1989.

[15] C. E. HEIL and D. F. WALNUT, S.I.A.M. Review, Vol. 31, 1989, p. 628.

[16] S. T. ALI, J.-P. ANTOINE and J.-P. GAZEAU, Square Integrability of Group Representa-
tions on Homogeneous Spaces. II. Coherent and Quasi-Coherent states - The Case
of the Poincaré Group, Ann. Inst. H. Poincaré, Phys. Theor., Vol. 55, 1991, p. 857-
890.

[17] S. K. BERBERIAN, Notes on Spectral Theory, Van Nostrand, Princeton, N.J., 1966.

[18] M. TAKESAKI, Theory of Operator Algebras I, Springer-Verlag, Berlin, 1979, Chap. IV,
Sec. 8.

[19] J. DIXMIER, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann),
Gauthier-Villars, Paris, 1957, 1969.

[20] M. A. NAIMARK, Am. Math. Soc. Trans. Ser. 2, Vol. 5, 1975, p. 35.

[21] H. MESCHKOWSKY, Hilbertsche Räume mit Kernfunction, Springer-Verlag, Berlin, 1962.

[22] S. T. ALI, J.-P. ANTOINE and J.-P. GAZEAU, Continuous Frames in Hilbert Space (in
preparation).

[23] A. GROSSMANN, J. MORLET and T. PAUL, J. Math. Phys., Vol. 26, 1985, p. 2473; Ann.
Inst. H. Poincaré, Phys. Théor., Vol. 45, 1986, p. 293.

[24] M. HOLSCHNEIDER and Ph. TCHAMITCHIAN, Invent. Math., Vol. 105, 1991, p. 157.

M. HOLSCHNEIDER, Inverse Radon Transforms Through Inverse Wavelet Transforms,
Inverse Problems (to appear).

[25] S. DE BIÈVRE, J. Math. Phys., Vol. 30, 1989, p. 1401.
[26] S. T. ALI and G. A. GOLDIN, Quantization, Coherent States and Diffeomorphism

Groups, in Differential Geometry, Group Representations and Quantization, p. 147,
J. HENNIG, W. LÜCKE and J. TOLAR Eds., Lect. Notes Phys., Vol. 379, Springer-
Verlag, Berlin, 1991.

(Manuscript received June g. t 990;

revised version received MurclT 3, 1991.)

Vol. 55, n° 4-1l)lJ . .


