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Constructing quantum dissipations
and their reversible states

from classical interacting spin systems

D. GODERIS C. MAES(**)
Instituut voor Theoretische Fysica

K. U. Leuveri, Belgium

Poincaré,

Vol. 55, n° 3, 1991, Physique théorique

ABSTRACT. - The relation between certain quantum systems and classi-
cal stochastic processes - e.g. in the method of functional integration -
is formulated on the level of the dynamics for both quantum and classical
dissipative time evolutions. An essentially unique quantum dissipation is
constructed from a classical interacting spin system, preserving the notion
of detailed balance. Translation invariant and reversible infinite volume

quantum dynamics are found in this way and the Hamiltonian is recovered
from the action of the generator in the GNS-representation of the corre-
sponding groundstate for which a Feynmann-Kac formula holds. Local
reversibility of quantum dissipations is shown to give rise to an almost
classical characterization of the corresponding quantum states.

Key words : Quantum Dynamical Semigroups, Reversibility, Gibbs States, Ground States,
Feynman-Kac Formula, Interacting Spin Systems.

RESUME. 2014 La relation entre certains systèmes quantiques et des pro-
cessus stochastiques classiques - p. e. dans la methode de l’integration
fonctionnelle - est formulee au niveau des dynamiques pour les evolutions
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806 D. GODERIS AND C. MAES

temporelles dissipatives a la fois quantiques et classiques. Une dissipation
essentiellement unique est construite a partir d’un systeme de spins clas-
siques en interaction qui conserve la notion de bilan detaille. De cette
façon, on trouve une dynamique quantique a volume infinie, reversible et
invariante sous les translations. L’hamiltonien est obtenu a partir de
1’action du generateur dans la representation GNS de l’état fondamental
correspondant pour lequel une formule de Feynman-Kac est verifiee. Nous
montrons que reversibilite locale des dissipations quantiques donne lieu a
une caracterisation presque classique des etats quantiques correspondants.

1. INTRODUCTION

At many occasions the flow of ideas from one branch of physics to
another has passed via the mathematical structure of function space
integration. The development of quantum mechanics - also including rela-
tivistic corrections, e. g. [ 1 ] - through the Feynman-Kac formula is widely
used and successfully applied to a variety of problems in particle physics,
condensed matter physics or statistical physics. The literature on the

subject is vast and we only mention the books [2] and [3] as reference
texts.

Feynman’s formula gives an integral representation for the solutions of
the equations of quantum mechanics. Due to mathematical difficulties in
treating certain complex measures - see however [4] - rigourous work has
primarily been concentrated on the Feynman-Kac formula which gives a
path-space representation for the kernel of e - ~H, where H is a

quantum Hamiltonian. A well known example is the harmonic oscillator

with Hamiltonian H = 10 + 1 2 1 for which the associated classical
2 2 2

(diffusion) process is the Ornstein-Uhlenbeck velocity process. One import-
ant consequence is the derivation of relations between ground state expec-
tations for H and the expected value of functions of the configurations
on which the appropriate classical stochastic process is living. These
relations roughly look like

for Fi (q) bounded functions of q, Q the ground state of H, and dP the
classical process or path-space measure. Many types of quantum systems

Annales de l’Institut Henri Poincare - Physique theorique



807CONSTRUCTING QUANTUM DISSIPATIONS

can be treated in this way, also at non-zero temperatures. Interesting
applications in the context of quantum statistical mechanics together with
a clear exposition of the main ideas can e. g. be found in [5]. In most
cases, these representations are inspired by the hope to learn something
about the properties of quantum systems specified by a Hamiltonian from
investigating an associated classical reversible process, and in this way the
rigorous study of quantum ground states has profited from results of
classical Gibbs measure-theory, e. g. recently in [6], [7] and [8].
At first sight however, it may appear strange to have relations between

a static quantum system in its ground state and a classical stochastic

dynamics. Is there an analogous bona fide quantum dynamics which
intermediates in this connection, and, if yes, can one learn something
about it and about its characterization of the quantum ground state? The

present study addresses this problem and the paper therefore originates
from two complementary questions:

1. Can these relations be more naturally formulated on the level of the
generators (or dynamics) for both quantum and classical time evolutions,
and, if yes, how to recover the quantum Hamiltonian appearing in ( 1 . 1 )?

2. Can one learn something from these relations about quantum states
solely characterized by reversibility properties for a certain quantum evolu-
tion ?
The second question is (perhaps overly) ambitious, but it is in part

motivated by the rather unsatisfactory state of affairs concerning quantum
dissipative processes. Of course this problem has a long history with a
number of fundamental results. Gorini et al. ([9], [10]) have studied the
most general generator of a quantum dynamical semigroup for the case
of finite dimensional Hilbert spaces, while independently Lindblad has
generalized this to any separable Hilbert space [11]. Moreover, the notion
of detailed balance and its connection with equilibrium states was devel-
oped in a series of papers, including ([ 12], [ 13], [ 14]). Still, we have not
found in the literature any explicit constructions of infinite volume quan-
tum detailed balance semigroups for even the simplest non-trivial spin 1 /2
lattice systems. One of the results of our investigation is to present such a
construction for ground states of certain quantum Hamiltonians. They
will then be characterized by a local reversibility property. Let us add that
characterizing quantum equilibrium states via (local ) detailed balance

properties is not new, see e. g. ([ 12], [ 13], [ 14]), but here this problem is
analyzed for quantum ground states and - as we said already - we explicitly
construct the underlying infinite volume dynamics. Furthermore, we inves-
tigate in detail the consequences of such local properties and we find
that - unlike the classical situation - it has a rather drastic effect on the

nature of the quantum state.
All this is however based on the answer we give to the first question.

There, we show how, starting from a classical reversible interacting spin

Vol. 55, n° 3-1991.



808 D. GODERIS AND C. MAES

system, one can determine an essentially unique quantum dissipation which
preserves the reversibility condition on the full quantum algebra. The
quantum Hamiltonian is found after passing to the so called GNS-
construction.

In the next Section we give the construction of this quantum dynamics.
Section 3 is devoted to the study of the nature of the associated quantum
states. We find the ground states of certain quantum Hamiltonians, and
recover the usual Feynman-Kac formulation from their relation with
classical Gibbs measures. The proofs of all results are postponed until
Section 4.

2. FROM CLASSICAL INTERACTING SPIN SYSTEMS
TO QUANTUM DISSIPATIONS

We consider the hypercubic lattice Zd in d dimensions, to each of whose
sites we assign a spin variable with values +1}. The
configuration space is X== {- 1, + 1 while its restriction to some region

is denoted by XK. C (K) denotes the set of continuous functions
on K.

We choose a finite set A c Zd containing the origin such that its translates
cover the whole lattice:

Let Q~ be the set of all permutations of the configurations in A~ L ~.
U E Q~ if for each 0- E X

(i) U03C3~X with 
(ii) there is a unique 11 == U-1 03C3 E X such that U 11 = 0- (defining

U-’eQJ.
The local dynamics of the classical system is described by a collection

of transition rates 0-), x~Zd. They are assumed to be non-
negative, bounded, local and translation invariant functions of 0- E X:

(iii) there is a finite such that Co(U, 0’) does not depend on any
cry with for all U~Q0;

(iv) for all O’EX, cx(Ux, 0’)= Co (U, ’rxo’) with
for 

The rate ~ (U, 0’) represents the weight which is given to the transition
from ? to U 0’, the new configuration which coincides with 0’ outside A~

Annales de l’Institut Henri Poincaré - Physique théorique



809CONSTRUCTING QUANTUM DISSIPATIONS

and it is therefore natural also to assume that

(v) a) whenever (2.2)
Moreover we avoid certain degeneracies by requiring also that

(vi) ex (U, o) (UB 0’), ~03C3~ X, implies U = Qx. (2 . 3)

Familiar examples include the case of spin flip systems where A == {0 ~
and spin exchange systems where in the simplest cases A== {0, el, ..., ed

the unit vector in ~~ and where Co (U, c~~ is different from

zero only if the permutation U exchanges the nearest neighbour spins Oo
and 03C3e03B1 for some 1, ..., d.

Suppose there is given a Hamiltonian H for some finite range, transla-
tion invariant potential {JR} where R~Zd runs over the finite subsets of
the lattice, that is, formally

with JR = and JR = 0 whenever the number of elements in R exceeds
a given number. Then, the energy differences

are well defined for all U E Qx, x ~ ~~ and we assume that the transition
from (j to U cr and vice versa are related via the condition of detailed
balance, i. e. for all U E Qx, x~Zd,

Let G (H) be the set of all Gibbs measures with respect to the Hamil-
tonian H of (2.4). Fix By definition, ~, is a probability measure
on the Borel o-algebra of X and satisfies the so-called DLR-equation, see
for example [15], i. e.

for and 0 
The generator L of the corresponding 1 interacting 1 spin system is first

defined on local functions f by

Using standard theory, see for example [16], it can be shown from

(2.6)-(2.8) that its closure in L2 (~), still denoted by L, is the generator
of a Markov semigroup S(~), and is a self-adjoint operator on L 2 (J.!).
Moreover, defining for each the bounded operator LU on 
by

Vol. 55, n° 3-199L



810 D. GODERIS AND C. MAES

we have that

for every , g~L2 ( ).
We connect this structure with the corresponding § one " for a quantum

spin system where " to each site x E 7Ld we now associate " the vector

In this way, the configurations {03C3y, y E K } in some finite region K c Zd
generate an orthonormal basis {|03C3&#x3E;K ~ (8) I of the Hilbert space

xEK

HK = (8) ([:2. The Pauli matrices 6x, x E Zd, can be used to decom-
xEK

pose any operator A on HK as

where for each R c K,

~nrt

with fR E C (K).
The set of all local operators (2 . 12) is denoted by ~~o~ --_ U ~K,

j~~= 0 ~ and ~x - M2 (~), the two by two matrices. The infinite
JC6K

volume algebra ~ of the quantum system is the uniform closure of 
The sub algebra of classical operators, ~~1, is defined by

For a permutation U E Qo define the unitary operator U E ~~ by

for all Remark that U has the decomposition (2 . 12) with K = A
and

where 8 is the Kronecker delta function.

Annales de Henri Poincaré - Physique theorique



811CONSTRUCTING QUANTUM DISSIPATIONS

define ~ -~ ~ (L2 (~,)), a map from the quantum
algebra j~ to the bounded operators on L2 (jj.), by the action on gEL 2 (p.):

for all finite R c 7Ld and local functions F on X.
The following Proposition can be found ’ in [8].

PROPOSITION 2 . 1. - 03C0  extends to a representation 03C0  is irreducible

iff  is an extremal Gibbs measure.
We obtain a (quantum) state 03C9  on d by defining .

Equivalently, the state is defined through its GNS-representation,
see [17], and the GNS-triplet (~f~ is given by ~ J! = L 2 (Jl), OJ! = 1
and 7T as in (2. 16). Thus, for that choice,

Notice that for all local permutations U one has

for all hE L 2 (~). This is a direct consequence of (2 . 15) and (2 . 16).
Continuing now with the dynamics, we first say that an operator 2

from a dense *-subalgebra into j~ is a dissipation if

for all A in the domain D(2) of 2. A* is the adjoint of 
The quantum version of the (classical) generators U~Q0, defined

in (2 . 8) are the so-called Lindblad operators V E ~~ with A defined
in (2 . 2), (iii ) [ 11 ] . They have the form (Heisenberg picture):

where t A, A, 
Clearly, extends to a bounded dissipation on A and it is known

that !£ v is the generator of a completely positive semigroup on A ([ 11 ],
[18]). We say that reversible for a state (û on A if

for all A, 
The extension from the classical process defined by (2 .1 )-(2 . 8) to a

quasi-unique quantum evolution preserving the local reversibility as expres-
sed in (2.10), is the subject of the next Propositions.

Vol. 55, n° 3-1991.



812 D. GODERIS AND C. MAES

PROPOSITION 2. 2. - that U = U - 1 E Qo. The following state-
ments about the generator 2y, VEdA of (2.21) are equivalent.

(i ) 2 v satisfies
anc~

2 v F (0’3) = (LO F) (0-3) all F~Acl
((3) JV is reversible far row
(ii) There exists a unitary operator W~Acl~A such that

where

and U is defined in (2. 14).

(i ) As W is a unitary operator, it is easy to see " that for all 

and because W E del it follows that

for all 

(ii ) From the expression (2 . 23) combined with (2 . 6) and (2 . 19) one
computes:

and thus

Therefore by Schwarz inequality one has for all 

Combining (2. 24) and (2.26) yields for ~v of Proposition (2.2)

for all A, 
Now we handle the case In general for V (U)

as in (2.23). For general U~Qx we define instead

with

.~ E T d, and simply write 2 U = ~~x (U).

Annales de l’Institut Henri Poincaré - Physique theorique



813CONSTRUCTING QUANTUM DISSIPATIONS

That this is the good choice follows from Proposition 2. 2 and:

PROPOSITION 2 . 3. - For all one has

(ii) =~Bj+J2~j-i ~ 
Note the correspondence of (ii) with (2.10). Thus far however we

have only considered strictly local dynamics with bounded generator. To
construct the associated infinite volume quantum dynamics coinciding on
the classical algebra with the process defined by (2.8), we define the
operator 2 on j~ with domain D 2 = and action

We say that !£ is locally reversible for a state o on A if for all U E Qx,

for all Note that even for classical systems local reversibility
[as in (2.10)] is not equivalent with (global) reversibility, except for

example for spin flip systems where under the condition of positivity of
the rates, both are equivalent with (2.6) which then becomes the definition
of the stochastic Ising model or Glauber type dynamics [16].

THEOREM 2.4. - The operator J defined by (2.29) is a dissipation on
A. Aloc is a core and its closure is the generator of a spatially
homogeneous strongly continuous semi-group t~0, of completely positive
unity preserving contractions on A. Furthermore, 03B3tF(03C33)=S(t)F(03C33),
F e C (X), with S (t) the Markov semigroup obtained from (2.8) and J is

locally reversible for the state row
In this way we have constructed a dynamical quantum system (~, yj

which is an extension of the classical system = C (X), (t)) such
that the property of local reversibility is preserved. Moreover, we know
from Proposition 2. 2 that there is essentially a unique way of doing this.
In the next Section we investigate what kind of quantum states we obtain
if a local property as (2.30) is imposed.

3. LOCAL REVERSIBILITY AND ITS CONSEQUENCES
FOR THE QUANTUM STATE

Another way of defining Gibbs states for classical Hamiltonians as in
(2.5) would be to write instead of (2 . 7) a local Markov property for the

probability measure ~: its conditional distributions inside a volume K

Vol. 55, n° 3-1991.



814 D. GODERIS AND C. MAES

given the outside are local functions of the configurations in the boundary
This is in fact a direct consequence of the local reversibility

(2.10) (plus positivity of the rate functions) with U a spin flip operation.
While the construction of the previous Section naturally extends the local
reversibility to quantum dynamics, we expect that in fact states describing
quantum equilibrium generically do not have such local properties as for
example the Markov property discussed above. The first question is there-
fore what the consequences of (2. 30) are.
Let B be a C*-algebra of observables (like the A of the previous

Section), co a state on B and 8 the generator of a quantum Hamiltonian
dynamics at is a one-parameter group of *-automorphisms of f!lj).
co is a ~round state for rl if

for all A in the domain D(5) of 3. The physical significance of (3 . 1 ) can
be understood in the context of correlation inequalities as clarified for the
classical situation in [19]. It follows that co is at-invariant [17], theorem
5. 3 . 19. Moreover, with the GNS triplet of the ground state
co, there exists a non-negative operator H on ~f., such that

PROPOSITION 3.1.2014 Let H be a Hilbert 03C9 a state on B(H),

~~ ’ J~. F~ ’ 

Then, the following conditions are equivalent
(i ) is reversible f ’oY c~.
(ii) either (a) or (Ø) are satisfied:

(a) V = V* (up to a phase) and 03C9 ([A, VD = 0, V A ~B(H) (3 . 3)
(Ø) (3 . 4)
Remarks:
ad (a) Suppose that 03C9 is an 03B1t-KMS state (H), (3 . 3) then implies

that V is at-invariant [ 17], Theorem 5 . 3 . 28 .
ad (Ø) Let c~ be a state such that (3 . .4) holds.
From Schwarz inequality,

for all A E ~ (~). Let

Annales de l’Institut Henri Poincaré - Physique théorique



815CONSTRUCTING QUANTUM DISSIPATIONS

Then, from (3 . 5) we get for all A E ~ (~)

and co is a ground state for the Hamiltonian

Furthermore, again from (3 . 5), for all A, ,

Thus, the GNS Hamiltonian Hop defined in (3 . 2), is completely specified
by

for all A E ~ (~). This relation is the key-step together with Propositions
2.2 and 2.3 in understanding the usual Feynman-Kac formula on the
level of the dynamics for both the quantum and the classical system.

Clearly, the next is the application of Proposition 3.1 to the system of
Section 2 with V=V~(U), see (2 . 28).

First observe that

and therefore

for all 

Furthermore, by (2.16), (2.19) and ’ (2. 6)

and thus

By Proposition 3 .1 is reversible for and separately and

co is a ground state for the (formal ) quantum Hamiltonian.

H is translation invariant by construction. The derivation 8 correspond-
ing to (3.14) is densily defined on the local algebra and given by

Vol. 55, n° 3-1991.



816 D. GODERIS AND C. MAES

Furthermore, it is well known [17], theorem 6.2.4, that 3 generates a
quantum Hamiltonian dynamics at, on j~:

where

In the following we study the set of quantum states for which the
quantum dissipation 2 (2. 29), Theorem 2 . 4 is locally reversible. Proposi-
tion 3 . 1 is a key result for that. However we will exclude case (a) of this
Proposition. If for example U = U -1, then it is easy to see that:

PROPOSITION 3 . 2. - Let co be a state on ~. Take U E Qo and suppose
that co (U, cr) &#x3E; 0 and Llu H ~ 0.

If co is reversible for 2 u + 2 u - 1, then

As a consequence of Proposition 3 . 1 co is reversible for and 1

separately. Therefore the statement of Proposition 3.2 is closely related
with the observation

which was already mentioned in Section 2.
The following Proposition states that (3 . 19) is equivalent with a "DLR-

equation" for 00:

PROPOSITION 3 . 3. - Let 00 be a state on d and take U E Qo with

co (U, 0-) &#x3E; 0. Then the following statements are equivalent:
(i) 00 (V 0 (U)* V 0 (U)) = 0.
(ii) 00 satisfies the "DLR-equation ":

/~ ~// 

Notice that from (3.20) one gets

for all 
For one gets from (3.21)

Annales de , l’Institut Hefiri Poincaré - Physique . theorique



817CONSTRUCTING QUANTUM DISSIPATIONS

where ~ Frj ~i and 0 defined 0 by

Remark the correspondence ~ of (3.22) with (2.7).
Let On be defined by

We call the process (2.8) irreducible if for all U~Q0 there exists a
sequence Ul, ..., Un~0, n~N, such that

THEOREM 3 . be a state on A and suppose the classical grocess

(2 . 8) is irreducible.
following conditions are equivalent:

(i) quantum process J =  2 u ls locally reversible (2. 30)

01" fJ~.
(ii) There exists a Gibbs measure ~G (H) such that 03C9= 03C9  (2. .1’7).

these eonditions hold, then 03C9 is a ground state for tbe quantum
Hamiltonian (3.14), and satisfies the DLR-equation (3.20).
For classical systems it is well known that the states characterized by

the local reversibility condition are exactly the Gibbs measures ~G (H).
The above Theorem is the analogous (extended) result for the quantum
process 5£ of Theorem 2 . 4, A state satisfying (2. 30) must be a ground
state and restricted to the classical algebra del the state is a Gibbs measure
~E~(H).
we end this Section with some remarks about the Feynman-Kac formula

in this context. Let 1tJ!’ 03A9 ) be the GNS-triplet of (OJ! : H  = L2 ( ),
~=1 and 1t~ is defined in (2.16). Define the operator H~, with domain

D (HJ!) = by:

where 8 is the derivation defined in (3.15). HJ! is densily defined and
because is a ground state for 8 (or R), and thus time-invariant, one
has that HJ! is symmetric. Furthermore, as 03B4 is of finite range, 8 (A) e d10c
if one has that the set of local elements is a set of analytic
vectors for 8 [17], Theorem 6.2.4. Hence is a set of analytic
vectors for H . By the theorem of Nelson [20], Theorem X. 39, H  is

essentially self-adjoint and thus there exists a unique self-adjoint extension,
again denoted by HIJ.

Vol.55,n°3-1991.



818 D. GODERIS AND C. MAES

for all Because 2 is a dissipation, Theorem 2 . 4 and J is
reversible for one has that HJ! is a positive operator. In fact HJ! is the
GNS-Hamiltonian of [see (3.2)].
Moreover if F is local, then from (3 . 26) and Theorem 2 . 4,

where L is the classical generator (2. 8). Identifying

one gets

Hence for all FeL), 

where S (t) is the Markov semigroup of Theorem 2 . 4.
Finally for F 1 (0’3), F 2 (0’3) E del and t2 &#x3E;__ tl one computes

where dP is the path-space measure of the process a (t) started from .

By induction one gets, for ~1~2~ - - - ~~ and F1 (a3), ..., 

It is this formula which goes under the name of Feynman and Kac.

4. PROOF OF THE RESULTS

We begin with the proof of Proposition 3.1, which is independent of
the other results.

Proo, f ’ Proposition 3 . 1.

Suppose that 2 v is reversible for a given state co on B (H). Let e, f,
~ f’ be unit vectors of Jf,(.,.) and consider the rank-one operators

(/~ 

Annales de l’Institut Henri Poincaré - Physique theorique 



819CONSTRUCTING QUANTUM DISSIPATIONS

Then M (B 2 v (C)) = co (B) C) implies

Since this holds for all unit vectors e, .f, e’, f’ E ~f one has

If V * V, cp E then, from (4 .1 ),

and V]) = 0 for all A.
If V* ~ ei‘~ V, for all then [taking A = 1 in (4 .1)] necessarily

(o(Y)=0. By taking the expectation value of (4 .1 ) in the state co one gets
and Because it

follows 
Rest to prove that ((x) or (P) of condition (ii) are sufficient conditions

for the reversibility of 2 v w. r. t. co. That (ii, a) implies (i ) is an easy

computation and (i ) follows from (ii, P) because implies
ro (A V) = 0 for all A [see (3 . 5)] and hence

Now we prove the results of Section 2.

Proof of Proposition 2 . 2.

We first prove that condition (i ) of the Proposition implies (ii ). Let V
be an operator on ~f~, then V can be written as

with fR E C (A) [see (2 . 12)] .

Input of the first condition (i, oc)

(i, oc) implies that

for all FE C (A) and 

Vol. 55, n° 3-1991.



820 D. GODERIS AND C. MAES

Using (4.4) one computes

Writing F(Ucr)= ~ and combining (4.5) and (4.6) one
R ~ 

gets

for all and Hence for all R ~ ~ (the empty set)

and V must have the form

where is a real function on XÄ and 5u,p(~ ) is defined in (2.15).
From (4. 7) one easily finds

with

Thus V must have the form

with/, and , 1/(0’) 1= c (U, ~)~~~.
Now we proceed with this form.
Take ’ 0-,11 EXÄ and consider the rank one operators

Using (4. 8) one computes

Annales de # l’Institut Henri Poincaré - Physique theorique .



821CONSTRUCTING QUANTUM DISSIPATIONS

Taking a = 11 in (4 . 9), then condition (i, a), 2 v c implies

Combining i we obtain

and we have that the form of V, (4.8) and (4.10) is necessary and
sufficient for condition (i, a) of the Proposition.

Input of condition (i, P)

Here we apply Proposition 3 .1 to the case = and 2 v
with V of the form (4. 8), (4.10).

There are two cases.

Case 1 : input 
Write

with B)/ a real function on XÄ.
From (2. 16), (2.19) and (2. 6) one obtains

Hence implies

The functions f and g, (4 . 11 ) and (4 . 12) satisfy the conditions (4 . 10)
and together with (4. 8) we get that V has the form

where W is a unitary operator, ~ Ä, given by

Case 2 : input of and o ~([V,A])=0 I for all

First note that we may suppose that V* = V (p = 0) because 

By applying V* = V on the lector a ~~, we get

VoL55,n"3-1991.



822 D. GODERIS AND C. MAES

If U (4 . 13) gives

and hence from (4. 8)

This last equality holds for all a E XÄ, and therefore from (2 . 6) we get

for all 
On the other hand (4. 13) also implies

for all Let

From the explicit form of V, (4. 8) and (2. 19), (4. 15) we have

Now we apply the condition

Choosing FE C (A), Rc=A, we get from (4 . 17),
(4. 18) and (2. 16)

where OR H = H (6R) - H (6).
Since ~. is a Gibbs measure, yeC(A) is a local function and (4 . 19)

holds for all FeC(A), it must be that

Combining i (4 . 16) and o (4 . 20) yields for all 

where ~, is a constant.

Notice that this constant is given, from (4. 17), by

Physique theorique



823CONSTRUCTING QUANTUM DISSIPATIONS

Combining (4 . 10) with (4 . 21 ) implies

The case À = 0 = ro (V* V) was already handled in Case 1 above.

If f is a real function, then we obtain from (4 . 8) and (4 . 21 ) that V
must have the form

with the restriction (4.14), i.e. V* = V.
The proof is completed by observing that

Finally that (ii ) of the proposition implies (i ), follows from the above
construction. []

Proof of Proposition 2. 3

(i ) follows from an easy computation and (ii ) is a consequence of

[see (3.12), 3.13)] and

Proposition 3 . 1. .

Proof of Theorem 2.4

From the definition of T (2.29) it follows that 2 is a dissipation on
j~. The statements of the Theorem now follow from [17], Theorem 3 .1. 34,
[21 ], Theorem 2 . 1 and Proposition (2.3). N

Proof of Proposition 3 . 2

If U = U -1, then 2u+2u-1=22u. Because one has that

V 0 (V)* =1= V 0 (V) and the statement of the Proposition follows from

Proposition 3.1.
Now take U ~ U -1 and suppose that the statement of the Proposition

is false:

Because 1Bu H ~ 0 there exists ~ E Xx such that

Vol. 55, n° 3-1991.
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or
[for the definitions of f’o, go see (2. 28)].

Using the same methods of Proposition 3.1 one finds that (2.30)
implies that

for all A E A and where V = V 0 (U) = f0 (cr3) - go (cr3) [see (2.28)].
Take any 03C3~X, then by applying (4 . 25) to the vector one

finds

As U ~ U -1 there exists 11 such that U-111, and thus also

Now in (4 . 26), then one gets

Since U E ~/~ is a unitary operator one has

Hence from (4. 23) and (4. 27) we obtain

From (4.28) one has

for s. t. 

Remark that (4.30) also holds for the configurations o E XÄ satisfying

Therefore one has that the configuration  (4. 24) satisfies
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Taking (j = ~ in (4.26) and using (4 . 29) one gets

for all 
From (2.2), (4 . 24) and (4.31) it follows that

Hence from (4.33)

Now take again a configuration ~ with Then using (4.28),
(4.29) and (4.34) one gets from (4.26)

and it follows for all ~ such that

But this holds also for the configurations 6 satisfying 
But this is a contradiction with Ll ~ U - ~ (2.3) and the

Proposition is proven. []

Proof of Proposition 3 . 3

Let (~’’~, QJ be the GNS-triplet of co. Then (i) implies

and thus

Remark that for aII 

where FU (cr3) &#x3E;Ä = F (U-1 a) a ~.
Combining (4.35), (4.36) with /&#x3E; 0 (U 6 Q) and (2.6) we get

Hence

VoL55,n°3-I991.
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Thus we have proven that (i ) implies (ii ). That (ii ) implies (i ) follows
from the same arguments..

Proof of Theorem 3 .4

That the states are locally reversible for 2 follows from
(3.13) and Proposition (3.1). One also immediately has that is a

ground state for H (3 . 14) and satisfies the DLR-equation (Proposition 3 . 3).
Rest to prove that (i ) implies (ii ).
Let v be the restriction of co to the classical algebra v is a

measure on X = ~d and

As 03C9 is locally reversible for 2 it follows from proposition (3 . 2), (3 . 3)
and formula (3 . 22) that

for all UEQo and 
From the translation invariance of the process (2.2), (iv), one has that

(4 . 39) holds for all Ux E Qx, where Ux is the translation of U0~Q0.
As the process is irreducible an easy computation yields that (4.39)

holds for all local permutations U and hence 
As in the proof of Proposition 3 . 3 let QJ be the GNS triplet

Take U~0.
From Proposition (3 . 2) we have that

From (4. 36) and (4. 37) we obtain

As the process is irreducible an induction argument gives that (4.40)
holds for all and U = U 1 ... Un E Qo; where U l’ ..., Un E Qo.
Again by the translation invariance of the process (4.40) holds for all

local permutations U. In particular this holds for the transformation UR,
defined in (2 . 12), R a finite subset of ~. Hence from (4 . 38)
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and (4 . 40), 

This proves the Theorem..
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