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Microscopic shocks in one dimensional driven systems
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ABSTRACT. 2014 Systems of particles sitting on the integers and interacting
only by simple exclusion are considered. An electric field is imposed on
the motion. Each particle after a time that may be random or deterministic
jumps to its right nearest neighbor site provided that it is empty. The time
can be either continuous or discrète. Assume that at time zéro we start

from a configuration chosen according to an appropriate distribution that
has density p to the left of the origin and À to its right, p  À. Then it is

possible to define a position X (t) that we call microscopic shock such
that the distribution of the configuration at time t has roughly densities p
and À to the left and right of X (t), respectively, uniformly in t. The

connection between the systems and the Burgers équation is reviewed. The
microscopic shock is related to the characteristics of the Burgers équation.
Laws of large numbers and lower bounds for the diffusion coefficient of
the shock are given.

Key words : driven systems, microscopic shock, asymmetric simple exclusion, Burgers
équation.

RÉSUMÉ. - On considère des systèmes de particules sur les entiers, qui
interagissent par simple exclusion et qui sont soumises à un champ élec-
trique. Chaque particule saute sur son voisin de droite s’il est vide après
un temps qui peut être aussi bien déterministe qu’aléatoire, discret ou

Classification 60K35.
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638 P. A. FERRARI

continu. Supposons que la configuration initiale soit choisie aléatoirement
selon une distribution qui a une densité p à gauche de l’origine et À à
droite, où p~. Il est alors possible de définir un site X (t) que nous
appellerons un choc microscopique tel que la configuration à l’instant t a
approximativement des densités p à gauche et À à droite de X (t) et ceci
uniformément en t. Nous décrivons le rapport entre le système et l’équation
de Burgers, dont les caractéristiques sont reliées au choc microscopique.
On présente des Lois des Grands Nombres et des bornes pour les coeffici-
ents de diffusion du choc.

1. INTRODUCTION

Hère we study one dimensional lattice gas type systems. We concentrate
on the simple exclusion process but the results hold for the analogous
cellular auto mata models, in particular for the so called Boghosian Lever-
more cellular automaton [bl] and some cases of the sand piles introduced
by Bak et al. [btw].
The main topic in this paper is to show the microscopic formation of

shock waves on thèse systems that are conservative (particles do not die
or are created). The simple exclusion process can be described in the

following way. At most one particle is allowed at each site Each

particle has an internal clock that rings after a random time with exponen-
tial distribution of rate 1. As the clock rings for the particle sitting at x
and if x + 1 is empty, the particle jumps from x to x + 1. Then the internai
clock is reset for the next jump. Ail particles do the same independently.
The main feature of this process is the following: if one starts the system

with a distribution that has densities p to the left, and À to the right,
p~, then there exist a random position X (t) that also obeys local rules
so that the system as seen from X (t) has densities ~, to the right and p to
the left, asymptotically, uniformly in time. The random position X (t) is
what we call a "second class particle". Its motion is determined by the
following rules: the second class particle has an internal exponential clock
and jumps to empty sites as the other particles do, but when one of the
other particles attempts to jump over the second class particle, the jump is
realized so that the second class particle and the other particle interchange
positions. The following heuristics justify the élection of a second class
particle for a microscopic shock. If we start with a measure with densities
p and À to the left and right of the second class particle respectively and
this densities stay thru time, the velocity of this particle equals the rate of
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639MICROSCOPIC SHOCKS IN ONE DIMENSIONAL DRIVEN SYSTEMS

jumping to the right (1- À) minus the rate of jumping to the left (p). This
gives 1- p - À that is the right macroscopic velocity of the shock in the
équation related to this model as we see below.

This model has been proven to be related to the Burgers équation for
u (r, 

We study the case of non decreasing initial conditions that présent only
one shock: the initial condition u (r, 0) is À to the right of the origin and
p to its left. The (weak) solution of this équation with this initial condition
is u (r, t) = uo (r - vt), where v =1- p - ~, is the velocity of the shock.
The simple exclusion process has been introduced by Spitzer in [s].

The set of invariant measures was described by Liggett [1] and [L]. The
hydrodynamical limit has been studied by Rost [r], Benassi and Fouque
[bf] and Andjel and Vares [av]. Fouque [fo] reviews thèse approachs. The
existence of a microscopic shock was studied in the case of vanishing left
density by Ferrari [f l ], Wick [w], De Masi, Kipnis, Presutti and Saada
[dkps] and Gârtner and Presutti [gp]. In the case of non vanishing left
density, the existence of a microscopic shock was simulated by Boldrighini,
Cosimi, Frigio e Numes [bcfg] and proven by Ferrari, Kipnis and Saada
[fks]. The présent approach reviews Ferrari ([f2], [f3]). Bramson [b],
Lebowitz, Presutti and Spohn [lps] and Spohn [8] reviewed some of the
results. Other related results are due to Kipnis [k] who proved a central
limit theorem and law of large numbers for the position of a tagged
particle and to De Masi and Ferrari [df] who computed the variance of
the limiting Gaussian distribution.

2. INVARIANT MEASURES

The state space of the process is X : = {0, 1 ~~. Eléments of X are

functions that at each integer associate a number 0 or 1. We call thèse

éléments configurations, dénote them by greek letters 11, ç, o, etc. and say,
for a configuration 11, that a site x is occupied by a particle if 
otherwise we say that je is empty. We identify a configuration 11 with

{x : ~(x)=1}, the subset of Z of occupied sites. We dénote ~t the simple
exclusion process whose behavior is described in the introduction. We

dénote or the expected value with respect to
the process when the initial configuration is 11. If v is a measure on X, we

Vol. 55, n° 2-1991.



640 P. A. FERRARI

dénote E~ f (r~t) : - dv (~) E.~ f (~t) and S (t) f (r~) : = E,~ f (r~t); finally

v S (t) is the measure defined by d (v S (t)) (r~) , f (11) : = v (11) S (t) f 

A measure v is (time) invariant for the process if v S (t) = v for ail t.

This means that if one starts the process with the initial measure v and
looks at the distribution at later times, one finds that the process is still
distributed according to v.
The product measures va are the measures defined by

This means that a configuration 11 picked from the distribution va can be
constructed in the following way: at each site of Z put a particle with
probability a and do this independently for each site.

There are also other invariant measures, called "blocking" measures.
Thèse are also product but not translation invariant. This means that the
density dépends on the site. We call them v~. They give mass one to a
single configuration:

where

The are translation of each other.

Liggett [1] proved that ail the invariant measures for the process are
convex combinations of va, and v~, 

3. THE BURGERS EQUATION

The inviscid Burgers équation is the hyperbolic équation

We consider the initial value problem u (r, 0) = uo (r), where

(shock initial conditions). Thé way to find solutions in this case is called

the method of characterics [lax]. If one calls a (u)= (M (1- u)) = (1 - 2 M),
~M

l’Institut Henri Poincaré - Physique théorique



641MICROSCOPIC SHOCKS IN ONE DIMENSIONAL DRIVEN SYSTEMS

then the équation can be written

so that u is constant along trajectories w (r, t) with w (r, 0) = r, that propa-
gate with speed a (u). Thèse trajectories are called characteristics. They are
straight lines allow to construct a solution of the équation for t small. If
différent characteristics meet, giving two différent values to the same point,
then the solution develops a discontinuity. Ours is the simplest case, when
the discontinuity is présent in the initial condition. Indeed, for r&#x3E;0, the
characteristics starting at rand - r have speed (1 - 2 À) and ( 1- 2 p)
respectively and meet at time ~(r)=r/(~2014p). Using the conservation law
of the équation it is not difficult to show that the discontinuity propagates
at velocity v : == 1 - ~2014 p. The solution t) is À for r&#x3E; vt and p for r  vt
i. e. u (r, This means that for ail continuously differentiable
test functions 03A6 (r, t),

This solution is called entropic. It arises as a limit for a ~ 0 of the (unique)
solution of the (viscous) Burgers équation

This is the solution one gets by deriving the équation as the hydrodynami-
cal limit of the simple exclusion process.

4. THE HYDRODYNAMICAL LIMIT

We de scribe hère the heuristic dérivation of équations (2 .1 ) from the
process ~t by a hydrodynamical limit. We use the notations of the previous
section. Define also r~t (r) : = r~£- lt (E-1 r), where £ -1 r is an abuse of
notation for integer part of 8’~r. We get

Now, if there exists a limit and the measure

at time E -1 t is approximately a product measure, such that

Ey (1l~ (r) (1 " ~~ (r + E)) converges, as E ~ 0, to u (r, t) (1 - u (r, t)), then this
limit must satisfy the Burgers équation (2.1). In fact it is proven that if

u (r, t) is the solution of the Burgers équation (2 . 1 ) with u (r, 

Vol. 55, n° 2-1991.
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and vf: is a family of product measures such that vf: (11 (8 - r)) = uo (r), then
in the continuity points of u (r, t),

where is the configuration defined by (z) = 11 (z + x) and

Equation (4 .1) has been proven first for initial profiles
Mo(f) that have only one discontinuity by Rost [r] in the non increasing
case and extended by Benassi and Fouque [bf] and Andjel and Vares [av]
to the non decreasing case. Recently Benassi, Fouque, Vares and Saada
[bfvs] extended the result to any monotone profile and Landim [la2] to
initial piecewise constant profiles presenting two or three discontinuities.

Notice that (4 . 1 ) gives the weak convergence of the process on the
points of continuity of u (r, t). Nothing is said about the points of disconti-
nuity. The expected result is the following

where is the product measure with densities p and À to the left and
right of the origin respectively. This is called "dynamical phase transition"
and has been proven by Wick [w] in the case p = 0 for a zéro range model
that is isomorphic to this one and by De Masi, Kipnis, Presutti and Saada
[dkps]. We sketch Wick’s proof in Section 5. Afterwards, using symmetry
arguments, Andjel, Bramson and Liggett [abl] showed the result for the
case À + p = 1 i. e. v = 0.

5. THE SEMIINFINITE CASE

In this section we consider the measure the product measure with
densities 0 and À to the left and right of the origin, respectively. For
convenience we assume also that there is a particle at the origin, and
define v’ : = v (./11 (0) =1 ). Hence our initial measure is v~, ~. Call X (t) the
position at time t of the particle that is initially at the origin. We
keep track of its position by considering the process (r~t, X (t)) in

{(T1,z):ïieX,~(z)=l}.
We are interested in the process as seen from the tagged particle. Hence

we consider the process 11; : = Tx ~t~ For this process there is a translation
each time that the tagged particle moves, in such a way that the tagged
particle is always at the origin. The position of the tagged particle can be
recovered from this process by defining X (t) : = number of translations
of the system in the time interval [0, t].

Annales de l’Institut Henri Poincaré - Physique théorique
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The following remarkable result is the key tool in this case. It comes
from queuing theory. The connection between the simple exclusion process
and a system of queues has been established by Kesten (see [s], [L] and
also [k], [fl], [df1 and [dkps]). In words one can think that each particle is
a server in a séries of infinitely many queuing systems. The holes to the
right of particle i and to the left of particle i + 1 are thought of as
customers in the system of particle i. A system consists of a customer
being served (if any) plus a queue. Each time that particle i jumps, a hole
passes from its system to the system of particle i - 1. In queuing theory
language one says that the customer is served and enters in the next

system. The Burke’s theorem says that a single stationary queue system
with Poisson arriving times at rate a and exponential service times at any
rate b &#x3E; a has Poisson exiting times at the same rate a. For the séries of
infinitely many queuing systems we have a = 1 - À and b == 1. Since the

arriving times of system are the exiting times of system i + 1, both arriving
and exiting times of any system are Poisson at rate 1- À. In our context
Burke’s Theorem says that if the initial measure is v~ ~ then and
X (t) are independent. Indeed

and X (t) is a nearest neighbor totally asymmetric random walk with
parameter 1- À.
As a conséquence of the fact that X (t) is a Poisson point process a

Law of large numbers for X (t) follows:

altogether with a central limit theorem:

in distribution, where ~(0, 1 ) is a centered Gaussian random variable
with variance 1. Burke’s theorem is also useful to prove the hydrodynami-
cal limit in the case p = 0 and ~&#x3E;0. The idea of the proof is to use the
following: (a) has distribution 03BD’0, 03BB for all t independently of X (t).
(b) by the law of large numbers for X (t), E -1 r - X (~ -1 t) converges almost
surely, to -~ if r(1-03BB)t and to 00 From (a)
and (b), what is seen at the macroscopic position r is vp if r ( 1- ~,) t and
vfor ~&#x3E;(1-~)~.

Finally, also the dynamical phase transition (4.2) can be proven. The
idea is the same as before. The différence is that in order to show that

1 X (E -1 t) - v ~ -1 t + £ -1/2 r diverges one needs to use the fact that X (t) is
roughly a Gaussian random variable with mean and variance ( 1- ~,) t.

Vol. 55, n° 2-1991.
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After this it suffices to notice that the probability that X (8 ~/) is at the
left of the origin is 1 /2 and that this is independent of the configuration
as seen from X (t).

6. MICROSCOPIC SHOCK

We saw that in the case of vanishing left density a microscopic shock is
defined. This is a random position that in this case coïncides with the
position of the leftmost particle. At time t, the system as seen from the
shock has a measure u/ S’ (t) = v~ ~ for ail t.

When the left density does not vanish it is not obvious what may be
defined as a microscopic shock. One can try to tag a particle and follow
it, but immediatly it is realized that the tagged particle has the wrong
velocity: if the other particles have distribution v p’ the tagged particle has
velocity ( 1- p) and if the other particles have distribution VÀ the tagged
particle has velocity (12014~). Nevertheless, in some sensé, the idea of

considering a last particle used for vanishing left density also works in
the général case. We use a technique called coupling. We couple two
processes. Thé o process with initial measure vp and the ~ process with
initial measure v À. At time 0 we couple the initial configurations as

follows. be a séquence of independent identically distributed
random variables with distribution uniform in [0, 1]. Given a realization
of thèse variables we define

and

Hence cr has distribution vp and ~ has distribution Vp Á. Under this
realization cr (x) _ rl (x) for all x. The idea now is to use "the same random
numbers" to realize jointly the processes r~t and crt. In a finite box this
would work as follows: a site is chosen at random from the box and the

jumping rule is applied to 11 and cr at that site. With this rule, if 
coordinatewise, then for ail t. The process crt coïncides with the
set of sites occupied by the two marginals and we call yr the set of sites
occupied only by the marginal 11. The reader can check that when a site
x is chosen, the following can happen:

1. The site x is occupied by a cr or y particle and x + 1 is empty. Then
the particle jumps.

2. Thé site x is occupied by a a or y particle and x + 1 is occupied by
a a particle. Then nothing happens.

3. The site je is occupied by a y particle and x + 1 is occupied by a y
particle. Then nothing happens.

Annales de l’Institut Henri Poincaré - Physique théorique
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4. The site x is occupied by a cr particle and x + 1 is occupied by a y
particle. Then the particles interchange positions: after the jump
6 (x + 1 ) = 1 

Since y particles must arrange themselves in the sites left free by the cr
particles, we say that the cr particles are first class and the y are second
class particles. It is also said that the cr particles have priority over the y
particles. This system of priorities was first used by Andjel and Kipnis
[ak] in a related model called the zéro range process for which they
performed the hydrodynamical limit.
We look at the system as seen from the leftmost y particle, whose

position is When p = 0 the ~ process coïncides with the y
process and we saw in Section 5 that this particle is a microscopic shock.
Observe however that X (t) can be defined directly from the ~ process in
the following manner: consider a configuration 11 and the configuration
11’ that coïncides with ~ out of the origin and differs from ~ at the origin.
One can check that at later times r~t and 11; will differ at only one site.
Call this site X (t). It can be proven that this définition coïncides with the
previous one if 11 is picked from The motion of X (t) is the following:
when its site is chosen the same ruie as for the other particles is a applied:
it jump to its right nearest neighbor site if it is empty. The différence is
that when its left neighbor is chosen, the jump is realized and X (t) must
jump to the left in order to keep the exclusion rule. Let

S‘ (t) ~’ (r~) = E,~ (~’ (ix ~~~ r~t)). One proves then the following result that
implies that X (t) is a microscopic shock:
Assume that 110 has distribution and X(0)=0. Then for ail 8&#x3E;0

and for ail cylindric f there exists ~*=u(8,/) such that for ail ~0,

Also a law of large numbers holds :

As a conséquence of the law of large numbers we can prove the
hydrodynamic limit (out of the shock) as we did in the semi infinité case.

7. SHOCK FLUCTUATIONS

In this system a perturbation on the initial condition translates as time
goes to infinity into a shift of the shock position. For any configuration
11, and for any site let be defined by (~’e { 0, 1 }).

VoL55,n°2-1991.
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Let t) be the random position of the shock when the initial configur-
ation is 11.
For ail s&#x3E;0, it holds

This is the key tool in order to obtain a lowerbound for the diffusion
coefficient for the shock. This is defined by (if the limit exists)

We also define

It has been conjectured by Spohn [S] that D = D, but it is only proven
that D is a lowerbound for D ([f2], [f3]). Indeed D = D + l, where

1 = lim 1 (t) and

where no (11, x):= (1-11 (y)) is the number of empty sites of ~ between
y=0

0

0 and x and n1(~, x):= 03A3 ~(y) is the number of ~ particles between
y=x

the origin and ~-0.
From thèse results we conclude that the diffusion coefficient of the

shock is the same as the conjectured diffusion coefficient if and only if
the position of the shock at time t is given (in the scale by (À - p) -1 1

times the number of holes between 0 and (~, - p) t, minus the number of
particles between 0 and - (À - p) t. In any case, 1 (t) is non négative, hence
D is always a lowerbound. When p=0, X (t) has the distribution of a

plain tagged particle in the simple exclusion process with density À. In
this case it is known that D : = lim t-1 E (X (t) - EX (t))2 = D = (1- ~,).

This implies that lim 1(~=0; hence, in the scale fi the position of
R (t) is determined by the initial configuration in the sensé discussed above.
This has been proved before by Gârtner and Presutti [gp].
We finish this section by mentioning a couple of open problems.
Prove that there exists a microscopic shock in more dimensions or for

a jump function that allows to go further than the nearest neighbors. The

argument of this approach does not work even for the case of two parallel

Annales de l’Institut Henri Poincaré - Physique théorique
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lines with a symmetric dynamics for jumps between the two lines and
asymmetric jumps inside each line. Landim [laI] proved the existence of
the hydrodynamical limit in two dimensions for some initial conditions.

Général initial conditions. Benassi, Fouque, Saada and Vares [bfsv] have
proved that the hydrodynamical limit can be taken when the initial profile
is monotone. Prove the hydrodynamical limit for any initial profile.

Fluctuations. It is expected that the fluctuations around the deterministic
hydrodynamic limit dépend on the initial configuration as the fluctuations
of the shock do. In the case p = 0 this has been studied by [bf2].

8. THE NEAREST NEIGHBOR ASYMMETRIC SIMPLE
EXCLUSION PROCESS. GENERAL CASE

Almost ail the results described above have been also proven for the

process whose particles can also jump backwards. In this case one assumes
that the particles jump at rate p to the right nearest neighbor and with
rate q the left one. We assume p + q =1 and p&#x3E;q, but this is only for
convenience.
The set of extremal invariant measures v~n~ : n E ~ ~ .

The measure concentrâtes on the set

They are defined by v~ : = (.1 AJ for ail k. The measure is also a

product measure with marginals

and is even réversible for the process. They approach exponentially fast
the densities 0 and 1 to the left and right of the origin respectively, so
that, under v~B the origin is a shock for p = 0 and ~=1. If we put a
second class particle at n with probability proportional (in average) to

in a way that dépends on the configuration 11 chosen according to 
then we can get a réversible measure for the process (r~t, R (t)), where
R (t) stands for the position of the second class particle at time t. It is

clear from (8 . 2) that the second class particle will remain tight; hence, in
this case it is a shock.

In the case 0 ~ p  ~, _ 1 one constructs a process X (t)), with

crt first class particles and 03BEt second class. At time zéro we set

~ (x) =1 ~ U (x) _ p ~ and ~ (x) =1 ~ p  U (x) _ ~, ~ where U (x) are indepen-
dent identically distributed uniform random variables in [0, 1 ] . We set

Vol. 55, n° 2-1991.
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X (t) as a tagged 03BE particle. Then call the positions of the 03BE particles,
assuming that x0(t)~X(t). Label the 03BE particles independently in the

following way: the n-th particle is labeled y with probability
(p/q)n/(I - (p/q)n) otherwise it is labeled ç. Finally choose the i-th t particle
to be R (t) with probability proportional (in average) to m (i) [in a way that
dépends on (y, Q]. The remarkable property of the resulting distribution is
that the labeling remains invariant for later times. Hence the density of y
particles vanishes to the left and the density of ç particles vanishes to the
right exponentially fast. Furthermore X (t) - R (t) remains tight. Since our
original process can be recovered by writing as before, one can
prove that either X (t) or R (t) are microscopic shocks. The advantage of
R (t) is that it can be defined directly as a second class particle with respect
to ~t, while for X (t) one needs to call the process ~t). With this
observation and a little care one can prove all the other results. We refer

to [fks] and [f2] for détails.

9. THE WEAKLY ASYMMETRIC SIMPLE EXCLUSION PROCESS

We have studied the hydrodynamical limit of a process by rescaling
time and space in a convenient way. Another possibility is to consider a
family of processes depending on the same parameter 8. Indeed this is

what is done to dérive the (viscous) Burgers équation

This kind of limit is called kinetic. The family consists of asymmetric
simple exclusion processes as defined in the previous section with

/? 1 + £ and - 1 £ . Since the asymmetry p ~’ goes to 0 with the

scaling parameter 8, the resulting (family of) process(es) is called weakly
asymmetric. It was introduced by De Masi, Presutti and Scacciatelli [dps]
and studied by Gârtner [g], Dittrich [d], Gârtner and Dittric [gd], Ravishan-
kar [ra] and Ferrari, Kipnis and Saada [fks]. The results are quite complète
and reinforce the conjectures on the simple exclusion process we gave in
the previous sections.
Denoting by SE (t)f the expected value of f with respect to the process,

and yE a family of product measures with marginals given by
vE (11 (8 -1 r)) = uo (r) the kinetic limit is given by

Annales ’ de l’Institut Henri Poincaré - Physique ’ théorique ’



649MICROSCOPIC SHOCKS IN ONE DIMENSIONAL DRIVEN SYSTEMS

(local equilibrium), where u (r, t) is the solution of (9 .1 ) with initial
condition u (r, 0)=Mo(f). This result was proven by De Masi, Presutti and
Scacciatelli [dps] and by Gârtner [g]. Notice that the scaling is différent
from that one we used to dérive the unviscous Burgers équation. To obtain
a Laplacian one needs to scale space as the square root of time. Since we
are looking at time ~ -1 1 and the asymmetry is of the order of E, the
effective drift is not rescaled and it appears in the macroscopic limit as a
transport term. The same authors proved the law of large numbers for
the density fields: Let 03A6 be a continuous function with compact support.
Then,

P~E almost surely. The stationary case was studied by Ferrari, Kipnis and
Saada [fks]: For each ~ there exists a position X (t) such that the process
as seen from X (t) has a measure ~ with the property that

where

is the stationary travelling wave solution of the Burgers équation (9 . 1 )
with asymptotic densities p and À. Aiso the density fields converge and
the hydrodynamical limit is achieved for this family of initial measures.
A stronger result has been proved by Dittrich [d], who exibits a function

~t of the initial configuration 110’ such that for any test function ~,

In other words: in that scale, the motion is determined by the initial

configuration. The approach also allows to study the shock wave case. In
this case the shock fluctuâtes as a Brownian motion with diffusion coeffi-
cient given by D (defined in Section 7), and thèse fluctuations dépend
only on the initial configuration [d].
An interesting problem is to décide what happens with the second class

particle in this limit. The rescaling of (8 . 2) implies that, calling the position
of the second class particle at time t by R (t), with R (0) = 0,

We conjecture that the motion of the second class particle is an Ornstein
Uhlenbeck process with an appropriate drift and with the stationary
measure given above.

Vol. 55, n° 2-1991.



650 P. A. FERRARI

De Masi, Presutti and Scacciatelli [dps] have studied the fluctuation
fields and proved that thèse converge to a generalized Ornstein Uhlenbeck
process.

10. THE BOGHOSIAN LEVERMORE CELLULAR AUTO MATA

In this section we review récent results by Ferrari and Ravishankar [fr]
on a deterministic version of a probabilistic cellular auto mata first studied
by Boghosian and Levermore [bl]. This is a dynamical system with random
initial condition. The simplicity of the model allows to prove not only all
the results but also the conjectures given for the asymmetric simple exclu-
sion process.
A configuration of the one dimensional Boghosian Levermore Cellular

Automata (BCLA) is an arrangement of particles with velocities + 1 and -1
on ~, satisfying the exclusion condition that there is at most one particle
with a given velocity ( + 1 or-l) at each site. We dénote a configuration
by r)e{0, 1}~~’~~:=X, the state space. If r~ (x, s) = 1 we say that
there is a particle with velocity s at site x, where x~Z and SE { -1, + 1}.
Dynamics. - The time is discrète and the dynamics is given in two

steps:
1. Collision: for a given ~ let be the configuration

In other words, if there is no particle or two particles at x, then nothing
happens. If there is only one particle at x, then this particle receives

velocity 1.

2. Advection. This part of the dynamics moves each particle along its
velocity to a neighboring site in unit time. The operator A is defined by

Defining T : = AC, the dynamics is given by

We say that a measure  on X is stationary for the process if 

Cheng, Lebowitz and Speer [cls] have noticed that this dynamics acts
independently in the space-time sublattices {(x, t) : x + t is even} and
{ (x, t): x + t is odd}. Any translation invariant measure concentrating on
one of the two sets { 11 : 11 (x, 1 ) =1 ~, ~ r~ : ~ (x, -1 ) = 0} is stationary for
the process. Also, there are non translation invariant measures: the meas-
ures vn giving mass 1 /2 to and each, where r~ n (x, ~ 1 ) = 1 ~ x &#x3E;__ n ~ .
Observe that the configuration r~n is two steps invariant (i. e. 
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The problem of determining if thèse measures are sufficient to de scribe
the set of all invariant measures for the process is open. We remark that
in contrast with the simple exclusion, there are stationary translation
invariant ergodic measures that are not product measures
The hydrodynamical limit has been done for initial product measures

with densities 0 and p for particles with velocity -1 and + 1 respectively
at négative sites, and with densities ~, and 1 for particles with velocities
-1 and + 1, respectively to the right of the origin. Hence the particle
density per site to the left of the origin is p and to its right is 1 + À. The

limiting density per site satisfies the équation

where

This équation has only two characteristics, 1 and -1 according to the
density being smaller or larger than 1. The définition of the microscopic
shock is the same as for the simple exclusion process. Just take two

configurations that differ at only one velocity at only one site. At latter
times they will also differ at only one site that we call second class particle,
as it gives priority to other particles that attempt to occupy its place.
When the initial configuration is taken from the product measure descri-

bed above, it turns out that the position of the second class particle can
be expressed as a sum of independent and identically distributed random
variables whose number is random and such that each one is a différence
of two geometric random variables. Furthermore the number of summands
is independent of the summands. Hence, as a corollary of this representa-
tion, laws of large numbers and central limit theorems for the position of
the shock are proven. Another result is that the position of the shock at
any given time is independent of the configuration at that time as seen
from the shock. This gives a way to prove the hydrodynamical limit
described above.
The results can be extended to initial measures with density having

more than one step, to decreasing profiles and also to the probabilistic
cellular automaton, for which the C rule is applied with probability p and
is not applied with probability 1-p [frv]. The weakly asymmetric case
was studied by [lop].

11. OTHER CELLULAR AUTOMATA

The BLCA is isomorfic to two simple exclusion automata 1 }~
and a sand-pile automaton.
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The asymmetric simple exclusion cellular automaton. - For a given
configuration 03BE~{0, 1}z, define B1 ç as the configuration

and B2 ç as the configuration

Now define the asymmetric simple exclusion cellular automaton (ASECA)
by:

In words, at even times, all particles occupying even sites jump to the
right if the successive odd site is empty. At odd times, the particles
occupying the odd sites do the same.
We prove that this is isomorfic to a subsystem of the BLCA. As

observed before, the BLCA consists of two independent subsystems:
{ r~ (x, s, and ~ ~ (x, s, Consider the odd sub-
system and define the configuration by

and

The transformation ç defines an isomorfism between the subsystem
{~(x, s, t):x+t odd} and 03BEt, t~Z, such that 03BEt is the asymmetric simple
exclusion cellular automaton, with distribution described by ( 11. 1 ).

The automaton 184 ([wo], [ks]). - Let B y be the configuration defined
by

In words, B y is the configuration obtained when all particles of y allowed
to jump one unit to the right do it. Define the automaton by 
Assume now that at time 0, all even sites are empty. In this case this is
isomorfic to 03BEt with the same initial configuration. On the other hand, if
all even sites are occupied, it is also isomorfic to ~t. For other configur-
ations this system is not isomorfic and présents a richer structure. For
those type of initial conditions the results proved for the BLCA hold.
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Sand piles. - We présent in this section an infinité version of an
automaton introduced by Bak, Tang and Wisenfeld [btw] and studied by
Goles [g]. Consider a process 03BEt on the state space {03BE~Zz:03B6 (x)~03B6 (x + 1)}.
Define C : ~ t-~ C ç as follows

In words, we can think that at each integer there is a pile of grains of
sand. At each time each pile is ready to give one of its grains to its right
neighboring pile. But this only happens if grain "rolls down", i. e. if the

receiving pile is not higher than the one from which the grain comes.
Thèse opérations are all done in parallel. The automaton is defined by

It turns out that for some initial configurations, this automaton is
isomorfic to the automaton 184 described above. This has been established
in [fgv]. Let y be a configuration 1 }~ and as the

configuration

Then it is easy to see that

so that we get that ~t (x) ---- - x + yt (x) for all t, all x. This implies that ail
the results for the hydrodynamics and shocks hold in this model for this
kind of initial conditions. Other initial conditions are under investigation
by [fgv].

It is not hard to see that a particle system can be constructed using the
same law. Assume that at each site we have a Poisson point process of
rate one, independent of the rest. When the clock rings at site x, the pile
atternpts to give up a grain to site ~c+1, but it does so only if

~(x)2014~(~+l)~2. One can show that the transformation ( 11. 2) makes
this system isomorphic to the simple exclusion process.
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