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An overview on large deviations of the empirical
measure of interacting particle systems

C. LANDIM

C.N.R.S. U.R.A. n° 1378, Département de Mathématiques,
Université de Rouen, BP n° 118,

76134 Mont-Saint-Aignan Cedex, France

Ann. Inst. Henri Poincaré,

Vol. 55, n° 2, 1991, Physique théorique

ABSTRACT. - We présent the main ideas in the theory of large déviations
for the empirical measure of interacting particle systems. To illustrate
thèse ideas, we consider the superposition of a symmetric simple exclusion
process and a Glauber dynamic on a torus of finite macroscopic volume.
We obtain a lower and an upper bound which coïncide in a dense subset
of the space of trajectories.

Key words : Infinite particle systems, large déviations, empirical measure.

RÉSUMÉ. - Nous présentons les principales idées de la théorie des
grandes déviations de la mesure empirique de systèmes à une infinité
de particules interagissantes. Pour les illustrer, nous étudions une super-
position de l’exclusion simple symétrique et d’une dynamique de Glauber
sur un tore à volume macroscopique fini. Nous obtenons une borne

supérieure et inférieure qui sont égales sur un ensemble dense de l’espace
des trajectoires.
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616 C. LANDIM

1. INTRODUCTION

The purpose of this paper is to présent the main ideas in proving
large déviation principles for the empirical measure of interacting particle
systems. To illustrate thèse ideas, we will consider a process closely related
to reaction-diffusion équations. It is a Markov process where two dynamics
are superposed. The first one, the so called symmetric simple exclusion
process can be informally described as follows. Consider a countable

space X and symmetric transition probabilities p(k, j) on X. Initially, we
distribute particles on X in such a way that there is at most 1 particle at
each site. Each particle waits, independently from the others, a mean 1

exponential time at the end of which, if this particle is on k, it chooses a

site j with probability p (k, j). If the chosen site j is unoccupied, the particle
jumps to j. Otherwise it stays at k.

Superposed with this process we consider a Glauber dynamics: for each
site k of X, consider two non négative function bk and dk on the configur-
ations ~ of particles on X. Assume that each one of thèse functions
dépends on the configurations only through a finite number of sites. At
each site k of X and for each configuration 11, if the site is unoccupied, a
particle is created at a If it is occupied, the particle is destroyed
at a 

The exclusion process is accelerated in order to obtain a diffusion

phenomen on some space rescaling.
We présent a method, quite général, proposed by Kipnis, Olla and

Varadhan in [KOV], to prove large déviations principles for the empirical
measure of interacting particle systems.

In the middle of the seventies, Donsker and Varadhan presented a new
approach to the theory of large déviations for Markov processes (see, for
instance, [DVl]-[DV3]). They succeed to obtain an élégant proof of a large
déviation principle for a wide class of Markov processes. In some sensé
their proof follows the same ideas of the classical proof of large déviations
of the mean of a séquence of i. i. d. random variables. The same ideas

apply to interacting particle systems as we will see in sections 3-5.
We first recall how to prove a large déviation principle for the mean of

i. i. d. random variables. There are two main steps. Let {Yi} be real i. i. d.

random variables and suppose, to avoid technicals difficulties, that thèse
variables have exponential moments of ail orders 1 }]  00 for
ail 9 e R) and that for every K E R, and 1  K] &#x3E; 0.
The first main difficulty is to find how the random variables Yi behave

on the set In other words, for every a E R, we have to

study the distribution of Y 1 given that Yi == li.

Annales de l’Institut Henri Poincaré - Physique théorique



617INTERACTING PARTICLE SYSTEMS

For a E R, consider i. i. d. random variables {Yi «(X) } such that for every
bounded measurable function f,

where 1 }]. A computation shows that under regularity
conditions, the distribution of Y 1 given that Yi = ex converges

in law to Y1 (a) ([DF] for some results and a list of références).
Therefore, to estimate P we have to compare the

1 ~t~N

distribution of (Y l’ ..., with that of (Y (a), ..., y N (ex)). This is the
main idea in the proof of large déviations.
We first consider the upper bound part of the large déviation principle.

Let K c R be compact and for an integer N, let Y N dénotes the mean of
the first N r. v. Yi. Then, by the définition of the

random variables Y~ (a),

Since is bounded by 1, minimizing with respect to ail the

perturbations considered, we obtain that

Hère appears a technical difficulty, we have to exchange the order of
the supremum and of the infimum in the formula above.

By Hôlder’s inequality, log M (a) is a convex function. Moreover, since
for ail 8ER, log M (a) is continuous. Therefore

is a concave function in the first variable and
convex in the second. Since f is continuous, by Theorem 4 . 2’ of [8], we
can exchange the supremum and the infimum in the formula above.

In this way, we prove the upper bound part of the large déviation
principle and we obtain a variational formula for the rate function:

where 1 (x) = sup {03B1x-log M (a)}.
cxeR

The second main difficulty consists in to obtain an explicit expression
for this rate function. If log M (a) is strictly convex, since for every K E R,
P [Y1 &#x3E; K] &#x3E; 0 and P [Y  K] &#x3E; 0, for every x E R there exists a unique a (x)

Vol. 55, n° 2-1991.



618 C. LANDIM

such that is given by the équation
~==M’((x(~))/M(a(~)). In particular

So that for every xER, there exist a perturbation which has a

Radon-Nikodym derivative with respect to the original r. v. Y1 and has
mean equal to x.

In the symmetric exclusion process this second main difficulty is over-
comed with a Riesz représentation theorem on some Sobolev space

(cf [KOV], Lemma 5 . 1 ). In the case considered in this paper, the proof is
left to a forthcoming paper [JL V]. We just obtain an explicit expression
for the rate function for smooth trajectories.
With this explicit expression for the upper bound rate function, we are

ready to prove the lower bound. Just remark that since 
y N (x (x)) -~ x in probability.

Let be an open set and for a fixed 03B4&#x3E;0 and 

let Vx0~V an open neighborhood of xo such that, |03B4/03B1(x0)| for
every y E V xo. Then,

Therefore, since in P03B1(x0)-probability, letting 03B4~0, we
obtain that

Since this is true for every we have proved the lower
bound part of the large déviation principle.
We have seen that to obtain the lower bound part of the large déviation

principle, we need first to prove a law of large numbers for the perturbed
r. v. In the case of particle systems, this result will require some work. In
section 3, we will obtain hydrodynamical limits for the perturbed processes
necessary to the lower bound. We shall remark that the law of large
numbers obtained in section 3 and the method proposed by Guo, Papnico-
lau and Varadhan in [GPV] to dérive it constitute in themselves intersting
results.

In the proof of large déviations for interacting particle systems, appears
another important difficulty. When writing the Radon-Nikodym derivative
of the perturbed process with respect to the original one, appear expres-
sions which can not be expressed in terms of the empirical measure.

Annales de l’Institut Henri Poinearé - Physique théorique



619INTERACTING PARTICLE SYSTEMS

Therefore, we have to obtain a result which enables us to substitute thèse

expressions by functions of the empirical measure. A strong result which
allows this substitution was obtained by Kipnis, Olla and Varadhan in
[KOV] and is stated hère as Theorem 3.1.
We présent in the next sections the main ideas of the proofs. We slightly

change the proofs of [KOV] in order to follow as closely as possible
the proof of large déviations for i. i. d. random variables just presented.
Moreover, instead of considering the empirical density, we will prove large
déviations for the empirical measure, a more natural functional. In

section 2 we présent the results and establish the notation. In section 3 we
obtain the law of large numbers required for the lower bound and in the
last two sections we prove the upper and lower bound parts of the large
déviations.
The main interest in proving such a result for the simple exclusion

process superposed with a Glauber dynamics is to understand the nature
of small déviations from the hydrodynamic trajectory for non conservative
systems (see [J] for an interesting discussion on the subject).

Extensions of the results presented hère, detailed proofs and a study of
the rate function, will appear in [JLV].

2. NOTATION AND RESULTS

In this section we establish the notation and state the main results. To
avoid technical difficultés, our state space will be of finite macroscopical
volume. Nevertheless, adjusting the results of [L] to our context, we can

. extend the large déviations results obtained hère to the infinité volume
case. Throughout this paper, for an integer N, TN will dénote the torus
with N points: and T the torus T=={0~1}.
Our state space {0,1 }TN will be denoted by XN, while the configurations
of XN will be denoted by greek letters ~ and ç. In this way, for

rl (k) =1 if there is a particle on k for the configuration 11
and ~ (k) = 0 otherwise.
For k, jE N, we dénote by C~([0,l]xT) the functions on [0,l]xT

which have k continuous derivatives with respect to the time variable and

j continuous derivatives with respect to the space variable. C~([0,1] x T)
dénotes the subset of C~([0,l]xT) of functions p (t, x) for which there
exists s &#x3E; 0 such that E  p  1- E.

Let b, d : XN  R+ be fixed cylindrical functions, i. e., two functions
which dépend only on a finite number of sites. For k E Z, let ik : XN
be the translation by k on XN : 03C4k~ is the configuration obtained from 11
such that 03C4k~(j)=~(k+j) for every j~Z, where the sum is taken in

modulus N. We extend the translations to the functions on XN and to

Vol. 55, n° 2-1991.



620 C. LANDIM

the measures in the natural way: for every real continuous function f,

(ik f ) (11) =f (ik 11) and for every probability ~, f ) d~.

We consider a superposition of the symmetric simple exclusion process
and Glauber dynamics on XN. This process was informally described
in the introduction. It is the unique strongly continuous Markov process
whose generator acts on function as

where for O~Â:,~~N2014 1, ~k and r~k are the configurations:

and Tk are the translations defined in the last paragraph.
Given a real function y on T such that 0 ~ y ~ 1, we dénote by v~ the

product measure on XN with marginals given by (k) = 1} = y (k/N),
0 ~ ~ ~ N -1. We identify the constant p with the real constant function p
on T. Also for 0 ~ p ~ 1 and cp a cylindrical function, let

We dénote by PN the probability on the path spaceD([0, l], XN) corre-
sponding to the process with generator LN given by (2 . 1 ) and with initial
measure v~.

Let M be the space of subprobability measures on the torus T. For

o E M and f E C (T), define ( o, /) = f d6. Consider M endowed with
the topology induced by C (T) with the duality( , ). In this metrizable
topology M is compact.

Let À dénotes the Lebesgue measure on T and Let M 1 be the closed
subspace of M defined as

For 03C3~M1, when no confusion arises, we also denote by a the density of
6 with respect to À.

Annales de l’Institut Henri Poincaré - Physique théorique



621INTERACTING PARTICLE SYSTEMS

Consider the empirical measure ~:

where for x E T, ~x is the probability measure concentrated on x.
This is the subprobability obtained from the configuration r~t assigning

mass liN on each particle. Let D([0,l], M) be the path space of the
process and Q~ the probability on D([0, l], M) corresponding to the
process with initial measure v~

In the proof of the large déviation principle for the empirical measure,
two assumptions on the process are needed for technical reasons. For

let

Troughout this paper we will assume that:
(Al) : B (p) - D (p) is linear.
(A2) : B and D are concave functions.
Condition (A 1 ) implies that the hydrodynamical équation of the process

is a second order linear PDE:

In the process where particles are created and disappear in each site
independently to the (1 - r) (0)) and d (r~) = c2 r~ (0), where
Ci and C2 are non négative constants. In this case, B (p) = c 1 ( 1- p) and

Therefore, assumptions (A 1 ) and (A2) are satisfied. In [JLV],
we extend the results presented hère to processes which do not satisfy
assumption (A1).
As it was explained in the introduction, to prove large déviations

principles for Markov processes, we have to consider small perturbations
of our original process. In our case, the perturbations are of the following
type.

Let Consider the unique strongly continuous Mar-
kov process whose generator acts on functions as:

where llk and llk were defined in (2. 2).

Vol. 55, n° 2-1991.



622 C. LANDIM

In this process, the particles do not evolve symmetrically on XN as

before but with a small time and space dépendent drift 1 2014. In thep p 
N ôx

same way, the birth and death rates eH [ 1- ~ (o)] b (r~) and e - H ~ (o) d (r~)
also dépend on time and space and are related to the drift.

Let P~ and Q~ dénote respectively the probability measure on the
path space D([0, 1 ], XN) and D([0, 1 ], M) corresponding to the processes
~t and with generator given by (2. 7) and with initial measure vN.
We now introduce the rate functions. For let

JH : D ([0, 1], M) --+ R be given by:

if ~eD([0,l], Mi), where mt dénotes and where B and D have

been introduced in (2 . 6) and M in (2 . 4). 1], Mi).
It follows from the assumptions (Al) and (A2) that for each

JH is a convex lower semicontinuous function. Let

la : D ([0, l], M) ~ [0, 00] be given by

lo inherit the properties of convexity and lower semicontinuity of JH.
For y : T ~ [0, l], define h03B3 : D([0, 1 ], M) ~ R+in the following way,

l],Mi).
A simple computation shows that for 1 ], MJ and 

We are now ready to define the upper bound rate function. In section 4,
we will see that once the perturbations have been fixed, this rate function
given by a variational formula appears quite naturally. For y : T -~ [0, 1 ],

Since hy is clearly convex and o lower semicontinuous, Iy has also o thèse "

properties. Thèse " properties will be " important to show that the upper

Annales de l’Institut Henri Poincaré - Physique ’ théorique ’



623INTERACTING PARTICLE SYSTEMS

bound rate function just introduced and the lower bound rate function
are equal.
Now, we introduce the lower bound rate function 1~. It may seems that

the way we define this lower rate function is artificial. Nevertheless, we
will see at the end of section 4 that once the upper bound rate function is
defined, the lower bound rate function is automatically obtained, at least
on some subset of regular paths of D([0, 1 ], M 1 ).
For p E Cé ’ 3 ([0,1] x T), there exist a unique H E C1,2 ([0,1] x T) such that

where is the solution of (2.13). In section 4, we will
see that for îo(p)=Io(p) and it is easy to see that
Cé ° 3 ([0,1] x T) is dense in C([0, l], MJ endowed with the Skorohod topo-
logy. We extend Io to the wholeD([0, l], MJ in the natural way to obtain
a lower semicontinuous function:

where B (p, E) is the bail centered at p with radius E.
Since C([0, 1 ], is a closed subset of D([0, 1 ], M) for the Skorohod

topology, we see from this définition that 10 (p) = 00 if p~C([0,l], 
On the other hand it is not hard to prove that 10 (p) = oo if p ~ C ([0, 1], Ml)

[JLV]).
Since Io=Io on C~~([0, IJxT), from the définition of Io and from the

lower semi-continuity of 10, we obtain that for every
peD([0,l], M). Moreover since Io and 10 coïncide in a convex dense
subset of D ([0, l], M), and since 10 is a convex function, Io is also
convex. We can now introduce the lower bound rate function. Let

I,:D([(U],M)~[0,oo];I,=Io+/~.
In a forthcoming paper [JLV], we will see that To=Io’ Since the proof

of this result is too long, we will skip this point and just remark that 10
and Io coïncide on a dense subset ofD([0, l], M).

Vol. 55, n° 2-1991.



624 C. LANDIM

We are now ready to state the main theorems of this paper. We saw in
the introduction that to prove the lower bound part of a large déviation
principle, we need first to obtain a law of large numbers for the modified
processes considered. In our context, this means that we have to prove
that the empirical measures ~N for the process with generator LN, t and
starting from the initial measure v&#x26; converge in some sensé to a

trajectory p,. This is the content of Theorem 1. In the next sections, we
prove the following theorems.

THEOREM 1 (HYDRODYNAMICAL LIMITS). - Let aYld

y E Ce (T). Then, QH, 03B3N ~ Q, where Q is the probability measure concentrated
~~7 the deterministic trajectory p, where p is the unique bounded weak solution
of

and  denotes the weak 

THEOREM 2 (LARGE DEVIATIONS UPPERBOUND). 2014 Let yeCg(T). Then,
for every compact set K c D 1 1], M),

THEOREM 3 (LARGE DEVIATIONS LOWER BOUND). - Let YECe(T). Then,
for every open set V c D ([0, 1 ], M),

3. HYDRODYNAMICAL LIMITS

In this section, we obtain the law of large numbers needed in the proof
of the lower bound part of the large déviation principle. We begin the
section stating a theorem of Kipnis, Olla and Varadhan. It allows to
substitute local quantities by macroscopic ones. When deriving hydrody-
namical limits and proving the large déviation principles we obtain local
quantities which can not be expressed in terms of the empirical measure.
This next theorem enables to exchange them by functions of the empirical
measure.

Annales de l’Institut Henri Poincaré - Physique théorique



625INTERACTING PARTICLE SYSTEMS

THEOREM 3 .1 (Kipnis, Olla, Varadhan). - Let HEC ([0, 1] x T),
y : T ~ [0, 1] and ~ cylindrical function. Define ,

Then, for every 8 &#x3E; 0,

where cp is defined in (2.3).
We refer the reader to [KOV] for a proof of this result in the finite

volume case and to [L] for an extension to infinité volume.
With this theorem, with classical results on PDE’s and well known

critériums of compactness on probabilities’ spaces, we prove Theorem 1.
The proof if divided in two steps. Fix HeC~([0, 1] x T) and 
We first prove that the séquence of probabilities Q~’ ~ on D ([0, 1], M) is
weakly relatively compact. Then we show that every limit point Q
of the séquence is concentrated on trajectories 1 such that

x)dx for where m is a weak solution of

Since équation (3 .1 ) has a unique bounded weak
solution. This can be seen adapting the proofs of propositions 3.4 and
3. 5 of [0] to our case. Therefore every converging subsequence of 
converges to the same limit Q. From the first part, it follows that the
séquence Q~ ~ converges to Q, the probability on D([0, 1 ], M) concen-
trated on the deterministic trajectory whose density is the bounded weak
solution of (3 . 1 ).
The proof of the weak relative compactness of the séquence Q~ is

standard since we consider M endowed with the weak toplogy. There exist
simple criterias to prove it (see [K]).
To prove that Q is concentrated on weak solutions of (3 . 1 ), we proceed

as follows. We first show that Q a. s., ~,t is absolutely continuous with

respect to the Lebesgue measure À for every and is

bounded by 1. This is simple to prove since for every G : T -+ R Riemann
integrable,

Vol. 55, n° 2-1991.
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To show that the density ms = is a weak solution of (3.1), we refer the
~

reader to [KOV] since thé proof of this result in our context is similar.

Thé idea is to consider a test function GeC~([0, 1]~T) and an expression
which on thé one hand converges to 0 and on thé other hand converges to

This is realized considering the martingale

where, for each 0~/, ~~N-1, is the number of jumps of particles
from site j to site k from time 0 to time t, B~ is the number of particles
created on k between time 0 and time t and D~ is the number of particles
which disappeared on k between time 0 and time t.

First, computing the quadratic-variation process associated to this mar-
tingale, we show that it converges to 0. Then, rewriting the expression
(3 . 3) in a convenient way and applying Theorem 3.1 to subsitute local
terms by macroscopic ones, we prove that this martingale converges to
(3.2). Détails can be found in [KOV].

4. LARGE DEVIATIONS, UPPER BOUND

Following the ideas of [DV1], [DV2], [DV3], Kipnis, Olla and Varadhan
proved in [KOV] a large déviation principle for the empirical density in
the symmetric simple exclusion process. The main difficulties were to find
the perturbations of the process needed to prove the lower bound part,
the way to substitute local quantities by macroscopic ones and identify
the upper bound rate functionnal given by a variational formula with

Annales de l’Institut Henri Poincaré - Physique théorique



627INTERACTING PARTICLE SYSTEMS

the lower bound rate functional. The second problem was solved with the
superexponential inequality presented in this paper in Theorem 3.1 and
the third one via a Riesz’ représentation theorem in some Sobolev space.

In the case considered hère, where the exclusion process is superposed
with a Glauber dynamics, the perturbations needed are easily guessed
from the previous work on the exclusion process. Theorem 3.1 allows also
in our situation the substitution of local terms by functions of the empirical
measure. Finally, since some exponential terms prevent from the use of
the Riesz représentation theorem, we will have to adopt a somehow
undirect method. This last part is left to [JLV]. We do not prove hère
that the upper and lower rate functions are equal. We will only show that
they coïncide in a dense subset of D ([0, 1 ], M).

In the saké of clearness we présent hère a detailed proof. Before going
trough the technical difficulties, we présent the main ideas. One should
remark that thèse ideas are exactly the same as those of the proof of large
déviations for the mean of i. i. d. random variables.
We first fix a compact set K on the path space D ([0, 1 ], M) and

consider small Markov perturbations of our process. In our context thèse
perturbations are processes with generators given by (2.7). Then, we
compute the Radon-Nikodym derivative of the probability on the trajec-
tory space D([0, 1 ], M) of the perturbed process with respect to the

probability on the same space of the original process. Applying Theo-
rem 3.1, we substitute local terms which appear in the derivative by func-
tions of the empirical measure. The last step consists on to bound above
the derivative in the compact set K considered and minimize it with respect
to ail perturbations. In this way, we obtain a variational upper bound
for There are at this point technical problems to ex-
change inf’s and sup’s but this can be donne with Sion’s results on concave-
convexe functions [S] or with an argument which appears in [V] (Lemma 11.3).
More precisely, fix Kc:D([0, 1 ], M) compact, HeC~([0, 1 ] X T) and

We compute the Radon-Nikodym derivative of p~, 0" with

respect to P~. We have that:

Vol. 55, n° 2-1991.
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and

After some simplifications, the Radon-Nikodym derivative can be rewrit-
ten as

and

We see that there are some terms in thé derivative 2014~2014 which at first
~N

sight can not be expressed in terms of thé empirical measure. Nevertheless,
Theorem 3.1 enables us to substitute thèse terms by functions of
thé empirical measure. Indeed, let C : [o, 1] -~ [o, 1] be thé function

and for s, 8&#x3E;0, let be thé set

Annales de l’Institut Henri Paincaré - Physique théorique .



629INTERACTING PARTICLE SYSTEMS

From Theorem 3.1, we know that for every 8&#x3E;0,

Therefore,

On the Radon-Nikodym derivative ~ can be bounded above
, 

~?N
by expressions involving only the empirical measure. In fact, for N suffi-
ciently large,

where K (H) is a constant which dépends only on H, * dénotes
the convolution and for E  1 /2, is the function

~g(x)=(l/28)l~~~~~. Since for every integer N sufficiently large, and
every 0 ~ t _ l, ~N * ocE is absolutely continuous with respect to  and the
density is bounded by 1, we have from (4 . 4) that on 

for N sufficiently large, where JH was defined in (2. 8).
Therefore, from (4 .1 ) and (4 . 5),

Vol. 55, n° 2-1991.



630 C. LANDIM

This last expression is bounded above by

Therefore, from (4.3), (4.6) and (4. 7), we obtain that

Let ds be a metric on D([0, 1 ], M) consistent with the Skorohod topo-
logy such that for every ~&#x3E;0. For UcD([0, 1 ], M) let

Then, for every s&#x3E;0, the r. h. s. of (4 . 8) is bounded above by

Observe that up to this point we have not used the compactness of K.
For an integer n, let Vi, 1 __ i _ n, be a finite open covering of K. Thus,

Annales de l’Institut Henri Poincaré - Physique ’ théorique ’



631INTERACTING PARTICLE SYSTEMS

Therefore, if we take the infimum over ail finite open coverings of the
compact K and over ail E &#x3E; 0, we obtain that:

It is not hard to see that this last expression is equal to

where the first infimum is taken over all finite open coverings of the
compact K. We remarked just after the définition of JH that for every
HeC~([0, 1]~T), JH is lower semi-continuous. On the other hand, for
every cr, y E Ce (T), it is clear that

is continuous. Thus, we can apply Varadhan’s method ([V], Lemma 11.3)
to show that (4. 9) is equal to

where Iy is give by (2. 12).
The next two lemmas provide us with an explicit expression for the

rate function 10 on a dense subset of D([0, 1], M). We will see in [JLV]
that if ([0, 1 ], MJ, then Îo (~,) = ao . Therefore on C([0, 1 ], 

oo . On the other hand, in the next lemma we prove that on
some subset of C([0, 1 ], 10 and Io coïncide. In the second lemma,
we show that this subset is dense in C([0, 1], We omit the proof of
the second, which will appear in [JVL].
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LEMMA 4.1. 2014 5M~6~ ~~//9f ~~~ ~=20142014~ ~~M~ ~~~ M
~

~M~~ ~ 1. 5’M/?~~yM~~r ~~ ~~ ~-M~ l]xT) 
~~~ ~ M ~ W~~ ~C/M~~~ ~

Proof. - Since  is a weak solution of (4 . 10), we can simplify the
expression of 10 and o obtain that

This last expression is equal to:

which is equal to 10 (J.l), since ex - e’’ + y e’’ - x 0 for every x, y E R.

LEMMA 4.2. - Let J.l E 
3 ([0, 1] x T). Then there exist

HEC 1, 2 0 1 x T) such that m = is a weak solution o 4 . 10 .([ ~ ] ) t 

d~, 
.Î ( )
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5. LARGE DEVIATIONS, LOWER BOUND

Let 1 ], M) open. Fix 8&#x3E;0 and ~eVnC~~([0, 1] x T). Since
~ E C;’ 3 ([0, 1] x T), from Lemma 4.2, there exists H E Cl, 2 ([0, 1] x T) such

that m = 2014 is a weak solution of (4.10).( )
Define D ([0, 1 ], M) ~ R as

Since E C;’ 3 ([0, 1] x T) and y E Ce (T), hY, mo is continuous for the Skoro-
hod topology.

Let 80 (8) &#x3E; 0 such that if 8  Eo, then

This is possible in view of Theorem 3.1.
Fix 08so and let JH,,:D([0, 1 ], M) -~ R,

Since HeC~([0, 1] xT) JH, is continuous. Therefore, there
exists an open neighborhood V~ E C V of  such that if then,

We can now prove Theorem 3. We have that:

On B:, in the same way in which we have obtained (4 . 5), we get that
for N sufficiently large,
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Since ~,N E V~, E’ from (5 . 3) we have that

On the other hand, from (4. 1) and (5. 3), we have:

Since from (2 . 11 ) mo 
= h,~ (~), from (5 . 4), (5.5) and (5.6), we have

that

From Theorem 1, we know that

On the other hand, from (5 . 2), we have that:

Hence, the second line of (5 . 7) converges to 0, when N T oo . Letting 03B4 ~ 0
(and consequently s ~ 0), we obtain that

Since Jl E C;’ 3 ([0, 1] x T) and H E Cl, 2 ([0, 1] x T), it is easy to show that
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