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On long time behaviour of a class
of reaction-diffusion models
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ABSTRACT. - This is a short account of some results on long time
behaviour of a class of interacting particle systems obtained by the super-
position of Glauber and Kawasaki dynamics. Under some macroscopic
limit they are described by reaction-diffusion équations, and the problem
treated hère refers to longer times, when propagation of chaos does not
hold anymore. Precisely, one is interested in the escape from unstable

equilibrium points and the onset of phase séparation. The results reported
hère have been proven in a séries of papers by P. Calderoni, A. De Masi,
A. Pellegrinotti, E. Presutti and M. E. Vares.

Key words : Reaction-diffusion équations, Glauber and Kawasaki dynamics, propagation
of chaos, escape from unstable equilibrium points.

RÉSUMÉ. - Cet article est une brève description de quelques résultats
sur le comportement à long terme d’une classe de systèmes de particules
en interaction obtenus par superposition des dynamiques de Glauber et
de Kawasaki. Dans une certaine limite macroscopique ces systèmes sont
décrits par des équations de réaction-diffusion et nous considérons ici des
temps très longs où la propagation du chaos n’a plus lieu. Plus précisément,
nous nous intéressons à l’éloignement des points d’équilibre instable et à
l’apparition de la séparation de phase. Les résultats exposés ici ont été
démontrés dans une série d’articles dus à P. Calderoni, A. De Masi,
A. Pellegrinotti, E. Presutti et M. E. Vares.
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602 M. E. VARES

1. INTRODUCTION

Many highly important achievements in the theory of stochastic pro-
cesses during the last two décades were related to the study of interacting
Markovian systems with infinitely many components. Among many prob-
lems and motivations concurring for such big development one certainly
finds those connected with non-equilibrium Statistical Mechanics. In this
scenary it appears one basic and deep problem: better understanding and
justification of the hydrodynamical description for physical fluids, where
macroscopic properties should be described by the équations of Euler and
Navier-Stokes, while the molécules follow hamiltonian laws.
As it is well known, the appearance of such type of collective behaviour

in large systems with local interactions should be a quite général pheno-
menon and its rigourous dérivation is a fascinating problem. Well, for
stochastic dynamics this transition between microscopic and macroscopic
levels has been the object of rigourous analysis, and this has definitely
contributed to a better understanding of the underlying phenomena.

In the rigourous dérivations of hydrodynamics for stochastic particle
systems many results have been obtained so far. In the diffusive case a

large class of "gradient type" systems has been studied in the last décade.
Interesting examples of "non-gradient" models have also been studied in
this period. Also asymmetric systems (in a Euler-type scaling) leading to
hyperbolic conservation laws, which exhibit shock phenomena, have been
treated by using coupling techniques and attractiveness properties. In more
particular cases even the microscopic structure of the shock front has been
characterized. The very récent developments of the techniques initiated by
Guo, Papanicoloau and Varadhan based on entropy inequalities, and
closely related to large déviations has opened a new and exciting road to
the dérivation of hydrodynamics.

In this note we shall focus on a quite particular type of problem in the
frame of reaction-diffusion models giving a short account of a séries of
results (some of which already published and others still in progress).
Before going into this set up it is convenient to provide some général
références, so that a reader not familiar with Makovian particle systems,
could find his way for a deeper study. Concerning général aspects of
interacting particle systems, basic références are the books of Liggett
(1985) and Durrett (1988). On the other side, there are several surveys on
the macroscopic description and collective behaviour of stochastic particle
systems. Among those we indicate: the survey on hydrodynamics by De
Masi, laniro, Pellegrinotti and Presutti (1984), the reviews by Presutti
( 1986) and Presutti ( 1987), and the lecture notes on propagation of chaos,
by Sznitman ( 1989). An extensive and very updated survey is contained
in the récent book by Spohn ( 1989). In thèse surveys the reader will find
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603REACTION-DIFFUSION MODELS

a very good description of what we have sketched above, with detailed
références. At several points, 1 will refer to the lecture notes by De
Masi and Presutti (1989), which contain a detailed exposition of another
technique based on the study of corrélations functions.
We shall now concentrate on a class of stochastic dynamics 6£ (., t)

with values on X=={--1, +1}~, which under certain macroscopic limit
are described by a reaction-diffusion équation

To many others (see références below) we may add a simple mathemati-
cal reason for the choice of models of this type: despite its simplicity,
thèse reaction-diffusion équations hâve a very rich structure. Thé main
questions we shall be concerned hère refer to typical (long time) behaviour
of the particle system as it escapes from uns table equilibrium points of
(1.1). To make this more précise we first recall in section 2 that the
dérivation from o~(.) involves a limiting procédure which requires
a fixed time interval, where propagation of chaos in proven. We are then
concerned with what happens at longer times, i. e. just after it escapes
from the behaviour prcdicted by (1.1). For example : "when" and "how"
do the random fluctuations with respect to (1.1) become macroscopic?
What does it happen "at" this time? The main motivation is in fact, to
understand the onset of "phase séparation".
For this type of study we were initially motivated by several articles in

the physics literature, as De Pasquale, Tartaglia and Tombesi (1985),
Broggi, Lugiato and Colombo (1985), Baras, Nicolis, Malek-Mansour and
Turner (1983) and Meyer, Ahlers and Cannell (1987). In thèse papers
similar transient behaviour for other stochastic dynamics has been consi-
dcred, and expérimental results are also discussed.

2. DESCRIPTION OF THE MODEL

We will be considering a family (J£ (., t) with 0  8 ~ 1 of Markov

processes, taking values on X~ {20141, + 1 ~~. They are obtained by a
superposition of two dynamics : one is of Glauber (spin flip) type and the
other is a Kawasaki (stirring) dynamics. Moreover, the stirring dynamics
is speeded up. More precisely, the generator Lg of our Markov process
6E { , , t), when applied to cylinder functions on X, is written as:

Vol,55,n°2-1991.



604 M. E. VARES

where

and

and c (x, o)=c(0, with c(0, .) being a positive cylinder function
on X. [Hère we are using the notation for ail 

This model was introduced by De Masi, Ferrari and Lebowitz ( 1986)
who proved the following strong form of propagation of chaos, given in
Theorem (2. 2) below.

NOTATION. - (a) If  is a probability on X, then P~ represents the
law of the process t) (on its path space) when 6E ( . , 0) has distri-
bution 

(b) We shall use the same symbol to dénote both a probability measure
and the expectation with respect to it.

(c) If -1 _- m -- l, vm dénotes the product Bernoulli probability on X
with for ail 

THEOREM ( 2 . 2 ) [ De Masi, Ferrari, Lebowitz (1986)]. - Let ~
[R ~[- 1, 1] be of class C3, and let ~ be the product probability
on X (6 (x)) = mo (s x), for all x~ Z. Then :

for all n &#x3E;__ l, 0  r  + oo and 0  T  + oo, where m (r, t) is the solution of
(1 . 1) with

Remarks. - (a) In [7] the above theorem has in fact been proven for
higher dimensional processes, but the questions we shall be considering
have been answered so far only in the one-dimensional case.

(b) Theorem (2 . 2) is saying that if we look, at time t, around [£-1 r]
we shall see approximately In particular, it implies the validity of
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605REACTION-DIFFUSION MODELS

a law of large numbers: if cp is a test function, and 03B4&#x3E;0

That is, if measured on the spatial scale [E -1 r], the magnetization tends
to a deterministic limit whose évolution is given by équation ( 1 . 1 ).

(c) A simple calculation gives that

and from this the reader immediately sees that if propagation of chaos
holds, the évolution of local magnetization must be given by ( 1.1 ).

(d) In [7] the authors also study the fluctuations of the above magnetiz-
ation field. We shall be back to this at Section 3.
Note that in (2.3) or (2.5) the limit is obtained for a fixed T. It is

natural to try to investigate the behaviour of crE (., t£) when in
a suitable way. As previously discussed, this is precisely the type of
questions we shall consider. For this, we shall look at cases where
F (~2) = - V’ (m) with V ( . ) a double-well potential and our initial profile

is constant, the value being the saddle point of V ( . ).
As we may expect, this behaviour changes drastically according to the

shape of V ( . ) near the saddle. The hyperbolic case is quite différent from
degenerated ones. To see this we shall fix our attention into two examples.

Example 1 (quadratic case):

In this case F (~) = 2014 V’ (m), where

with a=2(2y-l) and P=2y~.
Example 2 (quartic case):

wi th 1/4  c  1.
In this case F (m) _ - V’ (m), where

with a = 2 (c - 1/4) and P = 3 c/2.

Vol. 55, n° 2-1991.



606 M. E. VARES

Thus in both examples m = 0 is an uns table stationary solution of

équation ( 1.1 ). We want to study how does ~(., t) escape from vo. In
other words, how does it start the "phase séparation" between + m* and
-- m~? dénote the points of minimum ofV(.).

3. ESCAPE FROM UNSTABLE EQUILIBRIUM POINTS

The first results on this problem were obtained for a bounded macro-
scopic volume, i. e., when we change TL to Zg = Z/[~-1 L], where 1 ~ L  + CIJ
is fixed, and consider the process on the torus, so that ( 1.1 ) becomes an
équation with ~e[0, L] and periodic boundary conditions. ln this case, the
spatial structure will "disappear", and the model describes the escape for
a system with one degree of freedom; the problem becomes simpler, but
still meaningful and non-trivial. In Theorems (3 . 1 ) and (3 . 2) below we
let v~ be the Bernoulli measure on X,= { -1, + 1 with v~(7(~))=~
for ail x.

NOTATION. 2014 ~ will dénote the law of 6E ( . , t).

THEOREM (3 . 1 ). - Under the above conditions, if we consider the model
of Example 1, and let ~0= ~0, then, as ~ ~ 0:

and

where are probabilities on [20141, 1], absolutely continuous with res-
pect to Lebesgue measure, and as t ~ +~, they converge weakly to
(§~+5_~)/2.
Remark. - In the above theorem we in fact have that the expectation

of the product of a fixed number of spins converges to the proper limit
uniformly on their localization.

It is quite reasonable to expect the magnetization becoming finite ( ~ 0)
in the time scale due to the linear instability of m --_ 0 in (1.1), and
due to the initial fluctuations. Nevertheless, the interesting point it that

despite of being produced by stochastic fluctuations the transition happens
in a deterministic time (in the scale precisely 1 /2 a. This happens
due to a very spécial adjustement between the magnitude of stochastic
fluctuations and the deterministic part. If we modify the potential in a
neighbourhood of the origin, this will not happen anymore. For this, let
us recall the following.

Annales de l’Institut Henri Poinearé - Physique théorique
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THEOREM (3.2) [Calderoni, Pellegrinotti, Presutti, Vares (1989)]. -
Under the above conditions, = Example 2. Then, as E ~ 0:

where ~(ï)=P(S&#x3E;T), S being the explosion time of the diffusion
with Zo = 0 and Wt a standard Brownian motion (i. e.

|Zt1 == + 00 }).
So, in this case the behaviour is characterized by what can be called

"transient bimodality". In this situation the time of escape from m - 0 is
a stochastic variable. This is expected for any higher degree of degeneracy
at zéro, and even for "flat" potentials. But, as one can expect it becomes
"infinitely" complicated to do this for particle systems. In Vares ( 1990)
this was done for a one-dimensional diffusion obtained by the addition of
a small white noise to a deterministic system.
We refer to Calderoni, Pellegrinotti, Presutti, and Vares ( 1989) for a

proof of Theorem (3.2). There the reader will also find a more detailed
discussion of the physical motivations, as well as more références.

Concerning Theorem (3 .1 ), it has been presented firstly in De Masi,
Presutti and Vares ( 1986). A gap in their proof has been corrected in De
Masi, Pellegrinotti, Presutti and Vares ( 1990) where an unbounded volume
is considered (see § 4). For the bounded volume case a corrected proof
can be found in De Masi and Presutti ( 1989).
Going back to Theorem (2.2) it is very natural to ask about the

behaviour of the fluctuations around the deterministic limit in (2. 5). This
has been studied by De Masi, Ferrari and Lebowitz (1986). Defining the
fluctuation field through

where cp is a test function, they prove that, as 8-~0, the processes YE
converge in law to a Generalized Ornstein-Uhlenbeck process. Examining
the covariance function of this limiting process it may be convenient to
write it as sum of two terms: a "regular" part, which in accordance with
the Fluctuation-dissipation theorem solves a linearized version of ( 1. 1 ),
and a "singular" part. Thèse correspond to the two noise processes in
the generalized Ornstein-Uhlenbeck process: a "white noise" term and a
"derivative of white noise" term. In particular we observe in Example 1

that starting from vt the covariance of the limiting fluctuation field

diverges exponentially as ~-~ +00, which in some sensé "suggests" the
escape in the logarithmic time scale. Of course this is just "informal" since
the above limit of the fluctuation field is taken after fixing a time interval
[0, T] and letting s -~ 0.

Vol. 55, n° 2-1991.
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On the other side it is interesting to comment that the behaviour found
in Theorem (2.3) is exactly analogous to that we would observe for a
process uE (., t) obtained through a stochastic pertubation of équation
( 1.1 ) by adding a small noise /8a, where a is a white noise in space and
time (and we take a fixed volume [0, L] for the r variable with proper
boundary conditions).

4. UNBOUNDED VOLUME

We now consider the model described in Example 1 of section 2, but
on a larger spatial domaine One would like to consider the whole ~,
but for technical reasons, the results so far refer only to a microscopic
domain of size +1], hereafter denoted by the integers Z
module lE. This corresponds to a macroscopic domain of size 
The physical picture we have when studying our system is that of "phase

séparation phenomena". Assume that we have a spin system at high
température and with 0 magnetization. At such a température this magnet-
ization value will be stable, but imagine the température is very fastly
reduced below the critical one and that in this new situation the stable

phases have magnetization ±m*. The évolution of the system will then
de scribe phase séparation phenomena; phases segregate, and clusters of
each phase will appear in the space. The phase boundaries i. e. the transi-

tion régions from one phase to the other will then evolve in some complex
space of patterns. There are several phenomenological équations which
have been used to de scribe thèse phenomena, as for instance the Cahn-
Hillard équations. However, also stochastic versions of our reaction-

diffusion équation, as that mentioned earlier, are often considered as good
models for thèse phenomena. Evidently, if the space régions where the
phenomenon occurs are too small, as in the case considered before, the
whole spatial structure is lost. Hence, the interest for considering larger
sizes.

With this in mind we have enlarged the space to ?LE and consider the
interaction as given in Example 1. The difficulty is not just that the

problem becomes really infinite-dimensional, but as the reader may

imagine we must have a good control on the influence of the régions
where the magnetization is small ("phase boundaries"). As in the other
cases the proof of the theorem below relies on (i ) sufficient sharp estimâtes
of corrélation functions and (ii) séparation of several time scales. The

result we have so far is the following.

Pnincaré - Physique théorique
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THEOREM (4. 1) [De Masi, Pellegrinotti, Presutti, Vares (1990)]. - Under
the above conditions, if Jlt = vô then :

where and X ( . ) is a Gaussian process with
È X (r) = 0, È (X (r) X (r’)) = exp ( - a (r - r’)2/2).

( 1 ) The reader will notice at once that now the escape
does not happen at time T=l/2a in the scale but "just after".
(2) According to (b) of Theorem (4 . 1 ) at time In 8 1/2 a + |ln E 11/3 we have
clusters whose size is of the order 11/2. We conjecture
that this picture is still true at later times as with l/2(xT, but we
don’t know how to prove this. Larger clusters should be formed
at longer times. Of course, there is a ail séries of interesting questions
connected to further évolution which involves multi-scale phenomena until
at very long times a new quite différent phenomenon becomes important;
namely, the appearance of the différent phase inside the région where the
other one is présent, also called "tunneling events". For its rigourous
analysis it is necessary to develop more deeply the techniques on large
déviations. In the setup of stochastic partial differential équations Faris
and J. Lasinio (1982) have studied thèse problems. The results have then
been extended by Cassandro, Olivieri and Picco (1986). We refer also to
Brassesco ( 1989), and Martinelli, Olivieri and Scoppola ( 1989) for further
results, and the connection with the so-called "pathwise approach to

metastability", introduced by Cassandro, Galves, Olivieri, and Vares

(1984).

5. BASIC IDEA OF THE PROOFS

In what follows we first briefly discuss the basic ideas behind the proofs
in the quadratic case, so that we can understand the origin of the Gaussian
process in (b) of Theorem (4 . 1 ). For simplicity, let us start recalling the
basic scheme of the proof in the bounded volume case. The known result
on the magnetization fluctuation field tells us that under P~ and for fixed

Vol. 55, n° 2-1991.
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t, the random variables describing the average magnetization

should be approximately (8&#x3E;0, but small ) normal with average 0 and
standard déviation c where c is some constant. (Precisely:

The proof of Theorem (3 . 1 ) involves an analysis of two différent stages:
in the first we study how m~(.) changes from typical values of order

JE to order Ea, where 0  a  1 /2 and prove that the above gaussian
approximation still holds. More precisely, if 003C41/203B1 and if we let

then, after a careful analysis of the corrélation functions (cf [8], [9]) we
are able to prove that ail the moments of Z~ converge to those of a normal
random variable with average 0 and variance c2. The true reason is that
in this stage (from £1/2 to 8" with 0~1/2) ~(.) evolves essentially as
a linear stochastic differential équations, obtained by the addition of a

white noise ( /8w) to the linearized "macroscopic équation" 
But in fact, the noise can be switched off almost instantaneously
(in In 8 ~ scale), because its effect becomes negligible. The second stage
involves the transition from 8" with 0  a  1 /2 to finite values, and we
prove this is essentially deterministic according to the macroscopic equa-
tion 

The reader is probably wondering where does the space variable enters,
since clearly mE ( . ) is not a Markov process and does not obey a closed
stochastic differential équation. Yes! But this enters only in the very
beginning, i. e. in time intervals [0, tE] where At the second

stage, that is, after time ’t In ~1 with ’t &#x3E; 0 the configurations become
sufficiently flat so that the spatial structure is lost, due to the bounded
volume assumption. To make this more précise, it ammounts also to look
at

for with |ln~|, proving it behaves as purely noise, and then
to look at the previously defined process Z~03C4. When ’tE[ ’to, ’t 1] with

0Toïil/2a, converges to zéro in probability. A "28-argu-
ment" is then needed - in the proper order - to conclude the correct

approximation for Z~.
This last discussion has been so presented because this is, somehow, the

intuitive reasoning, but mainly because we can really extend it - after
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inserting the spatial dependence - to treat the unbounded volume. As

already mentioned the proof for the Gaussian approximation of

Z~(0Tl/2a) in the bounded volume case is more direct. We refer to
[9] for a complète proof.
As for Theorem (4 .1 ), an analogous procédure has to be followed. Now

there is a spatial structure and instead of the previous Z~ we are led to
consider the field

where =~/|ln~|1/2, and cp is a test function. Note that -1 is the typical
size of the clusters in Theorem (4 .1 ) and we prove that for 0T 1/2 ri.
this is the length on which we have "flatness". Moreover, a simple
computation with the pair corrélation functions tells us that at time

/2 a the typical local magnetization on the scale E - 1 is still of order

|ln ~|-1/4. So, up to this time we may use the linearized stochastic équation
(analogous to the previous discussion) and at the last and final stage

E /2 a ~ ~ In E /2 a + In 8 11/3) the full non linear macroscopic evolu-
tion, given by ( 1.1 ), comes in, with négligeable noise. This proof of
Theorem (4 . 1 ) has been provided by De Masi, Pellegrinotti, Presutti and
Vares ( 1990).

Finally we briefly discuss the basic scheme of the proof of Theorem
(3.2). It again strongly relies on the so-called "v-function" technique,
which hère consists in obtaining estimâtes for some truncated corrélation
functions by exploiting the self-duality (cf [ 13]) of the Kawaski dynamics.

[9] for an exposition of this.) The result is now qualitatively différent
from the quadratic case: the escape time is random, that is, we may always
see Va with positive probability, and this is the reason for the name

bimodality. Concerning the proof, there is an obvious différence : since the
linear term in ( 1.1 ) vanishes we cannot use Gaussian approximations until
the magnetizations is "almost" finite. The proof involves a séparation of
several scales in order to understand how typical values of mE ( . ) change
from JE to finite values. The first, and "decisive" step is when ~(.)
changes from typical values of order fi (finite time) to order El/4-Õ where
8 is positive but arbitrarily small. This is where the really stochastic event
is contained. Afterwards it is an approximately deterministic évolution
and it takes a much shorter time (negligible in scale). For a
précise statement of this we refer to Theorem (3 .1 ) in Calderoni 
( 1989). But to get the flavour of the proof, and why one should expect
the validity of Theorem (3 . 2), we first recall that the finite time fluctuation
field E - 1/2 mE (t) has a distribution which converges, as 8 ~ 0, to a Gaussian
with average 0 and variance ct (for suitable c). Thus we are led to make a
comparison between 111:E ( .) which, as before, is not a Markov process,

Vol. 55, n° 2-1991.
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with the one dimensional diffusions mf. ( . ), solution of

where W ( . ) is a Brownian motion on [RL The process defined by

is easily seen to converge in law to the diffusion Z ( . ) of Theorem (3 . 2)
and, moreover, if we take 8&#x3E;0 small and:

then it can be proven that ~ converges in law to the random time S in
Theorem (3 . 2). Well, we must prove that for 5&#x3E;0 sufficiently small we
can really treat the process

as the above ZE’ up to SE’ and this is non trivial. Again, if we look at ~
( properly rescaled) we easily see that the further évolution up to the time
it becomes finite is essentially deterministic and takes a time  8"~~. As
one can imagine, the procédure for the process which really interests us,
that is m£ ( . ), is much more involved and it has to be done in several

steps, to take care of the Glauber interactions and the non-Markovian
character in each of them. See [4] for the détails.
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