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Elementary acceleration and multisummability I (1)

Jean MARTINET Jean-Pierre RAMIS

I.R.M.A., 7, rue Rene-Descartes, 67084 Strasbourg Cedex, France.

Lorsqu’il suit Ie bon rayon vers la peripherie, Ie promeneur peut decouvrir...
André Hardellet, « Peripherie »

Ann. Henri Poincaré,

Vol. 54, n° 4, 1991 Physique theorique

This paper is extracted from the contents of a forthcoming book by the
same authors [M R 3]. Paragraphs 1 to 3 joined to chapter 2 of [M R 2]
form a more or less self-contained set. We recall basic definitions about

(Borel [Bo 1], [Bo 2]), and its natural generalization k-
summability [Le], [Ne], Ramis [Ra 1]). We describe
the "elementary acceleration" introduced by Ecalle [E4] and different

summability operators related to it. If one compares to [E 4] our description
is slightly modified in order to fit with our "geometric" interpretations
[MR 2], [MR 3]. In paragraph 4 as an example of application we give a
"natural", simple and general, definition of Stokes multipliers (2), using a
result (3) of Ramis [Ra 3] (cf also [Ra 2]), and derive a new proof of a
theorem of Ramis ([Ra 4], [Ra 5]) about the computation of the differential
Galois group of a linear differential equation. As a byproduct we get (4)

e) Part I of this paper contains paragraphs 1 to 4 (a preliminary manuscript version has
been distributed during a Luminy Conference, in september 1989); paragraphs 5 and 6 will
appear in Elementary acceleration and multisummability 77. The second author has exposed
part II at a R.C.P. 25 meeting dedicated to R. Thom (Strasbourg, 1989). See also [LR3].

(2) Compare with the program of [Me]. Relations between our description of Stokes
phenomenon and the approach [Ma 3], [Ma 4], [Si], [De 3], [1], [BJL], [BY], will
be explained in 4.
e) The main steps of one proof of this result, using Gevrey asymptotic expansions

technics, are detailed in paragraph 5. Cf. also [LR 1] for another approach.
(4) Multisummability (in its analytical formulation or its "wild-Cauchy" formulation) is

not necessary in order to obtain this description (which can be derived from Malgrange-
Sibuya results using algebraic tools from [LR 1]) but it allows an interesting presentation,
fundamental for non-linear extensions.
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332 J. MARTINET AND J.-P. RAMIS

also a description of the meromorphic classification of meromorphic linear
differential equations on a Riemann surface by the finite dimensional linear
representations of a "wild fundamental group". (This is a natural generaliz-
ation of the Riemann-Hilbert correspondence.) Paragraph 6 is very sketchy;
we describe "infinitesimal neighbourhoods" of analytic geometry (following
an idea of Deligne [De 4]) and sheaves of "analytic functions" (weakly
analytic and wild analytic functions) on these neighbourhoods. Afterwards
we are able to give "geometric interpretations" of elementary acceleration,
summability and Stokes phenomena (5) and to get various generalizations
(the sum of a formal power series is now a wild analytic function) import-
ant for extensions to non-linear situations.

1. BOREL SUMMABILITY,
BOREL AND LAPLACE TRANSFORMS

We denote by Bd the Borel transform in the direction d.

This formula makes sense with "good" hypothesis on f[MR2]. We
will omit d and write B f if Bd f is independent of d (up to analytic
continuation).

If cp is a convergent power series ((peC{~}), we will denote by
p (ç) = S p (ç) its sum on a "small disc" centered at zero.

If f is an analytic function in a "small disc" centered at zero, or, more
generally, in a "small sector" bisected by the direction d, we will denote
by .d f its analytic continuation (if it exists) along d. In the following, when
we write .d f, we will always suppose that .d f is defined on a sector bisected
by d with infinity radius.

e) Partially based upon a cohomological version of Phragmen-Lindelof theorem. (Similar
and more precise results have been obtained by Malgrange [Ma 5], using Fourier transform;
cf. also Il’Yashenko’s Luminy Conference lectures.) The first cohomological version of
Phragmen-Lindelof theorem is due to Lin [Li].

Annales de l’Institut Poincaré - Physique theorique



333ELEMENTARY ACCELERATION AND MULTISUMMABILITY

Operators Sand 8d are clearly injective homomorphisms of differential
algebras (laws being addition and multiplication, and derivation being

or ç2 or of "convolution (6) differential algebras" (laws being
addition and convolution, and derivation being multiplication by ç).

If ~, &#x3E; 0 and f (x) = xÂ, we get
= Bf(ç)=çÂ-ljr(Â); in particular, for 

If we introduce

B f = B,, _ /Y&#x26;)~; then 1, we get as a natural generalization:

We can now define a Borel transform" B:

For ~C [[x]] (x) = 03A3anxn
n~i

This definition can be extended, replacing N as a set of indices for the
expansion A b a more general semi-group (contained in R): A* = A- { 0 },

We will also use later formal expansions indexed by 
and the corresponding generalized asymptotic expansions (simply named

"asymptotic expansions" in the following). (Regular parts of such expan-
sions will be called "polynomials".)

LEMMA 1. - We have an isomorphism of differential algebras:

Differential algebra (7) C { x } B 
Convolution differential algebra

of convergent power series -~ of entire functions
without constant term. 

Let f be holomorphic with exponential growth of order ~ 1 in a "small"
sector bisected by the direction d (or, more generally, infinitely differenti-
able on d (8) with an exponential growth of order ~ 1 ). We can define its

(6) The convolution law is defined by q&#x3E; * 1B1 = cp (t) ~r (~ - t) dt in the analytic

case and is deduced, in the formal case, from the identities

1 /r (m)) * (çn-l 1 /r M) = + M).
(’) The differential is 
(8) A function "infinitely differentiable on d" is infinitely differentiable on the right at

zero, by convention.

Vol. 54, n° 4-1991.



334 J. MARTINET AND J.-P. RAMIS

Laplace transform 

If f~C { x } (resp. f entire of order ~ 1 ):

With "good hypothesis":

Example. - For f(ç)=çJ1(Jl&#x3E; -1 ), we have L 1 ) x~‘ + 1.
Let  be a formal power series, of Gevrey order (9) 1 (./6C[[.x]]i). Then

If f= S f can be analytically extended along some direction d in a fonction
which is analytic with exponential growth of order ~ 1 on a small

sector bisected by d, we can define

By definition fd is the" Borel sum" of f in the direction d ( f is Borel-
summable in the direction d).

Clearly SB=B and fd (x) = S f (x). So Sd=Ld2022dS extends
the operator S.

LEMMA 2. ’- The operator Sd is an injective morphism of differential
algebras:

Differential algebra (1°) of Borel Sd Differential algebra (11) ofgerms of
summable series -+ holomorphic functions
in the direction d. on sectors bisected by d.

So Borel-summability is "natural" (i. e. "Galois").
Let R &#x3E; 0 and d a direction.

Let Arg t - Arg d |03C0 2 and Re(eiArgd/t) &#x3E; 
We denote by YR the boundary of DR; d oriented in the positive sense.

We write

(9) For definitions and notations see [MR 1].
The differential is 

(11) Idem.

de Poincaré - Physique theorique



335ELEMENTARY ACCELERATION AND MULTISUMMABILITY

Later we will need the "well known"

LEMMA 3. - The map

Convolution differential algebra Differential algebra (12) of functions
of functions infinitely L analytic on open discs DR; a
differentiable on d -+ (R &#x3E; 0 arbitrary), with an

with an exponential growth asymptotic expansion (13) (without
of order ~ 1 at infinity. constant term) at zero.

is an isomorphism of differential algrebras.
Let f be an analytic function on the open Borel-disc DR; d with an

asymptotic expansion (without constant term) at zero. Then, using Fubini’s
theorem and the formula

Let f be infinitely differentiable on d with an exponential growth of order
~ 1 at infinity. If L f = 0, then f = 0 (using inversion of Fourier 
Now, from L (BL f) = LB (L f) = L f, we deduce BL f = f. That ends the

proof of lemma 3.

2. k-SUMMABILITY, k-BOREL AND k-LAPLACE TRANSFORMS

Using Bd, Ld, .d, S and ramification operators pk (k &#x3E; 0) it is easy to build
new operators Bk; d and (and the formal operator Bk corresponding
to Bk; d):
We will use the notation (~&#x3E;0): (x is varying onto the

Riemann surface of Logarithm); 
If dk corresponds to d by the ramification pk, we will set:

and

We have (in general we will simplify our notations: fk = f, Çk = ç):

(12) Idem.
e 3) Uniform on closed subdiscs DR,; d (R’  R).

Vol. 54, n° 4-1991.



336 J. MARTINET AND J.-P. RAMIS

The operator L can be applied to functions holomorphic with an
exponential growth of order ~ k on a small sector bisected by d and an
asymptotic expansion at the origin (indexed by the set 1- k + N). These
functions form a differential algebra:
The k-convolution *k is defined by:

Operations are: +, *k, and derivation (~k will be

explicitely described later; al is multiplication by 2014~).

LEMMA 4. - We have an isomorphism of differential algebras:

Bk 
of convergent power series -+ ~ 1- k ~ entire functions

vanishing at 0. of order ~A;}.
We will use the following notations:

is the differential algebra of formal power series of Gevrey
order (Gevrey level k) (14);
C the differential algebra of formal power series k-summable

in the direction d (definition is given just below);
C { x ~ 1 ~k is the differential algebra of k-summable series (that is of

formal power series k-summable in every direction but perhaps a finite
number).

Then If fk=Sfk can be analytically
extended along some direction d in a function analytic with
exponential growth of order ~ k on a small sector bisected by d, we can
set:

By definition fk;d is the "k-sum" of  in the direction d ( is k-summable
in the direction d). It is clear that sk; d = Lk~ a 8d S Bk extends the operator S
(defined for ÎE C { x ~). 

" 

.

LEMMA 5. - The operator S’k; d is an injective morphism of differential
algebras:

Differential algebra of Sk; d Differential algebra of germs of
k-summable series -~ holomorphic functions
in the direction d. on sectors bisected by d.

So k-:-summability is "natural" (i. e. "Galois").
We have built a one parameter family (kER, k &#x3E; o) of summation

processes. We will now compare these processes for different values of the

,

(14) Notations of [MR 2]. (Be careful, these notations differ from those of [Ra 1], [Ra 2],
[Ra 7].)

Annales de l’Institut Henri Poincare - Physique theorique



337ELEMENTARY ACCELERATION AND MULTISUMMABILITY

parameter k &#x3E; 0: if a formal power series is summable by two processes
then the two sums are equal, but this is quite exceptional because kl-
summability and k2-summability for requires in some sense very
different conditions. More precisely:

PROPOSITION 1. - Let k, k’&#x3E;O with kk’ and f E C [[x]] k-summable and
k’-summable in the direction d. Then:

(i ) sk; d f= sk-; d .f
(ii) The power series f is k’-summable in every direction d’ with

arg d’ E ]arg d - 03C0/2 k + 03C0/2 k’, arg d + 03C0/2 k - 03C0/2 k’[ and the sums Sk,; d f glue
together by analytic continuation;

(iii) The power series f is k"-summable in every direction d" with

arg d" E ]arg d - 03C0/2 k + 03C0/2 k", arg d + 03C0/2 k - 03C0/2 k"[,for k  k"  k’.

Moreover sk..; d" ~_ a ~~ f.
PROPOSITION 2. - Let k, k’&#x3E;O with kk’ and If f is

k-summable, then f is a convergent power series

This result, announced in [Ra 2], is proved in [Ra 5] (for a particular
case and example, see [RS 1]).
From such a result it is easy to understand that summation operators

(with d and k&#x3E;0), if very useful, are not sufficient if one wants to deal
with quite simple situations as generic" linear algebraic differential
equations:
A formal power series solution of a "generic" linear algebraic equation

is k-summable for some k &#x3E; 0 [Ra 2], [MR 2], [MR 3]. Let 
be divergent power series, where 1 is k1-summable and f2 
(kl ~ k2). Then/==/i+/2 is divergent (proposition 2) and there exists no
k &#x3E; 0 such that f is (proposition 1 and 2). If we suppose
moreover that there exists such that 

D2 f2 = 0, then there exists D E C [x] such that D /= 0 (for an explicit
exemple see [RS 1]).

Any formal power series solution of any analytic linear differential equa-
tion can be summed using a "blend" of a finite set of processes of

k-summability (cf 4, 6, infra). The corresponding values for k are computa-
ble using a Newton polygon [Ra 1], [Ra 7]. We get in this way a process
of summability (consisting in replacing each formal power series in the
blend by its choosing the "good" k). This method gives an c
morphism of differential algebras but is purely theoretical (i. e. not explicit).
This motivates the introduction of a more general tool, that is multisumma-
bility. Multisummability [due to EcaUe] (15) is effective and a "blend" of

e 5) It is a particular case of his concept of "accelerosummability".

Vol. 54, n° 4-1991.



338 J. MARTINET AND J.-P. RAMIS

k-summable power series is multisummable. Here we have slightly modified
presentation in order to be as near as possible of our geometric

description of multisummability (16) (cf. 6, infra).

3. ACCELERATION AND MULTISUMMABILITY

We will introduce here only a very elementary acceleration (for a more
general theory cf. Ecalle [E4]). It is sufficient for our applications (and easy
to generalize along the same lines [MR 3]). Following Ecalle, accelerating
operators are first defined using Laplace, Borel and ramification operators;
afterwards we get an equivalent definition using an integral formula. The
important fact is that this integral formula lead to a natural extension of
the domain of the corresponding operator.

Let a~ 1. Formally the operator Pcx of a-acceleration is the conjugate of
the rami. f ’ication operator p« by the Laplace transform:

The operator p« is an isomorphism of differential algebras, therefore the
operator Pa is an isomorphism of convolution differential algebras. More
precisely:

Convolution differential algebra Convolution differential algebra
of analytic functions of analytic functions on sectors
on sectors bisected 

p with bisected
by d with an exponential by d03B1 with an exponential

growth of order  1 at infinity growth of order ~ 1 at infinity
and an asymptotic and an "asymptotic
expansion at zero. expansion" at zero (1 7).

is an isomorphism.
As the operator p« moves the direction d. It is useful to introduce

operators of "normalized acceleration" not moving d:

Then A« is the commutator of B = L -1 and = P« 1.

(16) As analytic continuation along rays starting from the origin across the "analytic halo".
(!’) This asymptotic expansion is in powers 

Annales de l’Institut Henri Poincaré - Physique theorique



339ELEMENTARY ACCELERATION AND MULTISUMMABILITY

The operator A0152 gives an isomorphism of "convolution" differential
algebras:

, a-convolution differential algebra
Convention differential of analytic functions,

algebra of analytic functions, on sectors, with
on sectors bisected A 

’ 

(X 2014 1
by d with an exponential -~ opening &#x3E; = ~ ,

growth of order __ 1 .. 

at infinity and bisected by d with an exponential
an asymptotic expansion at zero. growth of order ~ a at infinity and

an "asymptotic expansion" at zero.

For the proof of this statement see below the more general case of k.

If necessary we will denote more precisely the operator A0152 by A0152; d.
The operator A0152 is clearly related to We need now to introduce

similar operators for arbitrary levels A;&#x3E;0. Let k’ &#x3E; k, a = k’/k, we will
denote:

The operator gives an isomorphism of "convolution" differential
algebras

k’-convolution differential

k-convolution differential algebra of analytic functions,
algebra of analytic functions on sectors with

on sectors bisected ~ ~ ~~ = k’ - k
b y d with an ex p onential ‘~k’, ~ k 

opening &#x3E; / = ~ 
kk

growth of order ~ ~ bisected by d with
at infinity and an exponential growth

an "asymptotic expansion" of order ~ k’ at infinity and
at zero an "asymptotic expansion"

at zero.

If necessary we will denote more precisely the operator by j.

We have:

In order to prove that is an isomorphism it suffices to remark that
Ld is an isomorphism between the convolution differential algebra of
analytic functions on sectors bissected by d with an exponential growth
of order __ 1 at infinity and an asymptotic expansion at zero, and the
differential algebra of functions analytic on sectors with opening &#x3E;03C0

Vol. 54, n° 4-1991.



340 J. MARTINET AND J.-P. RAMIS

bisected by d, and with an asymptotic expansion (without constant term)
at zero.

It is natural to set:

We have

Let A~&#x3E;~&#x3E;A:&#x3E;0. When the formula makes sense we get:

We will use later the above formula to extend the operator 
The first step is to extend the domain of the operator 

and the second to replace in the formula by 
~; j .~ 

= 

More generally, let ~i&#x3E;~&#x3E;...&#x3E;~.&#x3E;0. When the formula makes
sense, we get:

With this formula we will later extend the operator Ak1, kr, using exten-
sions of the operators

and

Let A ;’&#x3E;~ when the formula make sense we get:

So we can extend the operator Lk using Lk, 8d k_ Then

Then it is natural to extend the domain C ~ x } of the summation operator
S using the new summation operator (along the direction J):

(In this formula we have written ki + 1 ~ d for an extension of 
that we will define precisely below.)
The domain of definition of the operator k; d is the set

{ analytic functions on sectors bisected by d with an exponential growth
of order ~ at infinity and an asymptotic expansion at zero }.

Annales de l’Institut Henri Poincaré - Physique theorique



341ELEMENTARY ACCELERATION AND MULTISUMMABILITY

We will now see that there exists a natural extension of this operator to
the larger domain

analytic functions on sectors bisected by J with an exponential growth
of order ~ 03BA=kk’ at infinity and an "asymptotic expansion" at zero };- Y Y p p 

J

It is clearly sufficient to understand how to extend the operator
1) defined on the domain

{ analytic functions on sectors bisected by J with an exponential growth
of order ~ 1 at infinity and an "asymptotic expansion" at zero}

to the larger domain

{ analytic functions on sectors bisected by d with an exponential growth
of order ~ 03B2 = 03B1 03B1-1 at infinity and an "asymptotic expansion" at zero },a-1 . 

J

This is done using an integral formula for discovered by 
We introduce a family of 1), the "accelerating

the path / being a Hankel contour:

It is easy to see that Ca is an entire function and to compute its analytic
expansion at the origin:

Vol. 54, n° 4-1991.



342 J. MARTINET AND J.-P. RAMIS

Example:

Functions C(X are resurgent at oo [E 4), [MA], [C]. If a E Q these functions
are related to M ejer G-functions and solutions of linear differential equations
(cf below "Formulae about accelerating functions").

PROPOSITION 3. - Let o 1. Pcx Ld , 
and ’ (p be an ana-

lytic function on a ’ sector bisected by d and with an asymptotic expansion at
zero , more generally an infinitely differentiable , with an

exponential growth 1 at Then

DEFINITION 1. - Let (X&#x3E;1 and (p an differentiable function

on (19) a direction J. integral Jd C~(~/Q(p(~)~ exists, we will say
that (p is the direction d.
The operator pa) -1 pa Ld is defined on the domain

{analytic functions on sectors bisected by J with an exponential growth
of order ~ 1 at infinity and an asymptotic expansion at the origin},

but we have P&#x3E;1 and the operator Jd C~(~)(p(~)~ is defined on
the larger domain

{analytic functions on sectors bisected by d with an exponential growth

(1g) More precisely, using saddlepoint method, it is possible to get an asymptotic expansion
for the function Ca on the sector V03B8 (and even in | Argt|03C0/2), cf. [HL], p. 45, [Bak], p. 84,
[MR 3].

(19) The function (p is defined on ~-{0}. We do not suppose it differentiable at the
origin.

Annales de l’Institut Henri Poincaré - Physique théorique



343ELEMENTARY ACCELERATION AND MULTISUMMABILITY

of order~03B2 at infinity and an asymptotic expansion at the origin }.
(More generally a function infinitely differentiable on d with an exponen-

tial growth of order ~03B2 at infinity is 
Then we get from proposition 3 the searched extension for the operator

Aa; d. (In the following we will still denote this extension by a.)
Now using

t/0

sector bisected by d, with an exponential growth of order ~ 1 at infinity,
it is possible to extend the operator to the larger domain

analytic functions on sectors bisected by d with an exponential growth

at infinity and an asymptotic expansion at the origin.

We can definie now the notion of (kl, k2, ... , kr)-summability in a
direction d and the corresponding summability operator Sk1, k2, ... , kr; d. (In
the following definition operators Aki, ki+ 1; d must be interpreted in the
extended sense, that is as integral operators.)

DEFINITION 2. - Let kl &#x3E; k2 &#x3E; ... &#x3E; kr &#x3E; 0 and a direction d. A formal
power series f E C [[x]] is called (kl, k2, ... , kr)-summable in the direction
d if the following conditions are satisfied:

(~) .~ E C ~[x]] 1 /k,.’ ...,

( 1 ) S kr can be analytically extended along d to a function 
analytic on a sector bisected by d with an exponential growth of order

Vol. 54, n° 4-1991.



344 J. MARTINET AND J.-P. RAMIS

If a formal power serie /eC[M] is k2, ..., in the
direction d, then:

defined and analytic in a sector
bisected by d.
We will set

If/eC[M] is k2, ..., in the direction d, we will
write it

If f E C [[x]] is k2, ..., in all directions, but perhaps
a finite number, we will write it

then

PROPOSITION 4. - Let k’ &#x3E; k &#x3E; 0. The operator Ak,, k interpreted in the
extended sense (that is as an integral operator) gives an injective morphism
of "convolution " differential algebras:

k-convolution differential k’-convolution differential
algebra of analytic functions algebra of analytic functions

on sectors bisected by d 
on sectors with opening

with an exponential , growth of Ak’ &#x3E;03C0/03BA=03C0k’-k kk’
order ~ K = k kk . - k at infinity, and arbitrary radius
and with an "asymptotic bisected by d, .

expansion" at zero. and with an "asymptotic
expansion " at zero.

(20) This was proved in [Ra 5] using a different method, answering a question of [Ra 2].

Annales de l’Institut Henri Poincare - Physique theorique



345ELEMENTARY ACCELERATION AND MULTISUMMABILITY

Let f and g be infinitely differentiable (as functions of a real variable)
on d with complex values. If f and g have a growth of order ~k (in
particular iff and g have a compact support) we have

We get the same formula when f and g have only a groth ~ K by a
density argument. Then is a morphism of "convolution differential
algebras" .
The proof of injectivity is a little more subtle. We need a little bit of

"deceleration theory" [E 4]:
We have (definition)

and

There exists integral formulae for the operators of "normalized decelera-
tion" D0152, Dk,, k. To get them we need a new family of "special functions"
C0152 (a &#x3E; 1), the" decelerating functions":

It is easy to see 
" that ’ is an entire function and 0 to compute " its analytic

expansion at zero:

Example:

"error functions" (21):

Functions eel are resurgent at oo [E 4], [Ma 8], [C]. If a E Q these functions
are related to M ejer G-functions and solutions of linear differential equations
(cf. below "Formulae about decelerating functions").

(21) The function C3 is simply related to Airy function Ai and to Bessel function K1/3
(cf [Bak], p. 98).

Vol. 54, n 4-1991.



346 J. MARTINET AND J.-P. RAMIS

Ecalle’s functions C" are particular cases (22) of Faxen’s integrals:

There is in fact a very interesting family of functions:

and Y:f: a convenient path.
There are many occurences of particular cases of these functions in the

literature: the main sources are arithmetic (in connection with exponential
sums: cf. the Hardy-Littlewood’s paper on Waring’s problem [HL] (23),
and more recently works of N. Katz [Ka 4], ...), physic (Airy,

(24), ...), analysis (study of accelerating and decelerating
functions, study of Laplace transform: cf. [Ma 5]), and probabilities (up
to variable and function rescalings, stable densities are real parts of acceler-
ating functions, cf. [Fe], p. 548). If aeQ the function Fp;+(a; P;~) is
solution of a differential equation (obtained by a method similar to

the derivation of Gauss-Manin connection). These functions (25) would
certainly deserve a thoroughful study.

This Lemma is proved using saddlepoint method.

Let W be analytic on the open - Borel disc

(22) This was mentionned to us by A. 
(23) Cf also Bakhoom [Bak].
(24) (y: also [AS], p. 1002.
(25) And the similar functions obtained when we replace the Laplace transform by the

transform in the definition (cf functions Fp studied in [Du]).
(26) More precisely it is possible, using saddlepoint method, to get an asymptotic expansion

for the function 0" on the domain Dp R, (cf [MR 3]).

Annales de l’Institut Henri Poincaré - Physique théorique



347ELEMENTARY ACCELERATION AND MULTISUMMABILITY

and

and , continuous on the closure , of Dp, R;d.
If we denote by . the boundary of in the positive ’ sense,

we will say that ~ is a-decelerable in the direction the integral

PROPOSITION 5. - Let a &#x3E; 1, 03B2 = . Let 03C8 be an analytic function
a-1

on a sector, with opening &#x3E; ~, bisected by d, with exponential growth of

order ~ oc at infinity and an "asymptotic expansion" at zero. Then 03C8 is a-
decelerable in the direction d and:

If the function 03C8 is analytic on a sector V with opening § &#x3E; P -, bisected o

by d, and o if B)/ is sufficiently flat at zero, that is if there 
" exists 03BB&#x3E;0 1 such

that

then it is 03B1-decelerable in the direction d and is analytic on a sector
bisected by d, with an exponential growth of order _ ~3 at infinity.

If a function Bf1 is analytic on D03B2, R; d and admits an "asymptotic expan-
sion" at zero and if there exists a "polynomial" P such 
where is 03B1-decelerable in the direction d, we will still say that Bf1 is a-

in the direction d and we will write

(where DaP is computed "formally": see formulae at the end of this

paragraph).
The operator D03B1; 03B4 = L -1 03C1-103B1 L pa is defined on the domain

anal Y tic functions on sectors with opening &#x3E; ~ bisected by d,

with an exponential growth of order ~ a at infinity

and an "asymptotic expansion" at the origin .
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The o p erator 03C8~1 2i03C0~03B3R 03C8(03B6)03B603B1C03B1(03BE/03B6)d03B6/03B62 is defined on the larger

domain

analytic functions on sectors with opening &#x3E; - with arbitrary

radius bisected by d, with an asymptotic expansion at the origin .
So, proposition 5 gives an extension for the operator D~ j.
LEMMA 9. 2014 The function C03B1 is the direction R+ and

PROPOSITION 6. - Let a &#x3E; 1, 03B2 = - .
(i) If a function 03C8 is 03B1-decelerable in the direction d, then Da 03C8 is a-

accelerable in the direction d and:

(ii) If a function cp is infinitely differentiable on d, with an exponential
growth of order ~03B2 at infinity, then Acx cp is 03B1-decelerable in the direction d
and:

The proof of (i ) is easy, using Fubini’s theorem and lemma 9.
To prove (ii ), using lemma 3, we first prove it when B)/ is infinitely

differentiable on d with an exponential growth of order  1 at infinity (in
particular when B)/ has a compact support). Then, for Bj/ with only an
exponential growth of we conclude by a density argument.
From proposition 5 (ii ) we deduce the injectivity of A03B1;d. The injectivity

follows. That ends the proof of proposition 6.
The following result is essential:

THEOREM 1. - Let kl &#x3E; k2 &#x3E; ... &#x3E;~&#x3E;0, a given direction. Then
the summation operator

is an injective morphism of differential algebras.
Operators Sand .d are isomorphisms of differential algebras and of k-

convolution differential algebras. Operator Bkr is an isomorphism of differ-
ential algebras between the differential algebra (x C [[x]], x2 and the

kr-convention differential algebra (~1-kr C [[x]], Operator Lkl is an

isomorphism between the convolution differential algebra of analytic
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functions on sectors bisected by d with an exponential growth of order
_ kl at infinity and an "asymptotic expansion at zero", and the differential
algebra of analytic functions on sectors with opening &#x3E;03C0/k1, bisected by
d, and with an "asymptotic expansion" (without constant term) at zero.
We can now end the proof of theorem 1, using proposition 4 with k’ = 

..., 2).
In fact it follows from this proof that the image of the operator

..., kr; d is contained in the differential algebra of analytic functions
on sectors with opening&#x3E;03C0/k1, bisected by d, and with an asymptotic
expansion (without constant term) at zero.

It is possible to extend proposition 2:

The situation is very different is k2, ..., 
in a direction d. It is easy to prove then that there exists s0, such that 
is (k’1 - E’, k2 - E’, ..., k’r’ - ~’)-summable in the direction d for every
s~e[0,8].
We identify the real analytic blow-up of the origin in the complex

plane (27) with the circle S1. Then we introduce the" analytic halo" of the
origin in the complex plane:

The complex plane with an analytic halo at zero is:

where the relation .~ corresponds to the identification of { "0" } X S1 with

(2’) If we use polar coordinates for the points of C* :

C*= { (p, 9)/ p &#x3E; 0, I I this set 
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On the set { "0" } U"]0, +~DU]0, +ooD we put the ordering rela-
tion :

Ordinary ordering relation on ]0, + 00 [ and "]0, + 00]", p &#x3E; 0 &#x3E; k, if
+ooL and kE ’10, +00]" ( "+ oo" is identified with 0). We endow

~ "0" ~ U HAo U C* with the corresponding topology (quotient of the
product topology). We will consider {"0"} x Sl as the "real blow up" of
0 in C H o (that is the set of directions starting from 0 in C Ho).
The universal covering of 1 ) is (R, 0). We will interpret

HAo=]0, + 00] x (R, 0) as the "universal covering of HAo pointed on the
direction "R +" e {"0" } x .

Let UcS1 be an open arc. Let ~&#x3E;~&#x3E;...&#x3E;~&#x3E;0. If . f E C [[x]] is
in every direction dE U, then the sums

~1.~2.....~;d glue together in a function f analytic on a "sector" with
opening equal to

If now U c ,S’1 is an open arc bisected by d, let

and

and

for the sums of  for d + E U+ and d - E U- respectively.
They are in particular defined on a common "sector" bisected by d, with

opening eq ual to 03C0/k1

~ 7

Using decelerating operators we get easily the very important:

following conditions are equivalent:

Moreover if these conditions are satisfied, then
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If the conditions of lemma 10 are not satisfied we will say that d is a

singular direction for the formal power series/B and we will write 
the "singular support" E (/) of  is clearly finite, and E (/) = 0 is equivalent

We will see below that the "jump" from

classical solutions natural differential equations.classical" Stokes phenomenon" for solutions of linear differential equations.
We will give below (cf. 6) a very natural interpretation of 

A formal power is multisummable in the direction d (that
is there exist A;i &#x3E; k2 &#x3E; ... &#x3E; kr &#x3E; 0 such that  is (A:i, k2, ... , 
in the direction d) if and only if it is "analytic" ("wild analytic") in an
"infinitesimal disc" (28) and can be "extended analytically" along d across
the "infinitesimal neighbourhood" (29) in a wild analytic function on a
sector bisected by d with a "non infinitesimal" radius ~&#x3E;0.

Then, just like one can give a direct (that is without using Borel and
Laplace transforms) definition of and MM
using Gevrey estimates [Ra 2], [MR 1], [MR 2], [MR 3], it is also possible
to give a direct (that is without any use of Ecalle’s acceleration operators)
definition of multisummability using the wild Cauchy theory recently intro-
duced by the authors [MR 3]. This "geometric" definition is easier to check
in the usual applications. Conversely the "analytic" definition gives an
"explicit" way for the computation of the sum (for instance if one has in
mind numerical computations) .

Let UcS1 be an open arc bisected by d. Let k 1 &#x3E; k2 &#x3E; k ... and

k2, ..., in every direction ~e(/-{~}.
There is a natural way to generalize the sums S i, k2, ... , kr; d f and

(d; E) defines a "path" (3°) We can now introduce " the notion of

(A:i, ~? ’ ’ ’ ? along $ the path (d; E):

(28) The corresponding punctured disc has a in the analytic halo at
zero.

(29) This infinitesimal neighborhood is the union of zero and the analytic halo at zero.
(3°) Later we will see that such a (d; E) corresponds to a wild homotopy class of paths in

the analytic halo of the origin, avoiding "singularities" off in this halo.
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exists. Then S~k1, k2, ... , kr; d f is the sum of  along the path (d; E).

THEOREM 2. - Let kl &#x3E; k2 &#x3E; ... &#x3E; kr &#x3E; o, £ _ (E1, E2, ... , Er), with
Et E {I, -1 } (i =1, ... , r). Let d be a given direction. Then the summation
operator

(kl, k2, ... , kr)-summable k2, ... , kr; d Differential algebra of germs of
along the path (d; e) ~ analytic functions on sectors
power series f E C [[xJ] bisected by d.

is an injective morphism of differential algebras.

Comparison between k2, ... , kr; d f and S’ki, k2, ... , kr~ d f for different
E, E’ will give birth to a "generalized Stokes phenomenon".
We will finish this paragraph with a small list of useful formulae:
Let k, k’, À, J.1 &#x3E; o. Then:

Formulae about accelerating and decelerating functions.
The following j results were obtained recently (January 1990) by A. 
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G is a Mejer G-function [Lu].

with p and q positive integers, (p, ~)== 1:

Accelerating functions Cq/p are solutions of the differential operators
(respectively of order -1 and q):

and

We get in particular, for q=n, /?= 1:

Decelerating functions are solutions of differential operators

We get in particular, for q=n, ~== 1:
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4. STOKES MULTIPLIERS

Let with be a germ of mero-
morphic differential operator at the origin of the complex plane ’ C.

It is well known [Ma 2] that A admits aformal undamental solution 31 :

(for some v E N*), LEEnd(n; C), HEGL(n; C [[u]] [u - lJ),
and Q a diagonal matrix with entries in invariant, up to
permutations of the diagonal entries, by the transformation corres-

ponding to u x) and satisfying L, Q] = O. (If
v =1 [L, Q]=0, and L can be supposed in Jordan form.)

If Q = Diag {q1, q2, ... , then the q2, ..., qn} is a subset
of u-1 C [u-1] which is independent of the choice of the fundamental
solution F (v is chosen minimal).
We will set f ql, q2, ~ ~ ~ , qn ~ = q (Q) = q (0); the set q (1B) is clearly

a formal invariant of A (invariant by the transformation
q (0) (u) -~ q (0) (e2 ~ n~~ u)) ~

PROPOSITION 9. - Let kl &#x3E; k2 &#x3E; ... and vEN*. Let afixed
direction. Let a2, ... , ~2..... Then the
summation operator

can be uniquely extended to a , summation 0 erator (still 

such that [a "branch" being fixed (32) :

and

This operator is an injective morphism of differential algebras.
It is easy to extend the definition of the operator kr; d

to the elements of C{x}1/k1, 1/k2, ...,1/kr;dx03B1i, Log x &#x3E; (i=1, ..., m).

(31) Cf infra for a more precise description of F when v~2 ("ramified case").
(32) Log x is "formal" in the "left expression" and is an actual function in the "right

expression".
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Then, using asymptotic expansions (the inverse of Sd, restricted to Im 5~
is the asymptotic expansion operator in the classical sense), we get

The result follows.

THEOREM 3. - Let 0 = d/dx - A, with AEEnd(n; C ~ x } [x-1]), be a
germ of meromorphic differential operator at the origin of the complex
plane C.
We denote by kl &#x3E; k2 &#x3E; ... &#x3E;kr the positive (non zero) slopes of the

Newton polygon of the (rank n2) differential operator

Let F be a formal fundamental solution of A Then there exists a , Hnatural

decomposition" (33~.

and , such that

solution 0 a ’ meromor hic di erential operator A’==~/~’-A~ with

and

then, for and every determination of Log and

uL = eL Log u). .
Fd (x) = Hd (u) u‘’ 

L eQ is an actual analytic fundamental solution of the
operator 0 on a sector bisected by d.
From this result (using proposition 9) it is easy to deduce the

THEOREM 4. - Let 0 = d/dx - A, with AEEnd (n; C ~ x ~ [x-1]), be a
germ of meromorphic differential operator at the origin of the complex
plane C. Let F be a formal fundamental solution of 0. If we denote by
C { x } [x-1]   &#x3E; the differential field generated, on C { x } [x-1], by the

(33) Unique up to "natural" analytic transformations (see [Ra 4]); in particular, the

matrices Hi are well defined up to analytic (in u) conjugation.
(34) Moreover the matrices ~ and H + 1 have a common "blockstructure" and A~ can be

reduced by a transform "Y = Exp (Q) Z" to a differential operator whose Katz’s invariant

[De 1 ] is ki + 1; Qi being a diagonal matrix whose entries are monomials in u (fixed for each

block) of degree v k~ [J], [Ra 6].
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entries of F, then, for d ~ I: (F), the map

defined by "identity" on C { x ~ [x~ 1] and F ~ F d, is an isomorphism of
differential fields.
We will first admit theorem 3, and will go back in 5 to some indications

about its proof, after some applications. It is very easy to deduce theorem 4
from theorem 3, using multisummability (other ways to do that are explai-
ned in [Ra 5], [Ra 6], and [De 4] (35) :
From theorem 3 and lemma 7 we get

THEOREM 5. - Let 0 = d/dx - A, with AEEnd (n; C ~ x ~ [x-1]), be a
germ of meromorphic differential operator at the origin of the complex
plane C. Let F be a formal fundamental solution of 0. We denote by
kl &#x3E; k2 &#x3E; ... &#x3E;kr the positive (non zero) slopes of the Newton polygon of
the operator

Then F is (kl, k2, ... , kr)-summable in every direction, but perhaps a
finite number belonging to 03A3 (F) c Sl.

Clearly (using lemma 7) the sums (in a common non singular direction)
given by theorems 2 and 4 are the same.

If d ~ 03A3 (F), the operator Sk1, k2, . , . , kr; d is injective and Galois-differen-
tial. So theorem 4 follows from theorem 5. Moreover we have got an

"explicit" method of summation of formal solutions of linear differential
equations (36). It is interesting to remark that kl, k2, ... , kr are rational
numbers, so 03B1i E Q and C03B1i (i = l, ... , r) is a solution of a linear

differential equation; moreover all the functions written under when we
apply the successive computations of the resummation algorithm are

solutions of linear differential equations. A consequence is that, for numeri-
cal computations, we can apply efficient algorithms in order to compute
the successive analytic continuations 8d (Runge-Kutta algorithm, Chudnov-
skys algorithm [Chu], ... ).

(3s) The methods differs by the respective proportions of analysis and algebra used.
(36) There exists an algorithm for the explicit computation of the levels kl, k2, ... , kr

[Ma 2J. An effective computation is possible on a computer using the systems "Reduce",
"Desir" and "D5" [Tou]. For the ("generic") one-level case there are efficient numerical
algorithms of summation [Th]; for the multilevelled case, algorithms are studied by Thomann.
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Let now be a singular direction:
Then (a "branch" of Logarithm being choosen)

are (different) actual fundamental solutions of ð, analytic common

sector bisected by d, with opening on the Riemann surface of Logar-
ithm. So we get Fd =F-d Std, with StdEGL(n; C). By definition Std is the
Stokes matrix associated to the formal fundamental solution F of ð, to the
direction d, and to the choice of branch of Logarithm.
The operator k2, ... , is clearly a

K-automorphism of the differential extension [jc ~] ( F ) (which is
a Picard-Vessiot extension of C{x}[x-1] associated to A [Kap], [Kol]),
that is an element of the Galois differential group, clearly independent of
the choice of F). Later we will systematically write the operation of
elements of Std, and, more generally, of differential automorphisms, on
the right (and ask the reader to be careful with the ordering of composi-
tions...). We will also denote by Std the induced automorphism (this
automorphism depends on dES 1 and on the choice of branch of

Logarithm (37), that is on dE (R, 0) universal covering of(SB 0) "above" d)
of the space of formal solutions of A (the matrix of this auto-
morphism in the basis formed by the columns of F is So the Stokes
matrix Std is an element of the representation of differential Galois
group GalK(0394) = AutK K  F ) (K = C { x } [x-1]) in GL (n; C) given by the
formal fundamental solution F.

Here one must be very careful: Stokes matrices defined by our method
(very near of Stokes original method [Sto] (cf references and comments in
[MR 2], chapter 3)) are "in" the Galois differential group, but this is in
general completely false for "classical " Stokes matrices. Classical definition,
starting from asymptotic expansions in Poincare’s sense (38), is "unnatu-
ral" and corresponds to a misunderstanding of the original Stokes ideas
(Stokes was working by numerical computations with in mind something
like an idea of "exact asymptotic expansions").

Remark. - Stokes operators Std and Stokes matrices Std are MFK
(see infra), so we can define their logarithms std and std respectively (the
idea of a systematical use of these logarithms seems essentially due to

(3~) Up to conjugation by the "formal monodromy" (cf infra).
(38) Asymptotic expansions in Poincare’s sense must be replaced by "transasymptotic

expansions" terminology): the transasymptotic expansion map is the inverse of the
summation map). Transasymptotic expansions can only make "exponentially on

singular lines ("anti Stokes lines"), but Poincare asymptotic expansions can only make
"jumps" on "Stokes lines" (consequence of transasymptotic expansion "jumps", in 
ture 
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Ecalle in a more general context):

Then

and we can choose Fd as sum of F in the singular direction d (this idea is
already in book [Din]; this has been recently extended to extremely
general situations by Ecalle : If the differential
operator 0 is real, if G is a real formal fundamental solution, and if d = R +,
then we can choose the fundamental determination of the Logarithm, and
"median Gd is real (this can be applied to Airy equation at infinity,
cf. [MR 2], chapter 3). Moreover std is a Galois derivation (i. e. commuting
with the derivation of the differential field) of the differential field K ( G ),
and then, when the reality conditions given

above are satisfied, the map R ~ x ~ [x-1] ~ G ~ -~ germs of real meromorphic
functions at 0 ~] 0, + oo [, defined by

and equal to S on R { x } [x-1] is an injective morphism of differential fields.
The following generalization of a S’chlesinger’s theorem (39) [Sch] was

first proved in [Ra 4], [Ra 5], using a different method (40).

THEOREM 6. - Let K = C ~ x ~ [x-1]. Let 0 = d/dx - A, with
A E End (n; K), be a germ of meromorphic differential operator at the origin
of the complex plane C. Let F be a formal fundamental solution of 0. Let
H be the subgroup of GL (n; C) generated by the formal monodromy matrix
M, the exponential torus T, and the Stokes matrices of 11. associated to the
given formal fundamental solution F. Then the representation of the Galois
differential group GaIK (1B) of 0394 in GL (n; C), given by F, is the Zariski
closure ofH in GL(n; C).

Using "Galois correspondence" [Kap], it suffices to prove that the invari-
ant field of H (that is the subfield of K  F ~ consisting of the invariant
elements by H) is K.

First we must define the "formal monodromy" and the "exponential
torus" of 0.

(39) Schlesinger’s theorem is for the case of Fuchsian equations.
(40) A second proof has been given by Deligne using "Tannakian" ideas [De 4], and,

during Luminy conference (september 1989), I have learned from Y. Il’Yashenko that he has
also recently got another proof...
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Replacing u by in F (u), we get a (in general new) fundamental
solution of the differential operator A:

M, with MEGL(n; C). By definition M is the formal
monodromy matrix associated to A and to the fondamental solution F.
The corresponding element M of is clearly independant of
the choice of F and is a formal invariant of A; it is the formal monodromy
of A. (We will later systematically write the operation of M on the right.)
We will now define the "exponen tial torus" .
Let [K=K~(M~ the differential field generated by K~=C[M][M~] ]

and the entries of the matrices uL and eQ.
Let ..., 

If  is the dimension of the (free) abelian C[M’~] ]
generated by ql, q2, ... , the Galois differential group

is a torus isomorphic to
(C*)J1 (clearly (We have set and 

We have Then g- (Q) can be identified with a

subgroup of Autv !K leaving fixed (still denoted by F (Q)).
We have K ( F ) and K ( F ) are invariant (Q); so g- (Q) can

be identified with a subgroup of This group is

clearly independent of the choice of F. By definition we call this group
exponential torus" of 0. It will be denoted by T(A) (it depends only

on q(A) and is a f ’ormal invariant of A). Its representation in

GL (n; C) given by the fundamental solution F will be denoted by
T=T(A)=T(Q(A)) (and still named "exponential torus").

Let be an element invariant by H (more precisely by
the subgroup of corresponding to H). If then ç is

invariant by MV, that is by the formal monodromy "in u", 
But ç is also invariant by the exponential torus From the

invariance of ç by the Stokes matrices we deduce that the k2, ..., kr)-
summable power series ç admits no singular direction (Lemma 10), so ç is

convergent and ç E Kv. The action of the monodromy matrix M on ç E Kv
is the same as the action of the (ordinary) Galois group AutK Kv (iso-
morphic to Z/v Z), so ç is invariant by AutK Kv and 03BE ~ K (by the ordinary
Galois correspondence). That ends the proof of Theorem 5.

Examples. - From fundamental systems of solutions at infinity (z = x-1;
jc=0) for Airy and differential equations it is possible to compute
formal exponential tori and Stokes multipliers. From these

Vol. 54, n° 4-1991.



360 J. MARTINET AND J.-P. RAMIS

results it is possible to compute the Galois differential groups of our
differential equations (41). See [MR 3]).
For a deeper study of germs of analytic linear differential equations we

need now a little "toolbox" (42) (built with elementary linear algebra).

we denote by

the sublattice of E generated by ~1,~2. ’ ’ -. ’ The smallest integer v such
that l is, by definition, the ramification of q, or E (q).
We have:

We define an action of the (classical ) Galois group on

a sub lattice E’ of Ev, by
~ q (e - 2 ‘ n~’’ x -1 ~") (corresponding to x -~ e - 2 i " x). If E’ is 

ant by this action we will say that E’ is Galois invariant. The lattice E (q)
is Galois invariant if and only if the set q is invariant by the corresponding
action (Galois invariant).

If q E E (q), its "degree" b (q) is the rational number Q, where m
v

is the degree of q as a polynomial in There is a natural filtration of
E by the degree, that is by the sublattices

We identify the universal covering of 1 ) to (R, 0). By definition the
"front" of q E E (q ~ 0) is the subset of (R, 0) whose elements are
the "lines of maximal decrease" of eq (we will also call "front" the natural
projection of this set on the v-covering of (S1, 1 ), identified with another
copy of (SB 1)). The front of q depends clearly only on the monomial of
maximal degree Õ (q) of q. If d is a direction belonging to the front of q

(41) "Classical computation" of the Galois differential group of Airy equation is in [Kap];
the computation of the Galois differential group of Kummer equations is, as far as we
know, new (it is possible to do the computations "classical", using improvements of Kovacic’s
algorithm [Kov], [DLR], [MR 3]).

(42) A first version ot these tools was first introduced by Jurkat, Lutz [BJL 1], [J].
In our presentation we have also used ideas of Deligne, Malgrange [De 3], [Ma 3], [Ma 4],

Varadarajan [BY], and the systematic treatment of M. Loday-Richaud [LR 1].
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(or of its projection on or if ~=0, we will say that q is "carried"

by d.

To each q E E (q) we can associate a character of the exponentiel torus
~i (q), that is a (continuous) homomorphism of groups (still denoted by q):

with

Let (pl, ~2. - ’ ’~ , be a Z-basis of the lattice 
" E (q)

We get an isomorphism

In the following the exponential lattice E (q) will be identified with the
lattice of characters on the exponential torus ~i (q).

Let dE (R, 0) [the universal covering of 1 )], we set
Ed (q) _ ~ q E E (q)/q is carried by d}; Ed (q) is a semi-lattice of E (q), and

depends clearly only on the projection d of d on the v-covering of S 1:

To the set q = ~ ql, q2, ~ ~ ~ , E, after the choice of an ordering, we
associate the diagonal matrix eQ, with ~2~ ’ ’ -~n}’
We will use ordering relations associated to a direction dE (R, 0):

We will also use an equivalence relation on the space E associated to a
rational number A;&#x3E;0, kEQ:
q=kq’ if and only [if8(~-~)~~, we will write 
To a rational number k &#x3E; 0 we associate the partition of the set

Q={~i. q2, ... , defined by the relation = k. This partition is named
the" k-partition". The only "significative" values for k are in the set

~ kl, k2, ...~,}=NX(q) of values taken We will

always suppose in the following that we have chosen an ordering on

ql, q2, - .. , qn such that, for every A;&#x3E;0, kEQ, the elements of each subset
of the k-partition are consecutive. Then, there exists a unique block-

decomposition (by definition the k-block-decomposition) of the matrix Q
which is invariant by transposition and induces the k-partition on the
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diagonal. For k2, ... , kr we get, by definition, the "iterated block-
decomposition" (cf [BJL 1], [J]). If a matrix A admits the same k-block-
decomposition than Q, we will say that A admits a (Q, 
Moreover, a direction d being fixed, it is possible to choose an indexation
(called by definition a d-indexation) of the elements qi of q such that:

The corresponding ordering on q satisfies the above conditions; the corre-
sponding iterated block-decomposition is named a d-iterated 
position.

The set q and the direction d being fixed, and an ordering ( perhaps
depending on d) being chosen on q, the diagonal matrix Q is defined. To
this matrix and a fixed direction d E (R, 0), we will associate families of
subgroups of C), indexed by k2, ..., kr } = N 03A3 (q) (iso-

groups, and Stokes groups).
All these groups are unipotent. More precisely, if P is a matrix belonging

to one of these group, all the diagonal terms of P are equal to 1, and
I - P is nilpotent (if the order on q corresponds to a d-indexation, then P
is upper-triangular).

. 

Let i = j, c,,=l, and, if then

d) is a subgroup of GL (n; C), named the isotropy subgroup
in the direction d. Let Sto (Q; d)={C=(~.)/~’~=~, ci J =1, and, and

then Sto (Q; d) is a subgroup of A (Q; d), named the
S’tokes subgroup in the direction d. Let now km k2, ..., ~ } = N X (q).
We set:

and
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PROPOSITION 10. - Let Q be a diagonal matrix with entries in E, and
dE(R, 0) be a fixed direction. Then, for every k &#x3E; 0, kEQ, the four sequences

are split exact sequences of (algebraic) groups.
Maps are evident inclusions and evident "projections" (by "suppression"

of some entries). The sequences are split by the inclusion maps
A km(Q; d) --+ A(Q; d), .

Proposition 9 consists of "block variations" on the

LEMMA 11. - Let Dn be the subgroup ofGL(n; C) of diagonal invertible
matrices. Let Tn be the subgroup of GL (n; C) of upper triangular invertible
matrices. Let Bn be the subgroup of GL (n; C) of upper triangular unipotent
matrices. Then we have a split exact sequence of groups:

The map 7~, ~ Dn is the evident "projection" (we replace by zero the
off diagonal entries), and the map Bn -+ Tn is the natural injection; the
natural inclusion Dn -~ Tn gives the splitting.
Then 7~, is the semi-direct product of Bn and Dn. We will write

A (Q; d) is the semi-direct product of d) and d), we
will write

LEMMA 12. - If

d), there exists a , unique ’ decomposition:

We can now go back to linear differential equations. We need a more
precise version of theorem 3. (Beware of the slight change of notation
for H.)

Let with be a germ of 

morphic differential operator at the origin of the complex plane C.
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The operator A admits a formal fundamental solution:

with:

HEGL(n; C [[jc]] [x -1]), Q a diagonal matrix with entries in 
Galois invariant, unique up to permutations of the diagonal entries, and

C) a "universal" matrix (depending only on Q) [BJL 1], [J]
(v is chosen minimal).

and

THEOREM 7. - Let 0 = d/dx - A, with be a

germ of meromorphic differential operator at the origin of the complex
plane C.
We denote by kl &#x3E; k2 &#x3E; ... &#x3E;kr the positive (non zero) slopes of the

Newton polygon of the (rank n2) differential operator

Let F be a formal fundamental solution Then there , exists
a Hnatural decomposition" (unique ’ ’ transforms" [Ra  4])

(i) pi (;c) = H, (x) H, +1 (jc)... Hr formal fundamental
solution of a , meromorphic differential operator 0394i = d/dx - Ai, with

then, for d ~ I: (H), and every determination of Log x (u = "»‘’ and
xL - eL Log x):

Fd (x) = Hd (x) xL U eQ ~l~u~ is an actual analytic fundamental solution of
the operator 0 in a sector bisected by d [dE(R, 0) "above " d corresponds
to the given branch of Logarithm].
Moreover Hi admits a (Q, ki-1)-block-structure (i = 2, ... , r) and Ai

admits a (Q, ky)-block-structure (i =1, ... , r).
We define e~ ~ 1 ~u~; is an actual

analytic fundamental solution of the operator Ai in a sector bisected by
d(i= l, ... , r), and admits a (Q, ki-1)-block-structure (i = 2, ... , r).
We have:
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LEMMA 13. - Let q2, ~ ~ ~ , and, after an ordering, let

Q be the ’ diagonal matrix Let CEEnd(n;C),
and , d a fixed direction [d E (R, 0)]:

(i) The following £ conditions are equivalent:

(ii) The following conditions are equivalent:

(iii) The following conditions are equivalent:

(iv) The following conditions are equivalent:

sector with opening 03C0/k, bisected bv d.

open sector with opening ’ 1t d.

THEOREM 8. - Let 0 = d/dx - A, with AEEnd(n; C ~ x ~ [x -1]), be a
germ of meromorphic differential operator at the origin of the complex
plane C.
We denote by kl &#x3E; k2 &#x3E; ... &#x3E;kr the positive (non zero) slopes of the

Newton polygon of the differential operator

Let a formal fundamental solution 
above and

tion of Std , corresponding to ’

Assertion (i) is a consequence " of lemma ’ 13 (iv):
We have ’ (H~; d-)-1 H~; d+ = I + ~, with ~ exponentially flat 

on an open "sector" with opening $ bisected by d ’ (Hi is 
We set
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it is clear that Gi and Gi- 1 are analytic on an open "sector" with opening
~lk~ + 1 (T~lk~ + 1 &#x3E; ~lki) bisected by d, and admit a ~moderate growth at the
origin on this sector. Then where 03A6 is

exponentially flat of order ~~ on an open "sector" with opening 
bisected by d. Assertion (ii ) follows from (i ) and lemma 12.

Stokes matrices are a priori defined in a transcendental way.
Theorem 8 says that we can get them by an algebraic algorithm from the
knowledge of Std and Q. We will give later an "infinitesimal version" of
this computation.

From this lemma and theorem 8, we get

THEOREM 9. - Let 0 = d/dx - A, with be a

germ of meromorphic differential operator at the origin of the complex
plane C.
We denote by kl &#x3E; k2 &#x3E; ... &#x3E;kr the positive (non zero) slopes of the

Newton polygon of the differential operator

Let a formal fundamental solution 
bove, and ’

Then, for every direction d E (R, 0):

with

a + only at the index i, then St~, ~’d _ Si; a, and d is in the representation in
GL (n; C) of the differential Galois group GaIK (0) given by the fundamental
formal solution F (i =1, ... , r).

Our aim now is to use preceding results and concepts to give a "purely
combinatorial" description of the category of germs of meromorphic connec-
tions at the origin of the complex plane, as simple as possible. In "down
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to earth terms" a germ of meromorphic connection is a germ of differential
system up to meromorphic equivalence [De 1], [Ma 4], [MR 2]; so the sear-
ched combinatorial description is equivalent to a meromorphic classification
of germs of differential systems.
Such a result is well known for the regular singular case. It is given by

the Riemann-Hilbert correspondance [De 1 ], [Ka 2], [MR 2] :
Germs of Fuchsian Finite dimensional linear

connections -+ representations of the local
at the origin of C. fundamental group (43).

Germ of meromorphic fuchsian
differential operator 0, up to -+ Monodromy M (0) "around 0".
meromorphic equivalence.

This map is bijective, moreover it is an equivalence of Tannakian
categories [Saa], [De Mi], [De 2]. The result is false if we suppress the

fuchsian hypothesis.
The now "classical" meromorphic classification of germs of mero-

morphic differential operators is given in terms of cohomology of sheaves
of groups (isotropy groups of a "normal form") on S1 [Si], [Ma 3], [Ma 4],
[De 3], [MR 1] (44). We have in mind a "better" description (particularly
adapted to the computation of differential Galois groups), extending the
Riemann-Hilbert correspondence to the irregular case, that is a description
of connections in terms of representations of groups:

Germs Finite dimensional linear

of connections -+ representations of the local
at the origin of C. "wild fundamental group ".

Germ of meromorphic
differential operator 0, -+ ????

up to meromorphic equivalence.

We will call "Gevrey front" of q E E (q ~ 0) the set

universal covering of the analytic halo HAo.
We write

and denote by 03A3 (q) the projection on S1 of Fr (q).

(43) Generated by a loop turning "one time" around the origin and isomorphic to Z.
(44) We will recall this description in part 5.
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We define an action of the group (yo) generated (45) by Yo on the (non
abelian) free group generated by the (dE Fr(q)) by

0: 03B3d ~ 03B3exp ( - 2i03C0) d (exp ( - 2 i03C0). is a translation of - 21t in (R, 0)).
We denote by II (q) the corresponding semi-direct product

In n(q) we have 
We define an action of the free group generated by y~ on the (non

abelian) free group generated by the by

We denote by G n (q) the corresponding semi-direct product

In G n (q) we have 0 y. Yo 1- 03B3exp  - 2.,) ,.
The groups n(q), and GII(q) are "first approximations" of the "wild

local fundamental group" (46). We can identify II (q) to a subgroup of
Gn(q)by

We will obtain below a classification in terms of linear representations
of these groups (47). Unfortunately there are conditions ("Stokes 

on these representations in order that they come from a connection.
That is unsatisfying : we want a "wild fundamental group" whose all finite
dimensional linear representations come from a connection, just like for
the Riemann-Hilbert correspondance. We will be led to the "good" group
~ 1, S (C *, 0) by a "Fourier analysis" of the (Galois differential ) "unfolding"
of the Stokes phenomena under the adjoint action of the exponential torus.
Moreover we will see that this approach gives (48) a very natural interpret-
ation resurgence [E 4].

Let with AEEnd(n; C { x ~ [x-1]), be a germ of mero-
morphic differential operator at the origin of the complex plane C.

(45) Here Yo and the are "labels"; later Yo and ya will be interpreted as loops
turning around respectively 0 and a.

(46) The terminology "wild 7C/’ (in french was suggested to the second
author by B. Malgrange for the group G II [Ma 7].

(47) If we consider "isoformal" families, that is if we fix the If we leave it
free, we need to "add" a representation of the "formal fundamental group".

(48) With paragraph 6 tools this approach will lead us to an essentially "geometric"
description of the resurgence where Laplace transform and convolution no longer play the
central characters... The second author was led to this description particularly by 
account of a part of work [Ma 8].
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Let F (x) = H (x) xL U eQ ~1~"~, be a formal fundamental solution of 0 as
above. We set

Fo (x) = xL U eQ ~1~"~ (Hermite formal fundamental solution J .

and AP=djdx-AP, and we say that the differential operators 0 and dP are
formally equivalent. If P E GL (n; C ~ x ~ [x-1]), we will say that the differen-
tial operators 0 and I1P are analytically equivalent. We have

= ~P1 P2.
It is easy to check [BJL 1] that Fo is a fundamental solution of a rational

differential operator Do = d/dx ^ Ao, with AoEEnd(n; C(x) [x-1], which is

formally equivalent to 0 (0 = 
We will write

exists GEGL(n; C [[x]] [x-1]) such that
GF=FCJ; and Y(F) are algebraic subgroups of C)[BVj,

We will write:
there exists CEGL(n; C) such that

GF = F C }; is a subgroup ofGL(n; C [[x]] [x-1]). It is easy to check
is a subgroup of C (x) [x-1]) containing 

clear that is equivalent to G E ~ (0) (~ (0) is independant of the
choice of F).
We leave now Ao fixed and we want to classify, up to meromorphic

equivalence, all the meromorphic differential operators 0 formally equivalent
to Moreover we are also interested in the classification of the "marked

pairs" (0, H) such that 
To a differential operator A formally equivalent to Ao (a fundamental

solution Fo of Ao being fixed) we can associate representations 03C1irr (0) of
the groups n (q) and Gn(q) in GL(n; C) defined by:

(a = (d, k)). (We use the formulae:

These representations are clearly submitted to the constraints:
and

We will name these conditions "Stokes conditions". These representations
are defined up the action (by conjugacy) if F = fIF 0 is a

formal fundamental solution of A, C an element and
G E GL (n; C { x } [x-1]) the corresponding element of F (Ao), then
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F C = HFo C = F0 is also a formal fundamental solution of L1.
These representations do not change if we replace L1 by a meromorphically
equivalent operator (H is then changed in PH, with
PEGL(n; C { x ~ [x-1]), and depends only on the connection ~
associated to L1 and of the choice of F 0; we can set 03C1irr (V) = 03C1irr (0394).

THEOREM lo. - Let L10 be a fixed differential operator with a fixed
fundamental solution Fo = xL U eQ ~l~u~. We denote by V 0 the meromorphic
connection defined by ~o. We set q = q (Q), and denote by n the rank of Do.

(i ) The natural map

Representations
Meromorphic connections ~ 03C1irr 

of the group G II (q)
formally ~ in GL (n; C) satisfying

equivalent to Vo. Stokes conditions, up to
the action of F (F 0).

~ ~ 03C1irr (V)

is a bijection.
(ii) The natural map

Representations
Meromorphic connections V 03C1irr of the group II (q)

formally ~ in GL (n; C) satisfying
equivalent to Vo. Stokes conditions, up to

the action of F (F 0).

is a bijection.
This result is non trivial. We deduce its proof from the (non trivial...)

classification of isoformal meromorphic connections in the form given by
Malgrange and S’ibuya, [Ma 3], [Si] (49). We need before to recall some
definitions and results (we will return to this topic in more details in 5).
In the following we will systematically consider a function f (with values
in a C-vector space) holomorphic on an open sector V as an "object" on
the open arc U corresponding to T~ in S1 (the real analytic blow-up of the
origin in C) as in [Ma 3]. We define in this way on Sl the sheaf ~ of
holomorphic functions (with values in C) on sectors, admitting an
asymptotic expansion at the origin (with Taylor expansion in C [[x]] [x-1]).
We denote by AI the subsheaf of End (n; ~) of germs of analytic matrices
which are asymptotic to identity ; AI is a sheaf of (non abelian) groups. If
~ is a sheaf on Sl we will denote its fiber at d E S1.

(49) The first general classification (after the work of Birkhoff for the "generic case") is
in [BJL 2].
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THEOREM 11 (Malgrange, Sibuya [Ma 3], [Si]). - There exists a natural
isomorphism

We recall the definition of the map ,..t:
Let I be a finite open covering of S1 by open arcs. We

suppose that Ui~Uj~ Uk= 0, if i, j, kE are distinct 
Let C [[x]] [x-1]). By theorem [Wa] we can 

resent" A by a collection {Ai}i~I (Ai being a holomorphic matrix on an
open sector Vi corresponding to Ui admitting A as asymptotic expansion
at the origin).
We consider as a 0-cochain [with values in G L (n; A)] and we

take its coboundary -

GL(n; ~)) . We have 8eZ’(U; AI) (Ai and Aj
have the same asymptotic expansion A). We write 
By is the image of 8 in H1 AI). If PEGL(n; C {jc}),

and B = P Â, we can choose then ~(B)=~(A). In the following
we will set

I = [ 1, ... , p] (where "p + 1=1 "), the bijection between and [ 1, ..., p]
being chosen such that ... , p) and such
that the bisecting lines of the arcs turn clockwise when t increases.

If 03A3 = { dl, d2 ... , C we will say that the covering U is "adapted"
to E if

adapted to , X, where is bisected by d, with opening , 
(t = 1, ... , p); such a covering § is said o to be kl-adapted to , S. We can
choose "

is well defined; the image of St(U; Â) in
H1 (5"; AI) is clearly ~, (A). We will denote by St (A) the 1-cocyle St (U; A)
up to the choice of U (satisfying our hypothesis), and identify it to

(so) We will make this hypothesis for all the coverings in the following.
e1) More generally we can also take L (A) c 03A3 finite. --

(s2) The values of Ai obtained for the different d glue together by analytic continuation
in an analytic matrix still denoted by A~.

Vol. 54, n° 4-1991.



372 J. MARTINET AND J.-P. RAMIS

If U is an open covering of and F a sheaf of groups on we

denote by

Let We denote by the sub sheaf of AI of germs # where ~
is exponentially flat 

We will denote by H~ ~ AI) the subset consisting
of the images 

THEOREM 12 (Martinet-Ramis [MR 1], 1-6. - Z~ ~&#x3E;0.
(i) 77~ isomorphism

induces an isomorphism

Let now A be a differential operator. We denote by A (A) the sheaf (on
of solutions of End A and by A;(A) the sub sheaf of solutions of End A

which are asymptotic to identity ; AI (Ao) is a subsheaf of Ap
Let now Do be a differential operator with a fundamental solution

We denote by Vo the meromorphic connection defined
by Ao, and write q = q (Q); N E (q) _ { kl, k2, ... , kr ~ is the set of values
taken and n the rank of Do. We write as above

.].
Let 0) be a direction and d~S1 its projection. To the choice of

de(R,0) corresponds a "branch" of Logarithm and a Fo,d of
which is analytic on an open sector bisected by d.

The map

is an isomorphism of groups.
Let
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It is easy to see that d; F 0)’ A’(Ao; d; F 0)’ d; Fo), and
d; Fo) do not depend on the choice of Fo and d; moreover

All these groups (5 3) are subgroups of A(Ao)j and when the direction d
varies we get subsheaves k(03940), ~k(03940), and (When
d moves the groups remain "in general" the "same". They can "jump"
only for a finite set of values of d, the "Stokes lines".)

Let

It is easy to see that d; Fo), d; Fo), d; Fo),
and d; Fo) do not depend on the choice Fo and d. We can
set:

If d ~ ~ (Do), then Sto (Do)d reduces to identity.
From proposition 10 and lemma 12, we get

PROPOSITION 11. - Let d E S1 and k &#x3E; 0. Let Do be a given differential
operator with a fixed fundamental solution We set

(i) The four sequences

are split exact sequences of groups.

(s3) It is possible to give a "direct" definition of these groups using Deligne
structures (or Stokes structures) [Ma 4], [De 3], [De 4].

Vol. 54, n° 4-1991.



374 J. MARTINET AND J.-P. RAMIS

THEOREM 13 (Malgrange, Sibuya, Babbitt-Varadarajan [Ma 3], [Si], [BY]
Let A1 be a meromorphic differential operator. We denote by V 1 the

meromorphic connection defined by A1. Let Do be a differential operator
with a fixed fundamental solution Fo = xL U eQ ~l~u~. We denote by V 0 the
meromorphic connection defined by Ao. Then:

(i) There is a natural isomorphism V=VVl:

(ii) ’ natural isomorphism v induces an isomorphism :

[The group ~ (Do) is acting by conjugacy on the sheaf A (Do).]
DEFINITION 6. - Let Do be a given differential operator with a fixed

fundamental solution Fo = xL U eQ ~l~u~. We set

is called a "Stokes cochain" if

with

Let d E Fr (q), let d be its projection on S1, and let p be a representation
of II (q) in GL(n; C). It is easy to check that depends
only on d E ,S1.

LEMMA 15. - Let Do be a fixed differential operator with afundamental
solution Fo = xL U eQ ~l~u~.
We set q=q(Q), N~(q)={k1, k2, ... , kr} (kl &#x3E; k2 &#x3E; ... &#x3E; kr), and

denote by ~(q) the projection of Fr(q) on S1. Let be an open
covering which is kl-adapted to 03A3 (q).

The natural map
Z

Representations of 03A0 (q) in GL (n; cocycles of Z1 (U; A (03940))}
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is a bijection.

THEOREM 14. - Let Do be a given differential operator , fixed
fundamental solution F 0 U eQ ~1~"~. We set

where ’ HiEGL(n; C) [[x]] [x -1 )) is ki-summable for i =1, ... , r. We suppose
that is a formal fundamental solution ’ meromorphic
differential operator A. Then the 1-cocycle , St (U; H) is a , Stokes cocycle. ’

(b) F = H xL U eQ(1/u) is a formal fundamental solution of a meromorphic
differential operator 0 which is formally equivalent to Do.

Moreover: 03B4 = St (U; H) = St (U; -1 iu (0)), and if ~ is the meromorphic
connection associated to 0, then v (V) = iu (0).

(iii) Let r::tEH1 (S1; A (Do)). Then there exist one and only one Stokes
cocycle 03B4 E Z1 (U; A (Do)) such that a= iu (S) (that is, representing oc) (SS).
We will first prove assertion (i).
Using the construction of theorem 10, we can associate to F = F0 a

representation p (H) of II (q) in GL (n; C), satisfying Stokes conditions. We
have St(U; H)=zu(p(H)), and St(U; H) is a Stokes cocycle.
We will admit assertion (ii), for a moment.
Assertion (iii) follows easily from assertions (ii) and (iii):
Let 03B1~H1 (S1; A (Do)). From theorem 13, we get a meromorphic connec-

tion ~ = y-l (a), wich is formally equivalent to Vo. We choose a differential
operator 0 representing ~; then there exists a fundamental solution

F=HFo of 0, with HEGL(n; C) [[x]] [x-1]). From theorem 7 we get a
decomposition

(s4) It is important to notice that this definition is stated in such a way that it is not

necessary to know theorem 5 or theorem 7 to apply it (see footnote below). Of course one
can also apply it in the situation of theorem 5 or theorem 7...

Assertion (iii) is due to M. [LR 1]. Her proof is completely different:
she gives an explicit algebraic algorithm in order to compute explicitely 8 from a. She uses
M algrange-Sibuya theory but not Gevrey asymptotics and multisummability; so it is possible,
using her result and noting that assertions (i) and (ii) are proved here without any use of
theorem 5 or theorem 7, to get a new proof of theorem 7 [LR 1]. Cf. also [BY].
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where i E GL (n; C) [[xJJ [x-1J) is ki-summable for i = l, ... , r.
We have Let zu(p(H))=ÖEZ1(U; A (Ao)). We have

iu (b) = a, and b is a Stokes cocycle representing a.
It remains to prove unicity. Let 03B4 E Z1 (U; A (Ao)), with iu (b) = a.

From assertion (ii) we get 03B4 = St ( U; iu (ö)) = St ( U; p, -1 (a)), but
St (U; Jl - 1 (oc)) depends only on a; unicity of b follows.

Before we prove assertion (ii) we will give some consequences of
theorem 14.

PROPOSITION 12. - Let Do be a given differential operator with a fixed
fundamental solution Fo=xLU We set

and , denote by E (q) _ { dl, d2, ... , dp} the projection Sl. Let
an open covering £ which is kl-adapted to , 1 Then the

natural map

is a bijection commuting with the action of (J (F 0); J (1B0)).
Theorem 10 follows from theorem 13 and proposition 12.
It remains now to prove assertion (ii) of theorem 14.
Let Do be a given differential operator with a fixed fundamental solution

and denote ...,~} the projection of Fr (q) on Let
U = VI (t = 1,..., z?}), be an open covering which is k, -adapted to

Let 03B4 E (U; A (Do)) = Z1 (U; A (Do)) be a Stokes cocycle. Then, A (Do) c AI,
ÖEZ1(U; AI). Let We will prove that 03B4 is a Stokes cocycle
by a descending induction on i = r, r - l, ... ,1.
Our induction hyothesis is:

cocycle satisfying:

(bi) is a formal fundamental solution of a meromorphic
differential operator Di which is formally equivalent to , ðo.
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Moreover:

with:

We have (for d1 E (R, 0) "above " d 1 )

theorem 12 that r=r is kr-summable and is proved; follows

from theorem 13.

We suppose now that (Hyp/) is true for r &#x3E;_ j &#x3E;_ i &#x3E; l, and will prove

cocycle with:

decomposition (Lemma ’ 12):

We have

It we set:

and

Vol. 54, n° 4-1991.



378 J. MARTINET AND J.-P. RAMIS

we get:

or

We set

We have " built a 1-summable cochain 03B2 ’ = {Bl,l +1 }i~I. We check easily
that

Then it follows from theorem 12 that J.l-1 iu (Ø) is ~_ 
and o from theorem 13 (i ) that (definition is a mero-
morphic differential operator. We define

Then

and

is a formal fundamental solution of the meromorphic differential operator
0‘-1, formally equivalent to Do.
/ Let

We get:

Then 8-’ = St (U; H-’) = St (U; ~ -1 ~-u (§-’)). We have got
(Hyp /-1) and assertion (ii) of 14 is proved by induction. That
concludes the proof of theorem 14.
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Examples. - To illustrate the preceding constructions, it is possible to
compute the "wild groups" and their representations for Airy equation
and Kummer equations. This is a simple reformulation of computations of
[M R 2], chap ter 3.

Remark. - For dE (R, 0) the "label " will later (see 6, infra)
correspond to a loop pointed at "R~"=("0’B R +) E { "0" } x (R, 0) (‘ ‘R + "
is a point belonging to the universal covering of the real blow-up of the

 S1 in the analytic halo).
We start from "R + " and go x (R, 0)) to

Then we turn clockwise around "] 0, + 00]" x {d} onto the universal

covering of C* with an analytic halo at zero and go back to ("0", d).
Afterwards we return to "R+" (along "{0}" x (R, 0)). Then groups n(q)
and G n (q) are interpreted as "wild fundamental groups pointed at

The Stokes operator corresponds to a "wild monodromy" along
the loop yd for the vector space of "germs of solutions of the differential
operator ð. at "R + ’’’’, modulo an isomorphism between this linear space
and the linear space of formal solutions of Ao (in order to get this

isomorphism we use the of H near 0 in the analytic halo and
choose the principal determination for the The "wild
connections" induced by Vo and V in a "small" sector of the universal
covering o, f ’ the analytic halo bisected by R + are isomorphic (H is a wild
analytic function in such a sector), then the representation 
GL (n . C), up to the action of ~ (Fo), can be interpreted as a representation
of n(q(V)) in the linear group GL (V) of the vector space 
of germs of horizontal sections "at "R+" E {"o"} X S1" (V can be
identified with a subspace of where is
identifed with a space of germs of meromorphic functions on sectors
bisected by R+, and a class modulo F (F0) corresponds to a uniquely
determined representation in GL (V)). Finally we get a "wild monodromy"
(which does not depend on the choices of Ao and This "wild monod-

romy" expresses the "difference" between V and Vo. In fact we want to
understand V independantly of Vo. In order to do that we will first

translate Vo in terms of linear representation.
Let 

‘-

Let ~% (q) be the exponential torus associated to
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To natural injections

correspond o natural projections

We write F = Lim F (q). By definition F is the exponential torus ; it is

a commutative group. The algebraic tori ~% (q) are endowed with the
Zariski topology, and J is endowed with the corresponding inverse limit
topology.

LEMMA 16. - (i) Let K : ~% -~ C* be a continuous homomorphism of
groups. Then there exists a uniquely determined q E E, such that K is equal
to the composition of the natural projection ~% ~ ~% (q) (q = { q }) and of the
character q: :Y(q) ~ C*. (We will identify K and q.)

(ii) Let V be a finitely dimensional C-vector space (n = dime V), and
9: ~ -~ GL (V) be a continuous homomorphism of groups. Let G = 8 (J ).

Then there exists a basis of V such that the subgroup G of GL (V),
identified by the choice of this basis to GL (n; C), is diagonal. If
cp 1, cp2, ... , cpn : G ~ C* are the corresponding homomorphisms of groups
[if gEG, Pl (g) is the first entry of g on the diagonal...], and zf qi is

associated to K~ = cpi 6, like in (i ) it is possible to associate to K the set

q = { ql, q2, ... , qn } c E, which is independent of the choice of the basis of
V, and 9 is the composition of the natural projection ~% --&#x3E; ~% (q) and o. f ’

In the situation of lemma 16 (ii ), we will write q = qe. From
a given q = { ql, q2, ... , qn } c E we get a diagonal representation
8: J -~ GL(n; C), uniquely determined up to conjugacy, such that q=qa.

Let ~ be a formal connection. There exists a uniquely determined (up to
conjugacy) representation ($6) 8: J -~ GL (n; C), such that q (~) = qe.

Let with u‘’ = x, be a formal fundamental solution of’
a differential operator whose associate formal connection is V [q (V) is then
the set of the diagonal entries of Q = Diag (ql, q2, ... , qn)]. Using Fo we
will identify the space v of horizontal sections of V with Cn.

Let (Yo) be the free group generated by yo. We define an action of the
group (Yo) on the lattice E by

q Yo (u) = q (e - 2 u), and an action o, f ’ the group (Yo) on the exponential
torus ~% by Yo i (q) = i (q yo), for arbitrary and q E E.

(s6) In the following all the representations are supposed to be continuous.
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By definition the wild formal fundamental group Sf «C*, 0); "R+")
of (C*, 0) pointed at "R+" is the semi-direct product

(Yo) ~ ~ built from the action of (Yo) 
Let be the formal monodromy matrix associated to

Fo. We set

We have

So we have defined a linear representation

associated to the formal connection V. (Interpreted as a representation in
GL (V), where V is the vector space of horizontal sections of

V, this representation is independant of the choice of Fo.)
We will see now that, given a finite dimensional vector space V and a

linear representation

there exists a unique formal connection ~, such that p1= p (V) (V being
identified with the vector space of horizontal sections of B7).
We set p 1 (yo)=M and pi (.r)=T1. We set q=qe? 8 being the restriction

of p 1 to ~ , q is Galois invariant (it is invariant by the action of M). We
can choose a basis of V in such a way that Tl is a diagonal group:

g’2 (~)~ ..., (q= ~ R’1~ R’2~ ... , 
and Using a method of [BJL], [J], we can
suppose moreover that we have chosen our basis such that is in
Jordan form. Then let L be such that (L is defined up
to multiplication on the right by a diagonal matrix Diag (m 1, m2, ..., mn),
mi E Z). Then is a fundamental solution of a rational differen-
tial operator Llo and the corresponding connection Vo is independant of
the choice of the basis and of the integers m~. We have clearly Pl
(cn being identified by Fo with the space of horizontal sections of V 0).

So we get

THEOREM 15. - 77Mr/
’"’ finite dimensional

Formal meromorphic connections ~ linear representations
of the 0); "R + ").
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is an isomorphism.
This isomorphism is compatible " with sums, duality, tensor products, ...

It is an isomorphism of Tannakian categories.
If now Visa  germ of meromorphic connection, we get from V ’ two linear

re resentations (V = (V)) :

and

The respective restrictions of these representations p (V) and 03C1irr (V) to
the respective subgroups of 7~~.((C*,0); "R + ") and C II (q) are
clearly equal.

Conversely, two linear representations

and

admitting equal restrictions to the subgroups

being given, it is general impossible to find a germ of meromorphic
connection ~ such that p (V) = p1 and 03C1irr (V) = P1 and p2 must satisfy
a "Stokes condition" [checked on GL(V) in place of GL(n; C);
cf. theorem 

PROPOSITION 13. - Let t~o be a given differential operator with a fixed
fundamental solution Fo = xL U eQ(1/u). Let V 0 be the connection defined
by Do.

Then the natural map

is a bijection (V)).
The next step is now to build a new group 7~ s((C*. 0); "R + "), the

wildfundamental group of (C*, 0), pointed at "R + ", satisfying the following

l’Institut Henri Poincaré - Physique theorique
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properties:
(i ) The wild fundamental group is a semi-direct product

where ~ (the resurgent group) is the "exponential " of a f ’ree Lie algebra
Lie R (the resurgent Lie algebra), with infinitely many generators.

(ii ) To each germ V of rank n meromorphic connection we can associate
a linear representation (V)):

such that the restriction of to 03C01, sf((C*, 0); "R’") is p(V), and
such that, p (V) being known, the knowledge of the restriction of ps (V) to
the resurgent group ~ is equivalent to ghe knowledge of the representation

(iii) If a finite dimensional representation (57) of the wild fundamental
group

we denote by p 1 the restriction of po to 03C01, sf((C*, 0); "R + "), and

the representation corresponding to the restriction of po to the resurgent
group ~ (and to the knowledge of p 1...), with q=qpQ. Then the pair
(Pm P2) satisfies "Stokes conditions", so there exists (Proposition 13) a
uniquely determined germ of meromorphic connection V such that

and (p (V), 03C1irr (V)) can be recovered from the representation

got from V using the construction of (ii) (V)).
Let q = ~ ql, q2, ... , qn } c E, and, after ordering, let Q denote the

diagonal matrix Diag { ql, ~2? - - - ? Let ~ (q) be the exponential torus
associated to q, and let T(Q) be its representation in GL(n; C) given
by Q.
An element ’t E !!7 (Q) is represented by the matrix

LEMMA 17. - Let q = { ql, q2, ... , qn) c E, and, after ordering, let Q
be the diagonal matrix Q = Diag (ql, q2, ... , qn}. Let C E End (n; C),

(5’) The restriction to F of such a representation will be allway supposed continuous in
the following.
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Then:

and such a ’ decomposition is uniquely determined, i. e. if

with qi ~ a q~,

then:

the sum being extended to q = q~, j, with d q~,

The only non trivial point is unicity in (iii).
Let , p2, ..., p~) be a Z-basis of the lattice " E (q).
We have ’ an isomorphism

We set pk (r;) = ik (k =1, ... , v). Then each is a monomial in the
variables ik E C* and the distinct (r;) are independant on C.
The decomposition (iii) appears as a "Fourier decomposition" of the

"unfolding" r; C’t - 1 of the matrix C by the adjoint action o, f’ the exponential
torus ff (q).

Let where AEEnd(n; C { x ~ [x -1]), be a germ of mero-
morphic differential operator at the origin of the complex plane C.
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Let be a formal fundamental solution of ð as
above. We set

q = q (Q), and we denote by n the rank of A.
Let dE Fr (q) and let be the corresponding Stokes matrix. For

every the matrix t Std (ð) t -1 belongs to the image of the representa-
tion of GalK (A) in GL (n; C) associated to F, the matrix Std (0) is unipotent
and 03C4 (Log Std(0394))03C4-1 belongs to the representation of Lie GalK(0394) in

C) associated to F, that is, it yields a Galois derivation of the field
K ( F ). Then it follows from Lemma 17 (Std (ð) E Sto (Q; d)) that we have
a uniquely determined decomposition

the sum being extended to q = qi, ~, with qi  d q~, or

where each Log Std (0)q belongs to the representation of Lie GaIK (d) in
End (n; C). associated to F, that is yields a Galois derivation of the field
K  F ~. We have performed a "Fourier analysis of the infinitesimal Stokes
phenomena".

THEOREM 16. - Let d, = d/dx - A, where AEEnd(n; C ~ x ~ [x -1 ]), be a
germ of meromorphic differential operator at the origin of the complex plane
C. We set q = q (d), and denote by n the rank of 0. Then i (Log Std (d)) t - 1
belongs to Lie GaIK (d) for each d E Fr (q), and we have a uniquely determined
decomposition

the sum being extended to q = qi, ~, with d q~, or

with each Log Std (0)q belonging to Lie Ga.IK (0).
Moreover

and

It is now natural to introduce the free complex Lie algebra gener-
ated by all "letters" where (q, d) is such that q E E and dE Fr q
(i. e. such that eq is "maximally decaying" on d). We will name it the
resurgent Lie algebra (58).

Because it contains all resurgent algebras.

Vol. 54, n° 4-1991.



386 J. MARTINET AND J.-P. RAMIS

In the situation of theorem 16 we get a linear representation

and

We define " an action of the wild formal fundamental group

on the resurgent Lie algebra Lie R by

and

If we denote by p (d) the representation

associated to the formal connection defined by the differential operator 0,
the above " action is "compatible" with the pair of representations 

16).

PROPOSITION 14. - The natural map

where ’

is a bijection.
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From Projections 13 and ’ 14, we get a first version of the "wild Riemann
Hilbert correspondence ":

THEOREM 17. - The natural map (where , V is a finite , dimensional space:

is a bijection.
In order to get the wanted result, that is the classification of germs of

meromorphic connections in terms of representations of a group, it only
remains to replace the resurgent Lie algebra Lie R by a group, the resurgent
group ~ (the "exponential" of Lie and the action of the wild formal
fundamental group 03C0 1, s f « C*, 0); "R 

+ ") on the Lie algebra Lie R by an
action of the same group on the group Then we will get a pair
of representations (p (V), 03C1res (0)) in GL (n; C) = GL (v) of the groups

Sf «C*, 0); "R+") and R respectively, compatible with the action of the
first group on the second, that is a representation of the semidirect product
(defined by the same action)

Let X be a We denote [S] (LA 4.10) by Lx the free complex Lie
on X, by Lx its completion, by AssX the complex associative algebra

on X, by AssX its by the ideal generated in AssX by X,
by A: AssX --+ AssX~AssX the diagonal map, and by Óx the set of

There is a natural isomorphism

We cand identify LX with the set of primitive elements of AssX. Then by
restriction of the exponential we get an isomorphism

By the Campbell-Hausdorff formula , we get a group structure on Ox.
If X is the set of "labels" ~q, , where ’ (q, d) is such that q E E and 0

d~Fr q, we write
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We get isomorphisms

We denote by R the subgroup of generated by the image of Lie R
by exp; by definition R is the resurgent group.

LEMMA 16. - We consider the action of the wild formal fundamental
group S f «C*, o) "R + ") on the free Lie algebra Lie R defined by

This action can be naturally extended to and , we get (by restriction)
an action on ~, leaving ~ ’ invariant, such that

The wild fundamental group i of the germ of C* at the origin, pointed at
"R + ", is by definition the semi-direct product

defined by the action of S f «C*, 0)); "R + ") on R introduced in

lemma 16.

Let al, a2, ... , ocm be Z-independent elements of Lie ~. Then the

subgroup of  generated by exp al, exp a2, ... , and exp am is isomorphic
to the free group generated by the m "letters" exp al, exp a2, ... , exp am.
We get:

LEMMA 17. - Lf’ (pl, L p2) is a pair of representations of the group
Sf «C*, 0); "R+") in GL(n; C) and of the Lie algebra Lie R in

End (n; C) "compatible" with the action of 03C01, sf «C, 0); "R + ") on Lie R,
then there exists a unique representation

such that

This representation is compatible with the action 0); "R+") an
~ defined in lemma ~ 16.
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We get the "wild Riemann-Hilbert correspondence":
THEOREM 18. - The natural map

is a bijection.
The wild Riemann-Hilbert correspondence in an equivalence of Tannakian

categories.
Remarks. - 1. There are extensions of the wild Riemann-Hilbert corres-

pondence to non-linear situations in relation with problems of analytic
classification (germs of non linear analytic differential equations, germs of
analytic diffeomorphisms, germs of analytic vector fields...) [MR 1], [E 3].
In these generalizations one gets statements which are similar to

theorem 17. In the case of differential equations Cn is replaced by an
analytic manifold, End (n; C) by an analytic vector field and GL (n; C) by
the analytic pseudogroup of automorphisms of the manifold. Theorem 18
takes a quite technical form...

2. In such situations Ecalle introduces" hidden variables" ("variables
cachees"). We can easily describe [and extend (6°)] his point of view using
our technics:
Let ~ be a germ of meromorphic connection and let ps (O) be the

corresponding representation by the wild Riemann-Hilbert correspon-
dence. Let X (V) be the set of "labels" defined by

Then there are at most a finite number of values of (q, d) such that the
matrix d) is non zero. If this matrix is zero, we suppress the

corresponding letter. It remains a finite subset X’(V). We write

If f is a horizontal section of V, then we set

and denote by X’(V;/) the set of "labels" corresponding to X’(V). We
write AssX’ (v; f) = uR (V; /). ’"

The idea is to interpret u(~;f) as a "formal function" on u "extend
ing" f. This "function" depends on new (non commutative) variables, the

(s9) We recall that we suppose all the representations continuous on % .
(60) Ecalle uses only particular "one-levelled" lattices.
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"coordinates" of the elements of These" hidden variables" belongs to
the dual of We will be more precise in part 6 below, and interpret

(~; f ) as giving birth to a "formal function" on a principal bundle with
structure group ~, corresponding to an actual function extending f defined
on a principal bundle with structure group Moreover there are natural
actions of 03C01, S f «C*, 0); "R + ") on all these objects.

3 . The "Lie-algebra" 0); "R + ") of the wild funda-
mental group is the semi-direct product of Lie-algebras (Lie

associated to the action of the commutative algebra ( "Cartan algebra’ ~ Lie
ff on the resurgent algebra Lie R ’ defined by

for HELie ~", where

is the infinitesimal map associated to

From the wild monodromy representation ps we get a representation

The restriction of this representation to Lie R is the map Lie 03C1res of

theorem 17. It corresponds to Ecalle’s "bridge equation" ("equation du
pont")..

We. will explain now how to change the "base point" "R~’ of the wild
fundamental group S «C*, 0); "R+").
We will replace "R 

+ " by

(that we can identify with the real analytic blow up of the origin in
C).
We fix "d" E ~ "o" ~ X 81. Let" c" be an homotopy class of continuous

paths on { "0"}  S1 with origin "d" and extremity "R’"’ (corresponding
to an homotopy class of paths c on We set

and put on this set the evident structure of group; 1t 1, s((C*, 0); "d") is
independant of the choice of c in a sense that we leave to the reader to
explicit.

Let now dE { " + 00" } X We set

0); 0); ~0)},
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where the symbol Yd corresponds to the multisummation operator Sd in
"the" direction d- (Sd is interpreted as an analytic continuation along

We put on 1tt, s «C*, 0); d) the evident structure of group.
We can also set

there is a natural isomorphism between the two groups on the right side
of our equalities.
We can now by 7~,((C*,0);"~) or

7~,((C*,0);~) in theorem 18 (by definition is the analytic
isomorphism of solution spaces given by the analytic continuation of a
fundamental solution Fo of normal form corresponding to V
along c, (yd ) is the isomorphism of solution spaces given by 
Elements of ~((C*,0);J) are represented by linear permutations of
actual solutions in a germ of sector bisected by d.

It is possible now to give a global version of our wildfundamental group.
Let X be a connected Riemann surface. Let S=={~i, a2, ..., am} be a

finite subset of X, let xo be a base point in X - S, and, for each

i = l, ... , m, let di be a fixed direction "starting from We choose

homotopy classes of paths ci ("in" X - S), with origin jCo and extremity ai,
"arriving at ai along the direction di" (i =1, ..., m). We built, like above,
groups

(these groups are independent of the choice of ci in a sense that we leave
to the reader to explicit).
By definition (61) the wild fundamental group" of" X - S, pointed at xo,

is

and the wild fundamental group of X is

(There are some trouble with marked point in the limit: we get rid of it
as in the classical case...)

It is easy to prove the following results [we define as the

analytic isomorphism of solutions spaces given by the analytic continuation

(61) Be careful: the groups depends on X and S, not only on X - s.
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along ci]:
We have a wild global Riemann-Hilbert correspondence:

THEOREM 19. - Let X be a connected Riemann surface.
The natural map

is a bijection.
The wild global Riemann-Hilbert correspondence is an equivalence of

Tannakian categories.
We will call the map the wild monodromy representation of the

connection V.
Let pm (V) be the (classical) monadromy representation of the connec-

tion ~ (local or global case). It is possible to get (63) the actual monodromy
representation pm (V) from the wild monodromy representation ps (~). If X
is a connected Riemann surface, we will write

PROPOSITION 15. - (i) Let dES1 be a fixed direction. There exists a
"natural" functor Ç} from the tensor category of finite dimensional linear
representations of 1t 1, S « C*, 0); d) to the tensor category of finite dimensional
linear representations of 1t1 «C*, 0); d) such that

for every germ of meromorphic connection ~ at the origin.
This functor is defined by

where (pl, P2) is the pair of representations in GL (n; C) respectively
of S f «C*, 0); d) and G II (QP1) (pointed at d) associated to p (q = QP1’
and dl, ... , dp are the directions of Fr (q) contained in the interval

[0, 2 ~[ c (R, 0), ordered by the ordering relation induced by R).
(ii) Let X be a connected Riemann surface. There exists a "natural"

functor Ç} from the tensor category of finite dimensional linear representa-
tions of 03C0 1, S (X - ... ; . ) to the tensor category of finite dimensional linear

(62) We recall that we suppose all the representations continuous on 
(63) In some sense 1tl is contained in a "completion" of 1t1, S and ps can be extended to

this completion "by continuity". Then pm is the restriction to 1tl of this extension.
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representations of 1t 1 (X - ...; .), such that

for every meromorphic connection ~.
We can reformulate theorem 6 in a more "geometric form" (and extend

it to the global case), replacing the actual monodromy representation by
the wild monodromy representation in S’chlesinger’s theorem.

THEOREM 20. - Let K = C { x } [x-1]. Let ~ be a germ of meromorphic
connection at the origin. We ~x a C-basis of the space of horizontal sections
on a germ of sector bisected by a given direction d and identify the

Galois differential group GaIK (V) with its corresponding representation in

GL (n; C).
Then GaIK (V) is the Zariski closure of the image in GL (n; C) of the wild

monodromy representation

THEOREM 21. - Let X be a connected Riemann surface. Let KX be the
differential field of meromorphic functions on X . Let ~ be a meromorphic
connection on X, and xo E X a regular point for v. We fix a C-basis for the
space of horizontal sections of ~ on a germ of small "disc" centered at xo
and we identify the Galois differential group GalKX (V) with its corresponding
representation in GL (n; C).

Then GalKX (~) is the Zariski closure o, f ’ the image in GL (n; C) of the
wild monodromy representation

Examples and applications. - It is possible to compute explicitely wild
monodromy representations for generalized confluent hypergeometric differ-
ential equations (64) (using results of [DM]). These computations use
elementary functions and r function. It is possible to compute Galois
differential groups of generalized confluent hypergeometric differential

equations from these representations. This program is partially achieved
[DM], [M 1], [M2], [M3]. C. Mitschi has studied in particular order seven
case and got, after N. Katz [K3], generalized confluent hypergeometric
differential equations of order seven admitting the exceptional group G2 as
Galois differential group [M2], [M3].

(64) And for differential equations got from confluent hypergeometric equations by
"elementary operations", as, for instance, "Kummer pull-backs" [Kat 3], [M3]. (Differential
equations satisfied by accelerating and decelerating functions, and more generally by Faxen’s
integrals, correspond, when the parameters are rational numbers, to such pull-backs.)
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From theorem 18 (or theorem 17) it is also possible to get an interesting
result for the "inverse problem" in differential Galois theory [Ra 8]:

THEOREM 22. - Let L be a complex semi-simple Lie algebra. Let L p be
a finite dimensional representation o,f L. Then:

(i) There exists a rational differential equation D on P 1 (C), with singular-
ities contained in {O, + oo ~, 0 being regular and + oo irregular, such that
GalC (z) (D) is Zariski connected and such that

Lie GalC (z) (D) ,: L p (L) (isomorphism of complex Lie-algebras).
(ii) There exists a germ of meromorphic differential equation D at the

origin such that GalK D is Zariski connected and such that

We will end this paragraph by a comparison between N. view-

point and ours.
Let Xan be a compact connected Riemann surface. Let S be a fixed

.f’inite subset of We denote by D.E. S)) the tensor category of
meromorphic connections on Xan with singularities contained in S.
To each point Zo of S we can associate a fibre functor co of

the tensor category D.E. (Xa"; S)):
co (zo) (V) = { horizontal sections on a germ of neighbourhood of V }.
We will denote by S; zo) the group (automor-

phisms of the fibre functor co (zo)).
There is a natural map

each element of 03C01,s(Xan-S; S; zo) defines clearly an automorphism of
the fibre functor ro (zo).

Let Y be a smooth connected such that the corresponding
analytic variety is a connected Riemann surface We denote

by D.E. (Y/C) the tensor category of algebraic connections on Y. There is
a natural functor

If Xan is compact it yields an equivalence of tensor categories between
D.E. (Y/C) and D.E. (Xan; S)).
We denote by 03C0diff1 (Y/C; zo) the group (automorphisms of

the fibre functor 03C9 (zo)].
There is a natural morphism 1t~iff (Xan - S; S; zo) ~ 1t~iff (Y/C; zo). If Xan

is compact it is an isomorphism. We get:

PROPOSITION 15. - Let Y be a smooth connected C-scheme such that the

corresponding analytic variety is a connected Riemann surface Xa" - S = Yan,
where Xan is a Riemann surface and S a finite subset of Xa". Then
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zo) is an affine , pro-algebraic C-group-scheme , and , there , exists a

natural homomorphism of groups

Even if Xan is compact this map is not onto. We ignore if it is injective.
Anyway if Xa" is compact 1t1iff appears as an "algebraic hull" just
like 1t1iff appears as an algebraic hull of 1t 1 in the fuchsian case.

If G is a linear algebraic group we will denote by G° the (Zariski )
connected component of the identity.

If V is a germ meromorphic connection at the origin we will denote by
the restriction to the subgroup (Yo) of the representation p(V),

and by [resp. the Zariski closure of the image of 
[resp. If V is a meromorphic connection on a Riemann surface
we will denote by the Zariski clasure of the image of 

Theorem 19 sounds quite abstract, however (using only algebraic
methods) we can deduce from it quite interesting results. For instance we
get easily a variant of a result of O. 

PROPOSITION 16. - (i) Let ~ be a germ of meromorphic connection at
the origin. Then the map

induced by the monodromy representation o (V), is a , surjection.
(ii) Let V be a germ of meromorphic connection at the origin. Then the

map

induced by the formal monodromy representation , surjection.
(iii ) Let V be a meromorphic connection on a , Riemann surface , X. Let S

be a discrete ’ subset of X containing ’ all the singularities ofV. Then the map

induced by the monodromy representation pm (V), is a surjection.

Proofs mimic Gabber’s proof [Kat 1] (1.2.5., p. 18). Proof of assertion
(iii ) is similar to proof of assertion (i ), so we will prove only (i ) and (ii ).
We denote by G the finite group Let p’ be a fai thful
finite dimensional linear representation of G. Then p’ ps (V) is a finite

dimensional linear representation of the wild fundamental group

03C01, s ((C*, 0); "R + "), and, using theorem 19, we can interpret it as a mero-
morphic connection V on X, with singularities in S(p~(V’)=p’p~(V)).
Moreover V belongs to the tensor category "generated" by V.
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We have a commutative diagram of homomorphisms of groups

Using proposition 14 it yields a new commutative diagram of homomor-
phisms of groups

The Galois differential group being finite the connection 
fuchsian (65), then the map is Assertion (i) follows.
We have also a commutative diagram of homomorphisms of groups

The Galois differential group GaIK (V’) being finite the connection V’ is
fuchsian. Then the map pm (V’) is surjective, actual monodromy and formal
monodromy can be identified, and the map 03C1lf (V’) is also surjective.
Assertion (ii) follows.

.PROPOSITION 17. - (i) Let ~ be a germ of meromorphic connection at
the origin. Then

(a) IfGm (V) is Zariski connected, then GaIK (V) is also Zariski connected.
(b) If Gmf (V) is Zariski connected, then GaIK (V) is also Zariski con-

nected.

(ii) Let ~ be a meromorphic connection on a Riemann surface X . Then,
if Gm (V) is Zariski connected, then GalKx (p) is also Zariski connected.
Be careful, conversely GalKX (V) can be connected and Gm (V) or Gmf (V)

not connected. It is interesting to notice that we can decide if Gmf (V) is
Zariski connected using purely algebraic methods. This is not true in general

(6s) If a connection is not fuchsian its Galois differential group contains a non trivial
exponential torus and cannot be finite.
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for the connectedness of however there are exceptional (and inter-
esting...) cases (see examples below).

Proposition 17 follows immediately from proposition 16. There is also a
"more elementary" proof:
The exponential tori are connected, and, if S is a Stokes multiplier "in"

then S is unipotent and the one-parameter 
is connected and entirely contained in Then exponential tori are
subgroups of and Stokes multipliers belongs to 

Proposition 17 follows.

Example. - Following ideas of N. Katz [Kat 1] proposition 17 yields
elegant methods of computation of some Galois differential groups. Let
V be a meromorphic connection on the Riemann sphere with singularities
contained in S={0, +00}, 0 being regular or regular singular and +00
irregular. We fix a base point Monodromies around zero and

infinity are inverse each other and algebraically computable (using Fro-
benius algorithm). We get in particular interesting situations when 
is Zariski connected (especially when the monodromy around zero is

trivial ) and when the Newton polygon of V at infinity admits only a slope
A;&#x3E;0, where the rational number k is not an integer. Then the monodromy
acts non trivially by conjugacy on the exponential torus and we get (even
if it is not so evidence at first glance...) a lot on information on the
connected group (V) (particularly in the irreducible case).
As an example of application of these ideas we will give a very

easy computation of the Galois differential group for Airy equation
"

The (actual) monodromy of D is trivial, then is Z-

connected and Gale (z) (D) is also Zariski connected. Using a formal funda-
mental system of solutions for D at infinity we identify GalC (z) (D) with a
subgroup of GL (2; C). The Wronskian of a fundamental system of sol-
utions being constant we get more precisely a subgroup of SL (2; C).

If our fundamental system of solutions is "well chosen" [MR 2], then
the exponential torus is

and , the formal monodromy matrix is

The formal monodromy matrix M acts non trivially on the exponential
torus T (it permutes the characters). We have
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and

But the only connected subgroup of SL (2; C) containing T U TM is
SL (2; C) itself. We get
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