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ABSTRACT. - A time dependent Dirac equation

is considered, where (A, p) is the Lienard-Wiechert potential produced by
a finite number of nuclei with charges Zk moving along the trajectories

..., N. We show that the equation uniquely generates a
unitary propagator U (t, s) in such that
U (t, s)H±1(R3, ([4) = H:t 1 (1R3 ([4). The assumptions are: |Zk|  3/2 (or
~ 118 in atomic units), qk~C3, qk(t)~qj(t) for and 

j, k = 1, ..., N. The proof uses a linear transformation of the unknown u
associated with a "local pseudo-Lorentz transformation", which locally
freezes the motion of the nuclei, and the theory of abstract evolution
equations.

RESUME. 2014 Nous considerons une equation de Dirac qui depend du
temps ou (A,(p) est Ie potentiel de
Liénard-Wiechert produit par un nombre fini de nucleons de charge Zk
qui se deplacent sur des trajectoires x = qk (t), k =1, ..., N. Nous pro-
uvons que 1’equation engendre un unique propagateur U (t, s) dans

L 2 (1R2, ([4) tel que U (t, s) H ± 1 (~3, ([4) = H:t 1 (1R3, C4). Nous supposons
que : |Zk|  J3/2 (ou ~118 en unites atomiques), qkEC3, 
pour et ~,A:=1, ... , N. La preuve utilise une

Annales de l’Institut Henri Poincaré - Physique theorique - 0246-0211
Vol. 54/91/02/209/13/$3,30/c) Gauthier-Villars



210 T. KATO AND K. YAJIMA

transformation lineaire de l’inconnue u par une « pseudo transformation
de Lorentz locale » qui gele localement Ie mouvement des noyaux ainsi
que la theorie abstraite des equations d’evolution.

1. INTRODUCTION

We consider a time dependent Dirac equation

H(t)=a-D+ (1.1)
where D = - i ax = - i (a 1, a2, a3), m~0 and (A, p) is the Liénard-Wiechert
potential produced by a finite number of moving nuclei qk (t) with charges
Zk, k =1, ... , N:

Sk = Sk (t, x) being the retarded time for the k-th nucleus:

and

We assume " that ..., qk3 (t)) E ~3 is of class C3,
for and o

In what follows C4) is the standard Sobolev space of order
and is the standard norm in HS and

we write ~.~ for ~. /10’ where 6 is 3-dimensional Laplacian. For Banach
spaces X and Y, B (X, Y) is the set of bounded operators on X to Y,
B (X) = B (X, X) etc. C* indicates the strong continuity of operator valued
functions, e. g. C* (1R2, B (H)) is the class of functions ~2 -+ B (H) which
are strongly continuous.
The purpose of this paper is to solve ( 1.1 ) in an appropriate function

space, by constructing the propagator U (t, s), t, s E ~1, which maps M()
to u (t) : u (t) = U (t, s) u (s) and prove the following theorem.

l’Institut Henri Poincaré - Physique theorique



211DIRAC EQUATIONS WITH MOVING NUCLEI

THEOREM. - Let 
..., qN (t) E C3 ~3) satisfy (1.3), 4 and ,

Suppose, in addition, that

Then

There is a , unique , propagator {U (t, s), - 00  t, s  with the following £

properties:

(2) U (t, s) = U (s, t)*. U (t, unitary in H.
(3) For /=0, 1, we have ,

For proving the theorem, we want to apply to ( 1.1 ) a general theory of
evolution equations such as given in [4]. In this attempt, we are faced
with two major problems: one is the construction of the selfadjoint opera-
tor H (t) for fixed t E (~1, and the other is the difficulty due to high
singularity produced by moving Coulomb potentials, which makes it

impossible to apply general results for evolution equations directly to
(1.1).
The problems will be resolved by applying to ( 1.1 ) a "local pseudo-

Lorentz transformation", a change of variables which resembles the spatial
part of the boost by the velocity followed by the translation by 
near qj (t) and which freezes the singularity of the potential at least for a
small time interval Hunziker [3], where a local distortion technique
is used to freeze the singularity of the potentials for solving time dependent
Schrodinger equations with moving Coulomb singularities. If we introduce
a new unknown function M(~)=T(~)M(~), using the family of unitary
operators T (t) associated with this transformation, the equation ( 1.1 )
converts into the form

where Ho, H’ (t), V and e (t) satisfy the following properties:
(a) Ho is the free Dirac operator: 
(b) V is a multiplication operator with a static Coulomb potential with

N

N singularities: V (x) _ ~ 
k= 1

(c) H’ (t) is a family of formally selfadjoint differential operators of first
order of the form H’(~)=G(~ x).D+G’(t, x), where the components G~
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212 T. KATO AND K. YAJIMA

j =1, 2, 3, of G and G’ are bounded 4x4 matrix valued functions such
~C,~G~,j~ 

arbitrarily small.
(d) e (t) is a multiplication operator with a Hermitian matrix valued

smooth function 0(~, x) such that 0(~, x):t 1 is bounded with its deriva-
tives.

It will be shown that the family of Dirac operators 
is a smooth family of selfadjoint operators in with constant domain
H1 with C~ as a common core. Hence, so is H (t) and, this enables us to
solve the modified equation ( 1. 7) by applying the result in [4], which, in
turn, gives the solution of ( 1.1 ) via the transformation T (t).
The rest of the paper will be devoted to proving Theorem. In section 2,

we shall examine the singularity of the potential (A (t, x), cp (t, x)). Then,
in section 3, we introduce the local pseudo-Lorentz transformation. Using
this transformation, we convert ( 1.1 ) into the form ( 1.7) and show that
the modified Hamiltonian :fí (t) satisfies the conditions (a) to (d) mentioned
above. This will be done in section 4 and we shall complete the proof of
Theorem in section 5. We shall denote various constants depending only
on v and Q indiscriminately by C.

2. LIÉNARD-WIECHERT POTENTIALS

For solving ( 1.1 ), we need a precise information about the singularity
of the potential (p2014(x’A. Since it is a sum of the Lienard-Wiechert

potentials produced by a single moving nucleus, we treat here a single
nucleus with charge Z. We let x = q (t) represent the motion of the nucleus
and assume q E Cl (f~, f~3) (l &#x3E;-_ 2) with and 
t E f~ 1. We write Q= {(~, x): ;c~(~)}.
LEMMA 2.1. - The equation t - s = ~ x - q (s) ~ / uniquely determines the

retarded time s=s(t, and r(t, We have

Proof - is continuous and monotone

increasing from - 00 to 00 by the assumption, s=s(t, x) is uniquely
determined as a continuous function. If q (t) ~ x, ~ x - q (s) ~ ~ 0 is Cl in
(s, x) near (s (t, x), x), and the implicit function theorem implies the
smoothness property of sand r as stated in the lemma. Since

and

Annales de l’Institut Henri Poincaré - Physique theorique



213DIRAC EQUATIONS WITH MOVING NUCLEI

(2.1 ) follows immediately. []
For a single moving nucleus we have, suppressing obvious variables,

( 1- a ~ q (s)) cp with 2014y’~(~))~. Since the singularity
of the potential appears only at the zero of

we write y = x - q (t) and study the behavior of I r I - (s) as j y 1-+ 0. We
denote by the partial derivative with respect to t with y kept
constant. We use the following two lemmas.

LEMMA 2.2. - We have, with p = I r 2014r’~(~),

Proo, f : - Differentiating I and r=x-q(s)=y+q(t)-q(s) by
we have

Solving these equations yields the first identity of (2.2). The second can
be proved similarly. []

In what follows we write/=3(~) (~=1, 2, ... ), if Ilj and

+ where C is a constant depending only on v
and Q.

LEMMA 2.3. - 

- 

Proof - We prove the lemma for h 1 only. By Taylor’s formula, we
have

and (2.1 ) implies |h1|~Cy2. Using 2.2 we compute:

and

Applying estimates (2.1), I P ~) ~ (1- ~) ~ and

Vol. 54, n° 2-1991.
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to the identities above, we obtain

Using r ~ =t-s and r=y+ (q (t) - q (s)), we write, with the notation of
Lemma 2.3,

where, in virtue of Lemma 2.3, hl ~ q (s) + h2 (q (t) - q (s)) _ ~ (y2). On the
other hand, the square of the defining equation, (t - s)2 - r2 = o, can be
written in the form

where Solving the last equation in (2.4) for (t - s),
we see

which with (2.3) implies the statements on (p in the following lemma.

LEMMA 2.4. - Let (l &#x3E;-_ 2) and

Iq(t)1 Set

Then we have ,

and ,

where q/ and , (p E 1 (Q) respectively the ’

Proof. - It suffices to show (2.7) and (2.9). We write

and o set x)=a- (q (t) - q (s)) cpo + 0 , t x). Then (2.9) fol-
lows from (2.8), Lemma  2.1 and o 2.2..

Annales de Henri Poincare - Physique " theorique ’
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3. LOCAL PSEUDO-LORENTZ TRANSFORMATIONS

1. By a symmetric cutoff function we mean a real valued, nonnegative
smooth function ç on such with C having the
following ch (r) = 0 for ~p&#x3E;0, D(r)=l for

0~~~p’&#x3E;0, and strictly monotone decreasing in between. p (p’) will be
called the outer (inner) radius for ç. The sup-norms of I and

will be called the slope and characteristic number of ç, respec-
tively.

LEMMA 3.1 (cf Hopf [2, p. 13]). - There is a symmetric cutoff function
given outer radius p and with arbitrarily small characteristic number.

Proof. - Let n =1, 2, ..., with supports in (0, p) and
with 1, n -~ oo , for re(0, p). Set

Then 03B6n (x) _ 1&#x3E;n ( is a symmetric cutoff function with outer radius p.
Since 03BBn -+ oo by monotone convergence theorem, we have sup |r03A6’n(r)| 1-+ 0
as 

Remark. -~ (a) A small characteristic number y requires a small inner
radius p’ and a large slope. Indeed, it is easy to see that p’/p _ e - ~ ~’~ and
sup i ~~ I &#x3E;_ e1~2’’/2p.

(b) A simple example of a symmetric cutoff function is given via
C (r) = E (log (1+1/s)), is an increasing
function such that for E(s)=1 for ~2 and 0E(~)1 in
between. The characteristic number of this function is (9(l/Iog(l/s)).

2. Let q = q2, (/~2) with and  1. (In
this section 2, 3, denotes the j-th component of q. This should
not be confused with the notation in other sections where qk represents
the k-th nucleus.) Using a symmetric cutoff function ç, we define a
transformation x -~ x = (~, t) by

This is a of 1R3 into itself for fixed and depends on t in
the possibility that for some t does not cause any

difficulty, since the dependence of (3.1 ) on q(t) is analytic for  1.

If we take the coordinate system in which q(t) is parallel to the x1-axis
(which may depend on t), (3.1 ) takes the form

Vol.54,n"2-1991.
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Let p and p’ denote the outer and inner radii of ç. Then (3.1 ) reduces
to x=x for ~p where ~(~)=0. Thus (3.1 ) fixes all points outside the
ball Bp = ~p }c[R3. For x ~ ~p’, on the other hand, ~)==1 and
(3.1 a) looks like the spatial part of the Lorentz transformation. As will
be seen below, it has the merit of converting the Lienard-Wiechert potential
into a static Coulomb potential.
To study the behavior of the transformation in more detail, we shall

compute the Jacobian matrix. To simplify the notation, we set

A straightforward computation then gives (for simplicity we suppress the
arguments in ç, and 0))

In the special coordinate system considered above, this simplifies to

(3.3 a) shows that the main part of the Jacobian is a diagonal matrix with
element (00, 1, 1 ), where 1, and the remaining elements are majorized
by 003 (y + M I t I ), where 003 ~ ( 1- q2) - 3/2 and y and M denote the charac-
teristic number and the slope of ç, respectively. (Note that |q (t)| ~ |t|
’because q (o) = 0 and |q I  1.) Since we can take y arbitrarily small for a
given p (Lemma 3 .1 ), this leads to

LEMMA 3.2. - Let q E Ci 1R3) (l &#x3E;_ 2) with q (o) = 0, q ( ) t I  1. Given

any p &#x3E; o, we can choose a symmetric cutoff function 03B6 with outer radius p,
and a number i &#x3E; 0 in such a way that the following conditions are met.

(1) (3.1) is a C~-diffeomorphism of 1R3 onto itself for I t I ~ 03C4, with the

Jacobian determinant J &#x3E; 1/2, say, and depends on t in 

(2) For each t E [ - i, ’t], the ball Bp is mapped onto itself, while each point
outside it is fixed. Moreover, |q (t) I  p’, where p’ is the inner radius of ç.
For later use we deduce an estimate for at x, which depends on t in

here the first term comes from differentiating 03B6q, which appears twice in
(3.1 ), while the remaining terms contain either a factor or

q (t) = 0 (t), with other factors uniformly bounded.

Annales de l’Institut Henri Poincaré - Physique theorique
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4. THE MODIFIED DIRAC OPERATOR

We now consider the Dirac equation

We wish to convert the equation (1.1) into a more tractable form. To
explain the basic idea, we first consider the case when (A, p) is the
Liénard-Wiechert potential due to a single moving nucleus with charge Z.
As in section 2, we let jc=~(~) represent the motion of the nucleus, where
~eC~(fR,~), with ~(~~1 and It was
shown in Lemma 2.4 that

where cp E Cl (D) is a Hermitian matrix-valued function which satisfies

(2.9).
We want to freeze the motion of the nucleus. To this end we apply to

( 1.1 ) a local pseudo-Lorentz transformation (~)=L~(~jc) given by
Lemma 3.2, restricting t within ( - i, t) in the sequel; actually we shall
later have to restrict to a smaller interval. Since we want preserve the
formal selfadj ointness of the Hamiltonian in (1.1), we introduce a unitary
transformation T (t) from H = L2 «(R3, dx) to  = L2 «(R3, dx) by

and transform the unknown function by

where J is the Jacobian determinant for Lq, ~ (see Lemma 3.2). Note that
T (t) is not only a smooth family of unitary operators but also of isomor-
phisms of HS for every s E ~.
A straightforward substitution using (3.3) leads to the following modi-

fied equation, where the arguments in ~(~), q (t), etc. are suppressed for
simplicity, ~ _ ( 1- ~2 q2) - 1 /2 and 

Here we have replaced cpo with which is obtained by
replacing q the difference being included in the term W; note that
the difference is a bounded function because ç =1 for p’, where p’ is
the inner radius of ç (recall that by Lemma 3.2, (2), ’t has been chosen so
small that the singularity q of cpo is inside the ball Bp’); W also includes

which is also bounded (note that at J and axJ involve
the second derivatives of ç, but these are bounded functions); F is a

Vol. 54, n° 2-1991.
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matrix-valued 3-vector, including the expression O(p)+O(t) in (3.3 b), as
well as the term derived from the second line in (3.3), which are of the
order ~(y)+9(M~), as was shown in the proof of Lemma 3.2. (Here p
is the outer radius and y is the characteristic number, and M is the slope
of ~.) Thus I can be made arbitrarily small by first choosing p and y
small (which is possible by Lemma 3 .1 ), and then reducing t further if
necessary. Note that the derivatives in x of F, W, ~tF and ~tW are also
bounded because q is C 3 and that Hence,

H~(.)~C~((-T, H))nC~((-T, T),B(f&#x26;, H-’)).
In (4.3 a-3 b), the space variables are x rather than x, so that ç and p

should be regarded as functions of t and x. Then 8 (t) is formally selfad-
joint for each t, as is guaranteed by its derivation. Hence it is a symmetric
operator in  = L2 (1R3, dx).
According to Lemma 3.2, x ~ I ~ p is equivalent to so that ~ = 0

if x ~ ~p. Moreover, F and W vanish identically there. In the exterior
of J)p, therefore, the operator H (t) is the standard Dirac operator
a-6+(l-(x’~)(p+~p, where the potential cp is bounded.
Now P, takes a simple form:

To see this, we may assume that (otherwise it is obvious). Let
y = x - ~ q and let y = y’ + y" be its decomposition into parallel and perpen-
dicular components to q. Then (3 .1 ) shows that

hence

which proves (4.4).
Also the first order part of Ho (t) can be reduced to a simple form. To

see this we define a quantity 8 by

which is analytic in q for q ~  1. The following relation can be verified
easily:

LEMMA 4.1. - Set e = e80153 . q/2. Then is a , smooth family of bounded
selfadjoint operators in I which are , also , isomorphisms 

’ 

SE fRo We

AnnaTes de l’Institut Henri Poincaré - Physique - theorique
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have

Note that 0=1 for ~p (because 8 = 0 there).
Proof - (4.7 a) is obvious if so we may assume We decom-

pose the vector a into a=(x’+o~ where a’ = q - 2 (a ~ q) q is the component
parallel to q and a" = a. - a’ is the perpendicular. Then we have

where we have used the relation

If we multiply (4.8) from both sides with O = ee°‘ ’ q~2, where commutes

with a’ and anti-commutes with a", the result is a’ + a" = a, yielding (4.7 a).
The first part of (4.7 b) follows from (4.4) and (4.6 b). The second one

is true since and 13 anticommute.
In this way we arrive at the form

where W" is a matrix valued function arising by commuting e and D, and
is bounded with its derivatives up to second order in t and x. Except for
this bounded perturbation, (4.9) is the Dirac operator with the static

potential 
Next we consider the case of N moving nuclei. Let 

j =1, ... , N, be their orbits. The potential is given by 
7=1

N

A = ~ A~, with obvious notation.
7=1 1

We introduce local distortion near for each j. To this end we
choose p&#x3E;O sufficiently small that N balls are

disjoint, and a symmetric cutoff function ç with outer radius p. Then we
define local pseudo-Lorentz transformation

We shall choose ç in such a way that the preceding results for a single-
nucleus system hold true for each nucleus, with sufficiently small ’to

Then the N transformations merge into a single diffeomorphism
(t, x) -+ (t, x) = L (t, x) of the slab Sz, with the Jacobian determinant
bounded and bounded away from zero, which fixes each point outside
N

j= 1

Vol. 54, n° 2-1991.
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If we set u (t, x) = T (t) u (t, ~ ) (x) = J -1~2 u (t, x) as in (4.2 a), ( 1.1 ) is
transformed into (4.3), where H (t) takes different forms in different parts
of Let ej be the operator corresponding to the e used above. Since
0398j=id outside ..., ON combine smoothly into a single operator
e, so that we have a generalization of (4.9):

where W’ is a bounded function with its derivatives in (t, x) up to second
order, while H ‘ ( ~ ) E C; « - i, ’t), B (Hi, n C; « - i, ’t), B H -1 ))
has a form analogous to (4.3 b). Here the condition qk E C3, k =1, ... , N
is used for showing the C1-property of H’ (t).
LEMMA 4.2. - If I Zj I  ~/2, Ho (t) is selfadjoint with domain Hi.

Moreover we have,

where C &#x3E; 0 depends only on v.
Proof - e Ho (t) e is, except for a bounded perturbation, identical with

the Dirac operator with N static Coulomb singularities with charges Zj
smaller than J3/2. Therefore it is selfadjoint. Indeed this is known for a
single nucleus (cf Arai-Yamada [1] and Schmincke [5]); for many nuclei,
it can be proved by a standard method using a partition of unity to isolate
the singularities. The desired result follows from this, since O ± 1 are matrix
valued functions with norm not exceeding a number depending only on

..., N.

THEOREM 4.3. - I  3/2, H (t) is selfadjoint and depends smoothly
on t. we can and 03C4 in such a way that for t~(-t, i),
H (t) is selfadjoint in H with constant domain H 1 and 6(’)eC~((2014T, i),

~)) ~1 C* ((-i~ r), H-’)).
Proof - According to Lemma 4.2, it suffices to show that H’ (t) is

bounded relative to Ho (t) with small relative bound. This is true since, as
is remarked above, F can be made arbitrarily small by choosing y and ’t

small; here it is essential that making y small may affect ç but not the
constant C in (4.11). N

5. PROOF OF THEOREM

We are ready to prove Theorem by applying the abstract theory of
evolution equations given in [4].
Proof of Theorem. - In virtue of the standard continuation argument,

it suffices to prove the theorem in a small interval 1= (-T, ’t). Theorem

Annales de l’Institut Henri Poincaré - Physique theorique



221DIRAC EQUATIONS WITH MOVING NUCLEI

4.3 shows that H (t) in the modified equation (4.3) is selfadjoint in H with
constant domain H1 and H (’) E C* (1R1, B (HB Hence, due to a result
in [4], there is a unique for the

family H (t) that satisfies the statements of Theorem with H (t) and
U (t, s) replacing H (t) and U (t, s), respectively. Define using the
transformation T (t) of (4.2) (or its generalization to N-nuclei case),
U (t, s) = T (t) -1 IJ (t, s) T (s). Since T (t) is a smooth family of unitary
operators from m to IHI which are also isomorphisms of H:t 1, it is easy to
see that U (t, s) satisfies the statement of Theorem for t, s E ( - i, t). To
prove the uniqueness of the propagator U (t, s), it suffices to show that

is a propagator associated with the family
{ H (’)}. This, however, is obvious from the derivation..
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