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Polynomial bounds on the number of scattering poles
for symmetric systems

G. VODEV

Section of Mathematical Physics, Institute of Mathematics,
Bulgarian Academy of Sciences, 1090 Sofia, Bulgaria

Ann. Poincaré,

Vol. 54, n° 2, 1991, Physique theorique

ABSTRACT. - In the case of symmetric first order systems in [R", ~ ~ 3,
odd, it is shown that the number N (r) of the scattering poles in the disk
of radius r satisfies the estimate

RESUME. 2014 Dans Ie cas de systemes symetriques de premier ordre dans
~n, ~~3, impair, on montre que Ie nombre N (r) des poles de la diffusion
dans Ie disque de rayon r satisfaise 1’estimation

1. INTRODUCTION

The purpose of this paper is to obtain a polynomial bound on the
number of the scattering poles associated to the problem

~ n ~
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where n~3, odd, Hom Cd) are
Hermitian matrices, and Hom Furthermore, we
make the following assumptions:
(a) There exists a constant c &#x3E; 0 so that for all I being
the identity d) matrix ;
(b) There exist constant Hermitian matrices A?, 7=!, .. , n, and
Po&#x3E;O so that E(x)=I, and for 

Under the above assumptions, it is well known that the operator
/ " B

has a skew selfadjoint realization, which

will be denoted by G, in the Hilbert space H which is by definition the
space Cd) equipped with the scalar product

where ( , ) denotes the scalar product in Cd. Then, the solutions to ( 1.1 )
are expressed by the unitary group U (t) = exp (t G). Denote by Go the

n

skew selfadjoint realization of the operator ~ in the Hilbert
.7=1

space Ho = L2 Cd) and set Uo (t) = exp (t Go). Note that the assumption
(a~ means that the operator G and Go are elliptic. Then, it is well known
(see [5]) that the scattering matrix relating the unitary groups Uo (t) and
U (t) has a meromorphic continuation to the entire complex plane C.
Moreover, the poles of this continuation, called scattering poles, coincide,
with multiplicity, with the poles of the meromorphic continuation of the
cutoff resolvent to the entire C,
where for Rez&#x3E;0, is such that 3(==1 for

! x|~ Po + 1, X = 0 for Po + 2. Let {zj} be these poles repeated accord-
ing to multiplicity, and set

Our main result is the following

THEOREM 1. - Under the above assumptions, there exists a constant
~~
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201POLYNOMIAL BOUNDS

Note that in some cases the following sharper bound is known to hold:

In [7] Melrose proved (1.3) in the case of the Laplacian in exterior domains
with Dirichlet or Robin boundary conditions, while in [ 14] Zworski proved
( 1. 3) for the Schrodinger with a potential

Recently, in [11], we have proved (1. 3) for the number of the
scattering poles associated to the operator

where ~3, odd, c (x) E c (x) &#x3E; 0, V x E gi~ (x) E COO are such

that the is a strongly positive Hermitian one for all

finally, c (x) =1, for with some po &#x3E; 0, bi~ being
Kronecker’s symbol. In these three papers, however, the fact that the
unperturbed generator is the Laplacian A in [R" has been essentially
exploited. This suggests that the sharper bound ( 1. 3) could hold in the
case of the operator G if the characteristics Àj (ç) of Go, which are by

n

definition the eigenvalues of the matrix ~ A° çj, ç E fRn", 0, are of constant
j= 1

multiplicity and hence of class Coo (WB0). In this work we make no

restrictions on the ~(~). In particular, they may be of nonconstant multi-
plicity and hence nonsmooth. Note that in this generality it is hardly
possible to improve ( 1. 2) to the bound ( 1. 3). In the present paper we
propose an approach different from the ones in [3], [4], [6], [7], [ 10], [11] ]
and [14], based on an application of Huygens’ principle for Uo (t), only.
Note that in our case Huygen’s principle holds, as n is odd and by the
assumption (d) the Àj(ç) do not vanish in 
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2. REPRESENTATION OF THE CUTOFF RESOLVENT

By Theorem 1. 3 . 5. of [2], given any integer ~ ~ 1 there exists a function

(t) E Co such that supp [ 1; 2], 03A6mdt == 1 and
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202 G. VODEV

with a constant C &#x3E; 0 independent of k and m. Setting

we have for ~2, for ~1.
Set It is easy to see that

Let V m (t) denote the solution to the
equation

By Duhamel’s formula, we have

Writing (2.2) in the form

where Q = G - Go, we obtain using Duhamel’s formula once more:

Now we are going to take Fourier-Laplace transform of this identity.
Before doing so, however, let us recall the definition of this transform.
Given two Hilbert spaces X and (X, Y) will denote the space of all
linear bounded operators acting from X into Y. Let P (t) E 2 (X, Y) be
an operator-valued function such that Y), V/eX, and

with C independent of t. Then, the Fourier-Laplace
transform P (z) (X, Y) of P (t) is given by

for Re z&#x3E; 0, and is holomorphic in this region.
Now, since R(z)= -U(z) for Rez&#x3E;0, by (2 . 4) we get

Multiplying the both sides of this identity by x, since Q = 3( Q, we obtain

Since Pm = 0 for ~2, clearly extends analytically to the entire C
with values in H). In what follows given a compact operator ~
j (A) will denote the characteristic values of A, L e. the eigenvalues of
(j~* ~)~~, ordered, with multiplicity, to form a nonincreasing sequence.
Also, we shall always suppose that ~~+1. We need now the following

Annales de l’Institut Henri Poincaré - Physique théorique
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LEMMA 2. - ~~ ’ ’

’ ~~ ’ C ~

trace ’ _ ’ H). ’ ’ C&#x3E;0

~~ z ~o ~~~

Assume for a moment that the conclusions of Lemma 2 are fulfilled.

By (2 . 6), is invertable in 2 (H, H) for Hence,

by the analytic Fredholm theorem, since is an entire family of
compact operators, we conclude that is a meromorphic
function on C with values in 2 (H, H). Now, by (2 . 5) we deduce that

R (z) has a meromorphic continuation to C with values in 2 (H, H) and
the poles of this continuation, with multiplicity, are among the poles of
( 1 Hence, introducing the entire function

we conclude that the poles of Rx (z), with multiplicity, are 
’ 

among j the zeros

of hm (z). Now, to obtain (1. 2) we need o the following j

LEMMA 3. - There ’ exists a constant C&#x3E;O independent ofm so that

Proof. - We shall derive (2.9) from (2.7) and (2.8). First, it is easy
to see by (2 . 8) that there exists a constant C &#x3E; 0 independent of m so that

Indeed, by (2 . 8), for with to be chosen below, we
have

where C’&#x3E;O depends on C and h only. Now, taking q=C’ yields (2.10).
By Weyl’s convexity estimate, in view of (2 . 7) and (2 .10), for I z = m, we
have

which is the desired estimate. The proof of Lemma 3 is complete.

Vol. 54, n° 2-1991.
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Proof of Theorem 1. - By Jensen’s inequality (see [9]) and the analysis
before Lemma 3 we can conclude that

with a constant C1 &#x3E; 0 independent of m. This combined with (2 . 9) yield

with C~&#x3E;0 independent of m. Now, since (2.12) holds for any integer
~~+1, this implies ( 1. 2) at once.

3. PROOF OF LEMMA 2

Taking Fourier-Laplace transform of (2. 3) we get

where ’ Clearly, Fm(z) has an analytic continuation to
the entire ’ C with values in J~f (H, H). We need 0 now the following.

LEMMA 4. - The operator-valued function Fm (z) x takes values in the
trace class operators in ~ (H, H). Moreover, there , constant C&#x3E;O
so that

Assuming that the conclussions of Lemma 4 are fulfilled we shall com-
plete the proof of Lemma 2. By the finite speed of propagation of the
solutions to the problem ( 1.1 ) it is easy to see that there exists a constant
p&#x3E;0, independent of m, so that for 

b’ f EH. Hence, choosing a function such that 3(1 =1 for

|x|~03C1+1, ~1 = 0 for we deduce

On the other hand, by Huygens’ principle, there exists a constant T&#x3E;O
so that ~ U0(t)~1=0 for Hence,

Hence, 3( Ro (z) x 1 can be continued analytically to the entire C with values
in 2 (Ho, Ho) and for this continuation we have

l’Institut Henri Poincare - Physique theorique I
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with some constant C&#x3E;0. Now we shall show that so is true for the

operator Since

we have

where 3(2 = X] - X is a matrix-valued function with entries of class

Cy Here [ , ] denotes the commutator. Since Go is elliptic, we have
Ho). Now, the above representation gives the desi-

red analytic continuation of QR0(z)~1 as well as the estimate

for all z E C. By (3 . 4) and (3 . 5) we get

Now, in view of (3.1), (3 . 3) and Lemma 4 we can conclude that
and can be continued analytically to the entire C with

values in the trace class operators in 2 (H, H). For a later use observe
that it follows from (3 .1 ) and (3 . 3) that

with a constant C &#x3E; 0 independent of z and m.
To prove (2 . 6) observe that for by (3 . 5) we have

Now (2. 6) follows from this estimate, (3 . 7) and the estimate

for ze tR, z~ 1, with a constant C’ independent of z and ~!.
To prove (2. 7) observe that

with a constant C"&#x3E;O independent of m and z. Now (2 . 7) follows from
this estimate, (3 . 6), (3 . 7) and the well known inequality ~~ (~) _ ~ i ~ ~ i ,

Finally, note that (2 . 8) follows from (3 . 2), (3 . 6) and the well known
inequality b’~-

Vol. 54, n° 2-1991.
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4. PROOF OF LEMMA 3

Setting pm(t, z)=(-~t-1)m(e-tz03A6m(t)), we have .

Clearly, z) is an entire function in z, and hence, by (4 .1 ), Sm (z) is
an entire 2 (H, H)-valued function. Furthermore, by (2 .1 ), we get

with some constant C1 &#x3E; 0 independent of t, z and m. This together with
(4 .1 ) lead to the estimate

Set Q = { ~ E IRn : p + 3} and denote by Hn the Hilbert space obtained
as a closure of C~(Q; C~) with respect to the norm of H. Then the
operator G restricted on C~0(03A9; Cd) has a skew selfadjoint realization,
which will be denoted by Gn, in Hn. It follows from the definition of Gn
that if f~H and supp f~03A9, then To complete the proof of
Lemma 3 we need the following
LEMMA 4. - The operator (Gn -1) -1 E 2 (Hn, 

over, there exists a constant C&#x3E;0 so that

Annales de l’Institut Henri Poincare - Physique theorique
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Remark. - It follows from (4 . 3) that the operator (Gn - 1) -m is trace
class for 1.

Suppose that the conclusions of Lemma 4 are fulfilled. Then, in view
of (3 . 3) and since supp x ~ 03A9, we have

Now, by this identity and the above remark we conclude that 
forms an entire family of trace class operators in 2 (H, H). Moreover,

which together with (4. 2) and (4. 3) imply (3 . 2) at once.

5. PROOF OF LEMMA 4

Set ~ _ (G~ - 1)’~. Since the operator Go is elliptic, j~ sends Hn into
the Sobolev space Hi (0; Hence, by Rellich’s compactness theorem,
A is compact. Moreover, if 039403A9 is the selfadjoint realization of the Laplacian
A with domain in the Hilbert space L 2 (0), we have
(1 - 0~) 1 ~2 ~ Hence,

On the other hand, it is well known that

Hence,

Now we shall show that (5.1) implies (4.3). Clearly, for the adjoint
operator j~* of j~ we have ~* _ ( - G~ - 1)’~ and hence ~*~ _ ~~*.
This immediately yields

Setting ~ _ (~* ~)1~2, we clearly have that ~‘ is a selfadjoint positively
definite compact operator. Hence ~,~ (~m) _ ~,~ (~)m, which together with
(5 . 2) imply

Now (4 . 3) is an immediate consequence of (5 .1 ) and (5 . 3). This

completes the proof of Lemma 4, and hence the proof of ( 1. 2).

Note added in proof. - In fact, in the rigth-hand side of (2. 11) it should be added a

term of the form - Clog where C &#x3E; 0 is independent of m and ~7~0 is such that

Vol. 54, n° 2-1991.
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hm (z) = zM (am + o (z)), as z ---+ 0, with some integer M ~ 0. Unfortunately, it is not very clear
how estimate from below for large m. This difficulty can be avoided in the following
way. By (2 . 6), there exists zo &#x3E; 0, independent of m, so that 1 /2. Hence

!!(! 1 + QVm (zo) x) 1 ~ ~ _ 2. It is easy to see that

Using all this, in the same way as in the proof of lemma 3, one can obtain

Denoting by N (zo, r) the number of the scattering poles in a
disk of radius r centered at zo, by Jensen’s inequality we have

It is easy to see that 10z0 we have

Now (2 . 12) follows from the above estimates and (2 . 9).
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