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ABSTRACT. - I show that simultaneous uniformization of a family of
Riemann, surfaces corresponds to a sheaf of graded Lie algebras defined
on the family. This sheaf is equivalent to the family of super Riemann
surfaces defined in [4]. Since the Teichmuller deformations of these two
constructions are the same, the present approach to super Riemann
surfaces seems to be economical enough to obtain an explicit modular
equivariant construction, and hence the global space of moduli of super
Riemann surfaces.

RESUME. - Nous montrons que a l’uniformisation simultanee d’une
famille de surfaces de Riemann correspond un faisceau d’algebres de Lie
gradue defini sur la famille. Ce faisceau est equivalent a la famille de
super surfaces de Riemann definie dans [4]. Puisque les deformations de
Teichmuller de ces deux constructions sont identiques, cette approche des
super surfaces de Riemann semble suffisamment efficace pour obtenir une
construction modulaire equivariante, et donc l’espace global des modules
des super surfaces de Riemann.

1. Introduction.
2. Sheaves of graded Lie algebras over a single Riemann surface.
3. The graded Lie algebra sheaf over a family.
4. Super Riemann surfaces and their moduli.

Classification A.M.S. : 30 F 10, 32G15, 17 B 70, 58 A 50.
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166 P. TEOFILATTO

1. INTRODUCTION

A fundamental construction in Riemann surface theory is the uniformiz-
ation of a Riemann surface M, that is the possibility to represent M as
the quotient of a domain in factored by the group of covering
transformations.

Namely, let (Ua, zj be an atlas of M belonging to its complex structure,
an element of the space of projective connections of M, an

affine space over the space of holomorphic quadratic differentials of M [ 1 ] .
Then the local solutions f03B1 of the Schwarz problem

patch together on a universal covering space M of M, defining a global
map (the monodromy map)

which is a local homeomorphism.
The monodromy group r of the map ( 1. 2) is a subgroup of PL (2, C)

and M can be identified with the quotient f (M)/r (if f (M) is simply
connected and different from C P1 [ 1 ]).

In particular, by an old result due to Klein and Poincare, it is possible
to find a projective connection cpo such that M ~ U/r where U is the unit
disc in C P1 and r a subgroup of PL (2, tR). If we allow the complex
structure of M to vary, we can regard M as being the central fiber of a
family of Riemann surfaces parametrized by points s [2].
Then it is reasonable to state the problem of how to uniformize simulta-

neously the Riemann surfaces of the family.
Of course the problem can be solved by uniformizing each Riemann

surface, fiber by fiber, setting M = U/r, as before.
But this uniformization process will not be holomorphic with respect

to the parameter s.
Neverthless, a simultaneous uniformization holomorphic in s can be

accomplished [3}, a famous result in Riemann surface theory. In this paper
I show that the uniformization process of either a single or a family of
Riemann surfaces can be realized by a sheaf of Z2 graded Lie algebras
defined over a single and a family of Riemann surfaces respectively.

Moreover, by such sheaves, I can define in a natural way a structure
equivalent to that of the so-called super Riemann Surfaces ([4]-[7]). These
objects have been recently introduced as the geometrical framework for
the study of superstring theory. One advantage of the approach proposed
here is its deep connection with the classical theory.

This should make it possible to solve certain open problems on super
Riemann surfaces, such as the characterization of their moduli space.
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167A NATURAL GRADED LIE ALGEBRA SHEAF

This is an important matter for physical applications, since this moduli
space is the domain of definition for the superstring partition function.

2. SHEAVES OF GRADED LIE ALGEBRAS OVER A SINGLE
RIEMANN SURFACE

Projective uniformization of a Riemann surface M of genus ~2 is a
process by which M is mapped onto the sphere C P1 in a locally home-
omorphic way.

This process is conveniently described by a choice of spin structure L
(that is one of the 229 consistent ways to choose a square root of the
canonical bundle K) and a projective connection over M [1]. Projective
connections over M can be defined as holomorphic connections of a rank
two vector bundle E which is the jet bundle E=J1 (L -1 ), that is, E is an
extension of L by its inverse [1] ]

The holonomy group of any such holomorphic connection on E gives rise
to a representation of the homotopy group of the surface 03C01 (M) onto
SL (2, C), that is we have a map:

The cocycle (2.2) represents the monodromy for the solutions of the
Hill’s equation on M [8]

In fact, if (G°;/2. Gr°L 1/2)~(~/2. G~ 1/2) are pairs of linearly independent
solutions of the equation (2 . 3) in za (UJ, zri respectively, we have:
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168 P. TEOFILATTO

An interesting result in [8] is that are the bundle transition functions
which means that (G 1/2’ G -1/2) are germs of holomorphic spinors.

In 03C6-projective coordinates on M, with fa. solution of ( 1.1 ),
we have that (2 . 3) becomes ua = o.

Therefore the space of solutions of (2 . 3) is the subsheaf ~ 1 (cp) of
(!) (L - 1), whose elements are polynomial of degree 1 in (p-coordinates. In
other words ~ 1 (cp) is defined via the exact sequence of sheaves over M :

A basis on each stalk of ~ 1 (cp) is given by

Linearly independent solutions ui, u2 of the Hill’s equation, projected
onto C P1 by (u03B11, u03B12) ~ f03B1=u03B11/u03B12, generate solutions of the Schwarz

equation ( 1.1 ).
The infinitesimal version of ( 1.1 ) is

The sheaf j~o (cp) of solutions of this equation can be defined by the exact
sequence [1] ]

We can define on each stalk of the sheaf j~o ( p) a basis

Now it is easy to prove the following

PROPOSITION 1 .1. - The sheaf ~ ( p ) = ~ 1 (cp) E9 ~o graded Lie
algebra sheaf, all the fibers being isomorphic to the graded Lie algebra
osp (2.1).

Proof - We define the Z2-graded algebra structure by the following
products:

[.,.]: j~o x j~/Q -~ j~Q is the commutator,

~ ~ , ~ ~ : ~ 1 X ~ 1 ~ j~Q is twice the tensor product,
[ . , . ] : j~o x ~ 1 ~ ~ 1 is the Lie derivative of vectors on fields,

that is the last product is defined by

The above is a graded 0 Lie algebra, that is the graded 0 Jacobi identity
are 

. satisfied, because " it verifies the following condition which characterizes
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graded Lie algebra :
Let A be a Z2-graded algebra A = Ao + A1, with Ao Lie algebra. If

Ai }]=0, then A is a graded Lie algebra.
Namely has stalks isomorphic to the Lie algebra sl (2, C), and

j~ (cp) is a sheaf of graded Lie algebra isomorphic to osp (2,1 ).
I refer to j~ (cp) as the graded Lie algebra sheaf over M related to the

projective uniformization cp of M.
Two remarks are in order:

(i ) A(03C6) is fully generated by A1 ((p); this reflects the classical fact that
the space of solutions of (2. 3) generates all the space of solutions of (2 . 7)
by tensor products.

(ii) if cpo is the projective connection which identifies the universal

covering of M with the unit disc in (2 . 2) gives

In this case ~ (Po) is a sheaf of real graded Lie algebras.

3. THE GRADED LIE ALGEBRA SHEAF OVER A FAMILY

Let us now consider deformations the complex structure of M. A
Riemann surface M can be regarded as union of open sets of the complex
plane V.=z.(UJ, modulo the identifications in Va, where

Then deformation of the complex structure of M will mean a variation
of the identifications 

Let us parametrize different by points s in a parameter space S, so
that, for any s) are holomorphic in the first argument and

s), S).
Moreover, be f03B103B2, the transition function of M. Since for

each s, (zr3’ s) define a Riemann surface MS, a family of Riemann
surfaces is defined, having M as central fiber: namely the family is the

fiber space over S: V = U Sand 03C0 is the obvious projection.
seS

There is an important characterization of the parameter space S, due
to Bers [3], which makes the family holomorphic (that is V, S are complex
manifolds and 03C0 an holomorphic map) and universal (that is any other

family X -~ S’ can be realized as pull-back of the given one via a unique
mapB)/: S’ ~ S). The Bers construction is here briefly recalled, referring to

[ 10] for all the details.
Define the Teichmuller space as

Vol. 54, n° 2-1991.
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where:
1. the Il’S are measurable functions on the upper half plane H with L 00

norm less than 1 and verifying

Moreover, such u’s are extended to C P1 by setting =0 on the lower
half plane L

2. for any is the unique solution of the Beltrami equation 
which fixes the points 0,1, oo .

3. the equivalence relation in definition (3 .1 ) is:

There exists an injective map from the Teichmuller space to the complex
normed space of quadratic differentials on M:

B is defined by the Schwarzian derivative:

One can take 
To construct the family v9, note that the domain depends

only on the equivalence class ’t = and its boundary ~ (’t, x) = f~ (x),
is a holomorphic function 

Moreover, the uniformization group of M = u/r is transformed into
the "quasi-fuchsian group" 
Now, is a fiber space over T9, and the r action

(where 1) produces a complex fiber space T9 whose holo-
morphically varying fibers are the Riemann surfaces Stressing the
dependence on ...~3~-3), we have that the family of Riemann
surfaces U D (s)/r (s) -+ S is holomorphic and universal [ 10] .

seS

Note that, for each s, D (s) is a universal covering space of MS and we
have the covering map 7~: D (s) ~ MS.
The inverse map is a linearly polymorphic function satisfying the

Schwarz equation on D (s) : ~ (~S 1, for some quadratic differential
of MS, and these vary holomorphically with s. In other words the Bers
construction defines a universal family of Riemann surfaces together with
a universal uniformizing connection.
To define the graded Lie algebras sheaf associated to such simultaneous

uniformization, a square root of the dual of the canonical bundle over
the universal Teichmuller family V9 -+ S has to be defined. Recall the

Annales de I’Institut Henri Poincare - Physique theorique
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DEFINITION 3 .1. - The canonical bundle of the universal Teichmuller
curve is a holomorphic family of line bundles K (V9) ~ V9 ~ S. The fiber
over is the canonical bundle of Ms [ 11 ] .

Reconizing that the transition functions of the complex manifold V are

y (z, s = ~ f ’~ ]) _ (ys z = f~, ~ y ~, f ’~ 1 z, s), the inverse of the canonical
bundle is defined by the multiplier [ 15]

Denote by L9 1 a square root of K9 1.
There are 22 9 choices of such square root: in the following T9 will

denote the trivial 22g-fold cover of the Teichmuller space, each sheet

corresponding to a choice of L9 1 on the universal curve. Note that for a
fixed s, bundle transition functions of L9 1 give a square root of the
tangent bundle of MS, 
Two more bundles on S are now introduced:

(~) The bundle of projective connections, ~ ~ S, having as fiber
over s the space of projective connections on MS. The Bers construction
determines a holomorphic section 

(b) The bundle p: ~ V03B2 ~ S, having fiber over s the space of 3/2-
differential forms over M.

is also defined as the 0-th direct image functor R~ (K;/2), a sheaf
over S induced by the presheaf U~H0(03C0-1 (U), K;/2) [ 14], and is an

affine bundle over R* (K9 ).
Then I define, as in section 2, the sheaves of graded Lie algebras

Since all is varying holomorphically with s, it is clear that j~ = U ~ (s)
SES

defines an analytic sheaf of graded Lie algebras over the universal Teich-
muller curve A is the graded Lie algebras sheaf related to

simultaneous uniformization of Riemann surfaces.
I have shown that the well known uniformization theory of Riemann

surfaces is in deep connection with graded Lie algebras. Then it is possible
to realize the classical uniformization process for Riemann surfaces as

encoded in a bigger process, which could contribute new problems and
ideas on the classical theory; on the other hand new constructions like
super Riemann surfaces ([4]-[7]) can then be understood in classical terms,
hence they can enjoy the wealth of precise results available in the classical
theory.

This may help, for instance, in understanding the global structure of
the moduli space of such new objects.

Motivated by that, I shall consider a particular type of deformation of
the sheaf ~ over V9.

Vol. 54, n° 2-1991.
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Let us recall a definition [12]:

DEFINITION 3.2. - Given a sheaf F over X, a local deformation of F is
a sheaf G over X x T such that as sheaves over X, where to is
some preferred point of the parameter space T.

Universality for the deformation of Definition 3.2 is ensured by the
(Kodaira-Spencer) condition that the tangent space of T is isomorphic to
the space of infinitesimal deformations of F [12]. Let us remark that there
are two possible kinds of deformation for the sheaf d defined on the
family S: one is the deformation of j~ leaving the fibers of V9 fixed;
this corresponds to deformation of j~ over V9 in the sense of
Definition 3.2. The other one is the more general deformation of the sheaf
~/ (s) over the fiber in which both the sheaf and its base surface are
allowed to vary (joint deformation).

Let us consider now this latter case, since it includes all the possible
infinitesimal deformations of the sheaf j~ -~ S. The joint infinitesimal
deformations of the sheaf ~/ (s) -~ MS are given by the Eichler cohomology
H 1 (M, ~ 1 (s)) + H 1 (M, [ 13] defined by applying the cohomology
sequence to the exact sequences of sheaves (2.5), (2.8).

Let us write a cocycle in H 1 (MS, Aj mod 2 (s)) as

then represents the following four possible infinitesimal deformations:
j= 2.
(a) if 11 is holomorphic, then represents an infinitesimal displacement

from cps along the fiber of the bundle ~9 of projective connections defined
on S.

In other words is an Eichler cocycle defined by a quadratic diffe-
rential (p=((pj via the equation [i. e. B)~p=8*((p) in the

sequence 3.2];
(b) if ~ is meromorphic, then represents an infinitesimal deformation

of the complex structure of MS: these are parametrized by elements of
H 1 (Ms, Ks- 1 ), and we can associate to the cocycle

Deformations (a), (b), correspond to infinitesimal deformations of j~o.
j=1.
(c) if ~ is holomorphic, then represents an infinitesimal displacement

along the fiber p-1 (s), of the bundle over S. Hence is defined by
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some 3 /2-differential

[i. e. ~* (~) _ ~r«~ in (3.2)].
(d) if ~ is meromorphic, then represents a non trivial affine bundle

over L -1. Hence we can associate to it a generalized Beltrami differential
of conformal weight ( -1 /2, 1 ), which is i* in (3.2).

Deformations (c), (a~ correspond to infinitesimal deformations of ~ 1.
I shall consider deformations of the sheaf ~, leaving the complex

structure of M and the bundle L -1 fixed (body fixed deformations in the
terminology of [6]).

Therefore only type (c) deformations are allowed, representating the
infinitesimal deformations of a certain structure.

The structure in question is what I call graded Riemann surface struc-
ture, for a reason which will become apparent in the following section.
Note that the joint deformations of the sheaf ~ are to some extent

reseamblant of the effect of the action of the Lie algebra g = Vect S1 of
vector fields on the circle, over its dual.

Briefly, from the adjoint action of G=Diff S1 on its Lie Algebra
one derives the adjoint action of G on the dual of g, that is

the space of quadratic differentials over S 1

and the coadjoint action of 9 over g* which is

The isotropy group of a point q E g*, s. t. g* (q) = q ~ hat its
Lie algebra which is equal to the stabilizer of q with respect to the

coadjoint action.
The classification of the orbits of g* under the action of G:

Xq = ~ q’ E g* s. t. q’ = g . q, g E G } and the Lie algebras gq provide informa-
tions about the representation of the group G (see e. g. [17]).
Formula (3.3) can be regarded as the action of local biholomorphisms

on a fixed Riemann surface M, and (3.4) as the action over ~ -1 (0) of the
holomorphic sections of the tangent bundle of M, K -1.
The stabilizer of with respect to the action (3.4) is just the

sheaf j~o (cp).
More generally, let us define the graded Lie algebras sheaf

A = Ao + A1= (~ (K-1) + C~ (L-1), using Lie brackets, tensor products, and
Lie derivatives as in Proposition 1.1

Vol. 54, n° 2-1991.
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Consider the bundle p: -~ T9 and its fiber

Then A acts on 7~ ~ (0)+/? ~ (0) as follows:

The stabilizer of (cp, w) in A with respect to the action (3.5) is just the
sheaf of osp (2,1 ) graded Lie algebras ~ (cp).

4. SUPER RIEMANN SURFACES AND THEIR MODULI

In this section I define graded Riemann surfaces structures using the
classical constructions of the previous sections, then the present definition
will be shown to be equivalent to another one given in the graded manifold
context [4].

DEFINITION 4.1. - A graded Riemann surface structure is a holomorphic
family of Riemann surfaces X ~ S together with an analytic sheaf j~ of
osp (2,1) graded Lie algebras over it.

DEFINITION 4.2. - Two graded Riemann surface structures j~, ~’ are
equivalent if the sheaves ~ (s), ~’ (s) are stabilizers of the same point
with respect to the action (3.5).

Analyticity of the sheaves ~/ over S implies that the even part of the
graded Lie algebras sheaf ~o (s) has to be the stabilizer of the projective
connection cps given by the Bers construction (or the pull-back of it if the
family X -~ S is not the Teichmuller one).

It follows that ~ and j~’ are equivalent if and only if their odd sectors
are stabilizers of the same point in ~9 ~p -1 (s). We have then:

PROPOSITION 4.1. - Inequivalent graded Riemann surface structures are
parametrized by ~’9.
To make contact with the graded manifold definition of super Riemann

surfaces of reference [4], note that each sheaf j~ (s) can be regarded as (sub)
sheaf of derivations of a graded manifold. Roughly, a graded manifold is
a manifold with a sheaf of Z2-graded algebras over it, which is locally the
exterior algebra over some vector bundle (for an overview on graded
manifold theory see [16]).
The definition of super Riemann surface of reference [4] follows:

DEFINITION 4.3. - A super Riemann surface over a space S, X ~ S is a
family of graded manifolds of relative dimension ( 1, 1 ) (that is the fibers
are ( 1, 1 ) graded manifolds), together with a subsheaf D of the sheaf of

t’Institut Henri Poincare - Physique theorique



175A NATURAL GRADED LIE ALGEBRA SHEAF

relative derivations of the family. ~ is a locally free sub sheaf of rank (0/1)
absolutely non integrable (that is, if !Ø is generated by D, then D, and

{D, D } = 2 D(8) D = 2 D2 is a local basis for the relative derivations).
The space S can be a graded manifold or an ordinary manifold, in this

case the super Riemann surface is defined over a "reduced" space.

PROPOSITION 4.2. - Super Riemann surfaces over reduced spaces and
graded Riemann surface structures correspond.

Proof - Consider a graded Riemann surface structure. This is a sheaf
of osp (2, 1) algebras with a basis (L_ 1, Lo, L1, G 1/2’ 0-1/2) which varies
holomorphically on z and s. For each s, this basis can be mapped into
the sheaf of derivations of the graded manifold (MS, A LS) as follow:

It is easy to verify that the above map is a graded Lie algebras homo-
morphism : i ~ X, Y) = (/(X), f(Y)).
Namely, the image of i is given by those derivations of (MS, A LS) which

preserve the sheaf ~ generated by (with (z, 9) local

coordinates on A LS) and satisfies the equation (written in 03C6s-coordinates)
D a2 X = 0 [18].

In particular, i (G (s)) is the generator over OMs of a sheaf !Øs which
determines a super Riemann surface over S.

Conversely, consider a super Riemann surface over S.

By definition, the structure ~ is holomorphic on moduli, so that the
(local) generator D of !Ø varies holomorphically with s. Then we can

define the analytic sheaf of solutions of the equation X = 0, which is
a sheaf ~ (s) of osp (2, 1 ) algebras holomorphic on s.

Therefore a graded Riemann surface structure is determined.
In [5] the universal space of parameters of (local ) deformations of super

Riemann surfaces is found using graded manifold techniques.
The result is similar to the one presented here: it is possible to get the

parameter space of super Riemann surfaces assocating to the parameter
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space of graded Riemann surfaces structures its related graded manifold,
that is (T9, A 
The only difference is in the existence, for any graded manifold, of a

canonical automorphism which makes the Teichmuller moduli space of
super Riemann surfaces not a graded manifold but a canonical super-
orbifold modelled on [5].

Finally, two comments are in order:
(i ) to exploit the actual moduli space of super Riemann surfaces one

should consider the action of the appropriate modular group in both the
present and the graded manifold approach. This is not an easy matter,
but it should be easier to work out a modular equivariant construction
on the lines proposed here and eventually to translate it in terms of graded
manifold, using the equivalence between the two approaches.

(ii ) a contact with the supermanifold version of super Riemann surfaces
([6], [7]) is possible as well. In that context the central object is again the
operator D, and a super Riemann surface is a ( 1 / 1 ) supermanifold with
transition functions defined by the condition that the operator D
transforms homogeneously. These "super-conformal transformations" are
interesting. Namely, note that the joint infinitesimal deformations of the
sl (2, C)-Lie algebra sheaf ~o (s) --~ MS are parametrized by the 6 g-6
dimensional cohomology group H 1 (MS, ~/o (s)) of deformations of all the
Riemann surfaces together with all projective structures [1].

It is probable that the tangent space of superconformal deformations
sits inside H 1 (MS, ~o (s)) in a way dictated by the superconformal
transformations of reference [6].
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