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ABSTRACT. - This paper extends the multipolar gravitational wave
generation formalism of Blanchet and Damour [6] by deriving post-Newt-
onian-accurate expressions for the spin multipole moments. Both the
algorithmic and the radiative spin multipole moments are expressed as
well-defined compact-support integrals involving only the components of
the stress-energy tensor of the material source. This result is obtained by
combining three tools: (i) a multipolar post-Minkowskian algorithm for .

the external field, (ii) the results of a direct multipole analysis of linearized
gravitational fields by means of irreducible cartesian tensors, and (iii) a
study of various kernels appropriate for solving the quadratic nonlineari-
ties of Einstein’s field equations.
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116 T. DAMOUR AND B. R. IYER

RESUME. 2014 Cet article etend Ie formalisme multipolaire pour la genera-
tion d’ondes gravitationnelles de Blanchet et Damour [6] en derivant des
expressions pour les moments multipolaires de spin a une precision post-
Newtonienne. Les moments de spin algorithmiques, ainsi que radiatifs,
sont exprimes comme des integrales a support compact ne contenant que
les composantes du tenseur d’energie-impulsion de la matiere. Ce resultat
est obtenu en combinant trois outils : (i) un algorithme multipolaire post-
Minkowskien pour Ie champ externe, (ii) les resultats d’une analyse multi-
polaire directe des champs gravitationnels linearises en termes de tenseurs
cartesiens irreductibles, et (iii) une etude de divers noyaux utiles pour
resoudre les nonlinearites quadratiques des equations d’Einstein.

I. INTRODUCTION AND OUTLINE OF THE METHOD

This paper deals with the problem of the generation of gravitational
waves, i. e. the problem of relating the outgoing gravitational wave field
to the structure and motion of the material source. The present investiga-
tion will be concerned with the generation of gravitational radiation by
semi-relativistic sources. By this we mean isolated material systems, S,
such that the dimensionless parameter

is smaller, but possibly not much smaller, than one (say 8~=0.2). In

eq. (1.1) m denotes a characteristic mass and ro a characteristic size of
the system S (we shall assume that ro is strictly greater than the radius of
a sphere in which S can be completely enclosed), T~ denote the com-
ponents of the stress-energy tensor in some coordinate system = (ct, jc’),
regularly covering S (with the vertical bars denoting a suitable norm for
tensors, and  = ~/2 71: denotes a characteristic reduced wavelength of the
gravitational radiation emitted by the system. If we choose physical units
of mass, length and time adapted to the internal dynamics of the material
system S, the parameter ~ becomes proportional to the value, in these
units, of the inverse of the velocity of light, c -1. Hence, we can take c -1
as ordering parameter of the expansion in powers of E.
When the parameter E is much smaller than one ("non relativistic"

sources), i. e. when considering material systems which are weakly self-
gravitating, slowly moving, weakly stressed and located well within their
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117POST-NEWTONIAN GENERATION OF GRAVITATIONAL WAVES

gravitational near-zone, one can estimate the gravitational radiation emit-
ted by the system S by means of the standard Einstein-Landau-Lifshitz
"far-field quadrupole equation" ([1], [2]), which expresses the asymptotic
gravitational radiation amplitude in terms of the second time derivative
of the usual "Newtonian" trace-free quadrupole moment of the mass-
energy distribution of the source. The original derivation of Einstein [1] ]
was, in fact, restricted to the case of negligibly self-gravitating sources,
i. e. systems whose motion is governed entirely by non-gravitational forces,
and it was only the later work of Landau and Lifshitz [2] which showed
that the "quadrupole equation" gave also the dominant gravitational wave
emission from (weakly) self-gravitating sources. A few years later, Fock [3]
introduced a different approach to the problem of the generation of
gravitational waves, and obtained, with its help, a new derivation of the
quadrupole equation.

In recent years, the gravitational wave generation problem has become
of increasing interest, especially in view of the development of a world-
wide network of gravitational wave detectors. This motivated several

attempts at generalizing the quadrupole equation, valid only for non-
relativistic sources, to the more general case of semi-relativistic sources.
The first attempt at going beyond the lowest-order "Newtonian" quadru-
pole formalism was made by Epstein and Wagoner [4] ("post-Newtonian"
generation formalism). Then, Thorne [5] clarified and extended this

approach by introducing a systematic multipole decomposition of the
gravitational wave amplitude, and by (formally) including higher-order
post-Newtonian contributions. However, the Epstein-Wagoner-Thorne
formalism is unsatisfactory because it involves, both through the intermedi-
ate steps, and in the final results, many undefined (divergent) integrals.
The origin of these ill-defined integrals can be traced back to the fact that
their formalism is a direct generalization of the Landau-Lifshitz approach
in making an essential use of an effective stress-energy for the gravitational
field which is not localized on the compact support of the material source,
but extends, with a rather slow fall-off, up to infinity.

Recently, Blanchet and Damour [6] (hereafter referred to as paper I)
have introduced a new post-Newtonian gravitational wave generation
formalism which, instead of being a generalization of the Landau-Lifshitz
derivation of the ("Newtonian") quadrupole formalism, implements ideas
which can be traced back to the Fock derivation [3]. The main idea is
to separate the problem into two sub-problems (one dealing with the
gravitational field in the near zone of the source, and the other one dealing
with the wave-zone field), and then to transfer information between these
two sub-problems by "matching" the near-zone and the wave-zone fields.
More precisely, the method of Ref. [6] (paper I), that we shall follow and
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118 T. DAMOUR AND B. R. IYER

extend here, can be decomposed into four steps:

Step 1. - Let D~= {(x, t) ~ (see note [7] for our notation) denote
the domain external to the material source S. In De we decompose the
external gravitational field (taken in the densitized contravariant metric
form) in a multipolar post-Minkowskian (MPM) expansion. This consists
of combining a post-Minkowskian (or non-linearity) expansion

where t1.r3 denotes the flat (Minkowski ) metric [7], with multipole expan-
sions, associated with the SO (3) group of rotations of the spatial coordina-
tes (which leaves invariant ~=~x~[8~~~]~~ for t):

where L : = i1i2 ... il denotes a (spatial) multi-index of order l, and L the
symmetric trace-free (STF) part of with ~(9, 
being the unit coordinate direction vector from the origin (located within
the source) towards the external field point x. The multipolar post-Min-
kowskian expansion ( 1. 2) was recently put on a clear algorithmic basis in
a series of publications by Blanchet and Damour ([8]-[ 12]) (thereby elucid-
ating and perfecting earlier work by Bonnor and coworkers, and Thorne
and coworkers). The essential outcome of this approach is to show that
the most general (past-stationary and past-asymptotically-flat) MPM-
expandable solution of the vacuum Einstein equations can be algorithmi-
cally constructed in terms of two sets of algorithmic multipole moments,

where "can" refers to a convenient "canonical" coordinate system, and
where {M~} = {M, Mi, Mil ~2, ...},{S~ }={ S,, ... } denote,
respectively, the "mass", and the "spin" algorithmic multipole moments.
These moments are all symmetric and trace-free cartesian tensors which
depend on one (time) variable (except M, Mi and Si which are time-
independent). It is important to keep in mind that the algorithmic moments
have no (and need not have any) direct physical meaning [apart from M,
which is the Arnowitt-Deser-Misner (ADM) rest-mass of the system]. They
play the role of arbitrary functional parameters in the construction of the
external metric, and will serve as go-betweens transferring information
from the source to the radiation zone.

Step 2. - The general external MPM metric was shown [11] (under the
assumption of past-stationarity) to admit a regular structure (in Penrose’s
conformal sense) in the asymptotic wave zone, which means in particular
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119POST-NEWTONIAN GENERATION OF GRAVITATIONAL WAVES

that there exist some algorithmically defined "radiative" coordinates,
Xi), with respect to which the metric coefficients, say 

admit an asymptotic expansion in powers of R r 1, when 
with T - R/c and N = X/R being fixed ("future null infinity"). Following
Thorne [5] one can then decompose the leading I/R term in the radiative
metric in a multipolar series, with expansion coefficients being written as
derivatives of some radiative multipole moments, /~2}:

where

and where

denotes the transverse-traceless (TT) projection operator onto the plane
orthogonal to N.

Unlike the algorithmic moments, ~~{M~S~}, the radiative

moments, /~2} (or rather the l-th order derivatives
of and have a direct physical meaning in terms of quantities
measurable, in principle, by an array of gravitational wave detectors
around the source. However, the algorithmic construction of the external
metric (in its original coordinates) and of the transformation to the

asymptotically regular radiative coordinates yields, in principle, an algo-
rithmic expression of in terms of ~:

The first two steps of the method give, in principle, a fairly complete
picture of the nonlinear structure of the external gravitational field every-
where outside the source. However, this knowledge is not yet related to
the actual source and must be complemented by a different, source-rooted,
approach. The last two steps play precisely this role.

S’tep 3. - Let t) I r  rl ~, where r°  r~  ~, denote an inner
domain which encloses the source S and defines, for our purpose, the near
zone of S. In D~ we decompose the inner gravitational field in a post-
Newtonian (PN) expansion, i. e. in a combined weak-field-slow-motion

expansion in powers of E ’" C -1 (where "slow-motion" refers both to the
smallness of the velocities in the source, and to a near-zone

Vol. 54, n° 2-1991.



120 T. DAMOUR AND B. R. IYER

expansion, r0~~03BB, or 

The post-Newtonian expansion scheme has been investigated by many
authors, notably Fock, Chandrasekhar, Anderson and coworkers, Ehlers
and coworkers (see references 29-40 in Ref. [ 12]), and the implementation
of the first steps of the method leads to an explicit expression for the
inner gravitational field in terms of the source variables, so that we can
write for some c.

Step 4. - Finally, we need to transfer information between the external
(MPM) expansion scheme, eqs ( 1. 2)-( 1. 3), and the inner (PN) one ( 1. 6)-
(1. 7). This can be done by a variant of the method of matched asymptotic
expansions [ 13], as first advocated in the gravitational radiation context
by Burke [ 14] (see e. g. Ref. [ 15] for references to other works having made
use of this technique in general relativity). The variant we shall use is the
one put forward in Ref. [ 12] and consists of requiring the existence of
a (post-Newtonian expanded) coordinate transformation such that the
coordinate transform of the post-Newtonian expansion ( 1. 6)-( 1. 7)
coincides, in the external near-zone Di n De, with the post-Newtonian re-
expansion of the multipolar-post-Minkowskian expansion ( 1. 2)-( 1. 3) (see
Section VI of Ref. [ 12] for a more detailed definition of this matching
requirement). The outcome of such a matching of the external and inner
expansions is to provide the explicit expression of the algorithmic moments
in terms of the source variables, symbolically

where the order q depends on the order p within which the inner field is
known in terms of the source, see eq. ( 1. 7). Remembering now the out-
come of S’tep 2, eq. ( 1. 5), we see that we can finally eliminate the algo-
rithmic moments and obtain the (physical) radiative moments in terms of
the source variables.

We should warn the reader that we have been somewhat remiss in our

presentation of Step 3. First, the expansion ( 1. 6) contains not only powers
of but also terms. However, at the precision at which we
shall work in the present paper these mixed power-logarithm terms will
always stay buried in the error terms, like 0 (c - p) in cq. ( 1 . 7) (see Ref. [ 12]
for a careful treatment of these terms). And second, the procedure of
expressing the post-Newtonian-expanded inner metric as a functional of
the source variables necessitates, in principle, some transfer of information
from the external metric. However, the combined work of Refs. [ 14], [ 16],
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121POST-NEWTONIAN GENERATION OF GRAVITATIONAL WAVES

[9], [ 12] shows that the standard post-Newtonian schemes are justified at
the precision at which we shall work.
Having outlined the four-step method (from paper I) that we shall use

in the present paper, let us now indicate which steps have already been
solved with sufficient precision, and which ones we shall improve upon.
The two basic results of paper I were to obtain eq. ( 1. 5) of Step 2 up to
0(c’~) relative error terms, and half of eq. ( 1. 8) of step 4 up to 0 (c - 4).
Namely, equations (3 . 32) of paper I show that one has simply,

while equation (3 . 25 a) of paper I shows that

where IL [source] is a well-defined (compact-support) integral expression
involving only the source variables [see eq. (2 . 27) of paper I, or eq. (5 .12)
below]. As for the other half of eq. (1. 8), i. e. the expression of the
algorithmic spin moments in terms of the source it was obtained in paper I
(after Ref. [5]) only up to O (c-2) error terms ("Newtonian accuracy").
The aim of the present paper is to solve the second half of eq. ( 1. 8) with
the same ("post-Newtonian") accuracy which was achieved in paper I
for the first half, i. e. to find a well-defined (compact-support) integral
expression [ 17] involving only the source variables, say JL[source], such
that the algorithmic spin moments can be simply written as

We shall leave an improvement of eq. ( 1. 5), i. e. eqs ( 1. 9 a-b), to future
work.

Beyond the tools developed in Refs [8]-[ 12], the new tools that will allow
us to obtain eq. ( 1.10 b) are: (i ) the expressions for the linearized-gravity
multipole moments recently derived by Damour and Iyer [ 18] (as emphas-
ized below, the expressions derived by Thorne [5] are not adequate to our
purpose), and (ii) the study, performed below, of various kernels appropri-
ate for solving the quadratic nonlinearities of Einstein’s field equations.
The strategy for obtaining eq. ( 1.10 b), and thereby the plan of this paper,
is the following: In Section II we shall solve Step 1 (i. e. determine ~~~ 
with an improved accuracy with respect to paper I. In Section III we shall
discuss the various kernels that will allow us to relate the exterior and the
inner metrics. In section IV we shall solve Step 3 (inner metric) and Step
4 (matching) with an accuracy sufficient to get eq. (1 .10 b). The end result
of Section IV leads to a well-defined prescription for constructing the
post-Newtonian source-spin-moments JL. In Section V we make use of the
recent reexamination of the radiative multipole moments in linearized
gravity [ 18] to transform the prescription of Section IV into various explicit

Vol. 54, n° 2-1991.



122 T. DAMOUR AND B. R. IYER

expressions for JL. Section VI contains a brief summary and our conclud-
ing remarks. Finally, three appendices complete our paper: Appendix A
discusses the quasi-conservation law of a compact-support distribution
that plays the role of an effective source in our approach; Appendix B
deals with the transformation laws, under a shift of the spatial origin, of
our multipole moments; and Appendix C gives the (formal ) point-particle
limit of our results.

ILTHE EXTERNAL GRAVITATIONAL FIELD

Using the results and notation of Refs [6], [9] - [ 12] the external "gothic"
metric, ~:~t: = as a functional of the algorithmic multipole

reads

with

where

and where is a particular solution of the homogeneous wave equation
which is algorithmically defined from the multipole decomposition of

Namely, defining the multipole moments, AL, BL, CL and DL (label n
suppressed for simplicity) of rn by

Annales de Henri Poincaré - Physique theorique



123POST-NEWTONIAN GENERATION OF GRAVITATIONAL WAVES

one defines

See Ref. [ 10] or Ref. [ 12] for the definition of the various symbols appear-
ing in eqs (2. 2)-(2.4), and eqs (2. 9)-(2.10) below for the expression of
the "seed" term for the algorithm: hi~ [~~].
As the Step 2 of our method (see Introduction above), which involves

controlling the transition between the near zone and the wave zone, has
already been solved [by eqs ( 1. 9)], it will be sufficient for our present
purpose to control the near-zone expansion of the external metric. For
any external field quantity Q, let us denote by Q its near-zone (or post-
Newtonian) expansion, i. e. its asymptotic expansion along the gauge
functions when c tends to infinity keeping fixed the time, 
and space, xi, external coordinates. For the sake of simplicity, let us
denote for the scalar, vector and tensorial quantities respectively

We have seen in paper I that, in order to express the algorithmic mass
moments in terms of the source modulo O (4), we needed to know the
near-zone (or PN) expansion of the external covariant metric, modulo

= (9 (6, 5, 4) (see eqs (3 . 22) of paper I). It can be seen in advance

that, in order to express also the algorithmic spin moments modulo C~ (4),
we need to know modulo 0 (6, 7, 6), or equivalently the PN-expanded
gothic metric modulo

Vol. 54, n° 2-1991.



124 T. DAMOUR AND B. R. IYER

[see the paragraph before eqs (5 . 10)].
It has been remarked in paper I that a consequence of the eqs I (3.10)

and I (3.15) [ 19] was that the PN expansion of the nth PM approximation
of the gothic metric was of order

The comparison with eq. (2.6) shows that it is sufficient to control the
linear and the quadratic approximations (secod-post-Minkowskian, or 2
PM, level )

The linearized approximation to the external metric, reads

[eqs I (3 .2)]

where the "scalar", "vector" and "tensor" external potentials, 
are given in terms of the algorithmic mass and spin moments by

The PN expansion, of the linearized approximation is obtained
from eqs (2.9)-(2.10) (making use of the useful identity (A33), or (A36),
of Ref. [ 10]) and has the following structure -

Annales de I’Institut Henri Poincaré - Physique theorique
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where we have introduced

Let us now consider the second approximation, h2~ = p2~ + q2~, which is
generated by the quadratic nonlinearities (h 1 ), through eqs (2 . 2)-(2 . 4).
The expression for N2~ (h) in harmonic coordinates can be found, e. g., in
the Appendix A of Ref. [20], and reads

(see e. g. eq. (3 . 5) of Ref. [ 12] for the expression of in arbitrary

coordinates). Actually, we need to control only the PN expansion of 
i.e. From eqs I (3.10) and I (3.15) taken for n = 2, we
know that the PN expansion of is essentially generated by the PN
expansion i. e. by N 2 (hl) = N 2 (hl):

Inserting eqs (2 . 11 ) into eq. (2.13), and taking advantage of the fact
that in near-zone expansions we find the following
structure for 

Vol. 54, n° 2-1991.



126 T. DAMOUR AND B. R. IYER

Inserting now eqs (2 . 15) into eq. (2 . 14) we see that, in order to reach the
accuracy (2 . 6), it is sufficient to retain the first term (k = o) in the right-
hand side of eq. (2.14).

Let us now consider the complementary contribution to h2~. Its
definition, eqs (2.4), shows that can be decomposed in two parts: (i)
a "(semi-) hereditary" part (in the terminology of [12]), i. e. a part which
contains anti-derivatives of the multipole moments, AL (u), BL (u), ... , of
the vector r2, eqs (2. 3), namely

and, (ii ) an "instantaneous" (in the retarded sense) part which is algebraic
in etc. and their time derivatives. As seen in eqs (2.16) the
hereditary part is more delicate in that it can decrease the post-Newtonian
order of the multipoles of r2. However, for this part we can use the same
argument that was used in paper I to bound + 

Indeed the "factorization" result

(eq. (5 . 3) of [ 10], the notation being the one of Ref. [ 12] and paper I),
together with the fact that the most negative power of r in eqs (2.16) is
r - 2, implies that

uniformly for all the components ap.
As in paper I the b values required to make the vectors Ca or Da are

constrained by _/i~2 (because is identically zero for stationary
moments) and /2 = 11 :i: 1 (to make a vector). Hence 03A3li=l1 +l2~3 and eq.
(2.18) with h = 2 gives .

which can be ignored because of eq. (2.6). We need now to control the
"instantaneous" part of q2~. We have seen above that

from which one deduces (using Gri = 0)

Annales de l’Institut Henri Poincare - Physique theorique



127POST-NEWTONIAN GENERATION OF GRAVITATIONAL WAVES

Inserting eqs (2 . 15) into eq. (2 . 21 ) will yield a r2 equal to a 9(5,4)
contribution coming from the explicit terms in the righthand sides of eqs
(2 .15 b) and (2 .15 c), plus a 9(7,6) error term. If we prove that the
explicit (9 (5,4) contribution vanishes, this will imply that r2 = (9 (7, 6) and
therefore [from eqs (2 . 3)] that AL==9(7), while BL, CL, DL will be O (6).
From eqs (2. 4) it will then follow that the "instantaneous" part of is

To prove the vanishing of the explicit contribution to r2 coming from
the terms appearing in the right-hand side of eqs (2 . 15) let us first remark
that, from eqs (2 .12) and (2 .15), Nexplicit2 can be decomposed in a series
of products of two multi-spatial gradients of [the explicit simple
gradients appearing in eqs (2. 15) combining themselves with the multi-
gradients in eqs (2. 12)]. Therefore the dependence on spatial coordinates
of Nexplicit2 has the form

Each product n~l ~2 can be written as a sum of terms of the form
~Li+L~-2~ ... down to (when ll &#x3E;_ l2), as seen

e. g., from eq. (A . 22 b) of Ref. [ 10] . Therefore the spatial dependence of
N2 can be written as

which implies (by adding an extra ni together with an extra r -1 )

From eq. (2 . 21 ) we see that will be nonzero only when ~ -1 [
rB r -1 ni N2 ] ~ ~ 0 -1 with p’ = l’ + 2 k’ + 2, has a pole. However,
by definition (see eq. (3 . 9) of Ref. [ 10])

which means that a pole can appear only when p’ = l’ + 3 or p’ = 2 - l’. The
first alternative is excluded by the result p’ = l’ + 2 k’ + 2, and the second
by the easily checked fact that ~~5 in We have therefore
demonstrated that [21] ]

Vol. 54, n° 2-1991.



128 T. DAMOUR AND B. R. IYER

which proves, as said above, that r2 = 0 (7, 6), and thereby that eqs (2 . 22)
hold. Combining eqs (2.19) and (2. 22) we can therefore conclude that

To sum up, we have proved that the post-Newtonian (or "near-zone")
expansion of the external gravitational field (considered as a functional of
the algorithmic moments SL }) has the form

where is obtained by expanding in powers of eqs (2 . 9)-
(2.10) [beyond the lowest-order terms shown in eqs (2 .11 )], where (simpli-
fying the notation) denotes the explicit quadratic expressions in
the gradients of Uext and appearing in the right-hand side of eqs
(2.15) [remembering the definitions (2.12)], and where the operator

is defined as being the finite part at B = 0 of the meromorphic
function of the complex number B defined by its action (2.26) on each
term of the (orbital angular momentum) multipole expansion of 
In fact, as a by-product of the proof above we see from eq. (2.24) (and
the fact that the minimum power of r-1 in is four) that there are
no poles at B = 0 and therefore that the definition of yields simply,
when acting on the orbital multipole expansion obtainable from inserting
eqs (2.12) into (2.15) (l and k denoting natural integers)

III. KERNELS FOR SOLVING THE QUADRATIC
NONLINEARITIES

In the previous section we have exhibited the explicit results for the
near-zone expanded external metric, ~[~T that followed from the
application of the MPM algorithm of Refs [8]-[12]. The main difficulty
came from the need to solve the quadratic nonlinearities. This finally gave
rise to a special inverse Laplacian of the external quadratic effective source

Here, after simplification of the notation, we mean by 
the following quadratic forms in the gradients of both a scalar potential,
U, and a vector potential, U.:

Annales de l’Institut Henri Poincare - Physique theorique



129POST-NEWTONIAN GENERATION OF GRAVITATIONAL WAVES

We shall see in the next section that, when solving for the (post- _

Newtonian-expanded) inner metric, ~, the same quadratic effective

source. arises, but now computed in terms of some inner potentials
instead of the external potentials appearing in the

previous section. The central difficulty of the present investigation will be
to relate the usual Poisson integral of N 

[which is well-defined because N (Uin) falls off like ( x’ ( - 4 at spatial infinity]
to the special inverse-Laplacian introduced by the algorithm which applied
to the external nonlinearities:

FP A - 1 N Finite Part A - 1

where b is some length scale (we had taken b = ~, above) and where
Multipole Expansion refers to the expansion in orbital multipoles nL (i. e.
in eigenfunctions of the angular Laplacian).

In the inner problem, the inner potentials, uin, will be the Newtonian
potentials generated by some compact support scalar or vectorial densities,
say

Inserting eqs (3 . 3) into eqs (3 .1 ) shows that N (uin) can be decomposed
as a sum of terms of the form

where the C’s are some constant coefficients, where 03C31, 03C3(c)2 denote cr (y 1)
when ap==00 or ij, or cr (y 1) and when ap=0~ where

(anticipating on future needs)
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130 T. DAMOUR AND B. R. IYER

and where we have replaced the gradients with respect to x in eqs (3 .1 )
by gradients with respect to Y 1 or y2 (shifts of source points instead of
shifts of field points, using For notational simplicity
the whole complicated operation of summation, source-points double
integration, and source-points double differentiation appearing in eq. (3 . 4)
will be abbreviated as

where it is essential to keep in mind that E 12 is a complicated but linear
operator acting only on the pair of source variables (y l’ y2) and totally
independent of the field point x.

Let us now define [using the notation (3.5)] the following kernels,
considered as functions of x on the one hand, and the pair (y l’ y2) on the
other hand

as well as the following distribution with respect to the field point x (for
fixed source points)

In eq. (3 . 8 a) 8(x-yJ denotes the three-dimensional Dirac distribution
with respect to x, so that b 12 (x) is a distribution with respect to x which
represents just a homogeneous linear density (with density =1 per unit
length) distributed along the segment joining y 1 and Y 2.
The above introduced quantities satisfy the following relations

which are " satisfied o in the sense ’ of distributions with respect to x (i. e. for
all values of x, including j possibly singular ones). The Laplace ’ operators
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appearing in eqs (3.9) are all taken with respect to x (in the sense of
distributions).
The relations (3 . 9) can be conveniently checked by introducing, instead

of x, elliptic coordinates (ç, 11, cp), linked to the two focal points Y l’ y2

(and still working consistently in the framework of distributions),

(p = longitude around o the segment Y 1 Y 2’
such that ~ &#x3E;__ 1, 

The fact that the kernel g satisfies eq. (3 . 9 b) everywhere (including at
the points yl, y2 and along the segment Yl y2) implies that

As it is easy to check that E 12 (g) falls off as I when I x I ~ oo, we
conclude that E 12 (g) is the unique everywhere regular, tending to zero at
infinity, solution of the Poisson equation with source In other

words

in the sense of eq. (3 . 2 a).
Having exhibited the relation of the kernel g to the usual Poisson

operator, let us now show how the kernel k is linked to the algorithmic
inverse Laplacian FP 0 -1 of eq. (3 . 2 b).

Let us from now on consider the situation where the field point, x, is

in the external domain De, i. e. outside a sphere which encloses the support
of the source densities 03C31 and 03C32 which appear in the operator E 12 of
eqs (3 . 4) or (3 . 6), and let us study the quantity [indices a(3 (c) suppressed]

It is easy to see that, for x fixed in De, k (x; yl, y2) is jointly analytic
in yi and yj2 (this property distinguishes k from the other kernels which
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are not regular when I y 1 - Y 21 ~ 0). Expanding k into a double Maclaurin
series in (y l’ y2) and organizing the coefficients along the orbital harmonics
~ leads to a (convergent) series having the following structure (coefficients
being suppressed)

where M 12 stands for "Maclaurin expansion with respect to (Y1’ y2)"
where where the condition /+ 2 A; = ~ + l2 follows imme-
diately from dimensional considerations, and where the (very useful )
information that the power of differs from the order of multipolarity
by an even natural integer, 2 k, is proven by inspection of the general
structure of the expansion. If we similarly expand double
Maclaurin series in (yl, y2), we find a structure of the type (coefficients
suppressed) .

If we now apply the operator 1 defined by eq. (3 . 2 b) to the

right-hand side of eq. (3 .15), we can prove that

The proof that eq. (3.16) holds does not necessitate a precise computa-
tion of the unwritten coefficients in eqs (3.14) and (3.15). Indeed, it

suffices to remark on the one hand, that eq. (3 . 9 c) guarantees that the
(usual) Laplacian of both sides of eq. (3.16) coincide in De, and on the
other hand that none of the n~’ r - ~~ + 2k~ terms appearing on both sides of
eq. (3.16) vanish under the action of the Laplacian (except the constant
term which is easily treated separately and which yields the strange, but
unimportant, ln (2b) + 1 additive constant).

Let us now apply the 12 operator on both sides of eq. (3.16). Because
of the explicit terms ~~~’~ in the right-hand side of eq. (3.14),
~ 12 (M 12 (k)) will yield simply the usual (orbital ) Mul tipole Expansion
(ME) of ~ ~ 2 (k) (~). In the right-hand side of eq. (3.16) we can notice
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that M 12 ((rl . r2) -1) = M 1 (ri 1) M2 Cr2 ~) (where M 1 is a Maclaurin expan-
sion with respect to yl, etc.), and that

where we recognize (in its various forms, including fully explicitly with

the (orbital ) multipole expansion of the

Newtonian potential of c~ ~ . Finally this leads us to

where ME, on both sides, means (orbital) "Multipole Expansion ofB
where N is as defined in eqs (3.1), and where we recall that the (yi, y2)-
integro-differential operator E 12 was defined by eqs (3 . 4), (3 . 6). Let us
note also that the length scale, b, introduced in the definition of the
"external" inverse Laplacian [see eq. (3 . 2 b)] drops out from the final
result (3 .18).

In summary, the two main results of this section are eq. (3.12) and eq.
(3 .18) which we shall put to use in the next section to, respectively, solve
the quadratic nonlinearities of the inner metric, and connect this inner
solution to our previous result (2.29) for the corresponding external
solution.

IV. THE INNER GRAVITATIONAL FIELD AND ITS MATCHING
TO THE EXTERNAL ONE

As said above our aim is to find the (PN expanded) gothic metric, ~~,
in the inner domain Di, as a functional of the source variables up to post-
Newtonian error terms
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This level of precision is readily achieved by starting from the knowledge
of the following PN-truncated linearized solution (in harmonic coordina-
tes) of Einstein’s inhomogeneous equations,

with

. where we have defined, following paper I, an "active gravitational mass
density", 6, and an "active mass current density", 6t by

When comparing eqs (4.2) with the corresponding (more accurate)
results I (2. 8)-(2.10) of paper I one must remember that the near-zone
expansion of eqs I (2.8), I (2.9) introduces terms apparently of order
O (3) in and 0(4) but that these terms are down by a factor
c - 2 because of the conservation laws for mass and linear momentum.

If we introduce an (exact) "gothic deviation" for the inner metric,

then in harmonic coordinates,

and the Einstein equations can be written as

and where is the total "effective
nonlinear source" for the gravitational field, whose lowest-order (qua-
dratic) piece is given by eq. (2.13) above [note in eq. (4.7) hin is not

expanded in a nonlinearity series, contrarily to the external expansion,
eq.(2.1)].

If we insert the lowest-order approximation (4. 2) in the right-hand side
of eq. (4. 7), this allows us to determine the (near-zone) value of the right-
hand side, as a functional of the source, modulo the error (4.1). Explicitly
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we find

where denotes, as above, the value taken by the quadratic
expressions (3 . 1 ) upon inserting as defined by eqs
(4.3). Note that we followed paper I in using the near-zone assumption

only in the already algebraically small nonlinear
terms of the field equations. In the left-hand side of eq. (4.8) we keep,
for simplifying the writing, the wave operator, as well as h ~ itself, unex-
panded, although we shall remember when needed that we are considering
only the near-zone expansion of the metric.
A solution of eq. (4. 8), with the required accuracy, is

where the bar over the retarded potential operator []-1R means (as in
Section II) that we are working, in discussing the inner metric, with near-
zone expanded (in powers of c -1 ) quantities. As discussed in the previous
section the second term in the right-hand side of eq. (4.9) denotes the
usual Poisson integral of (both this Poisson integral and the
next spatial integral converge because of the r - 4 fall Using
the notation [notably the abbreviation ~12 of eq. (3 . 6)] and the result
(3 .12) of Section III, we can write the solution (4. 9) as the following
explicit functional of the source:

Let us remark that the last term that we added to eq. (4. 9) and (4.10)
is a function only of the time coordinate, and that we could, a 
have added other such solutions, regular in D~, of the Laplace equation.
However, we shall prove directly below that the solution (4.10) matches
completely the general radiative external metric discussed in Section II,
which means that if we were to add a homogeneous solution to eq. (4.10)
it would have to be "pure gauge" modulo O (6, 7, 6). In fact, the last
term in eq. (4 . 9) and eq. (4 .10) is already pure gauge modulo a

~goo - ~ (c - 7), as are, in fact, some of the first explicit "radiative" terms
in the canonical MPM external metric which are not lost in the 0 (6, 7, 6)
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error term: 03B4rad h0iext=O(6) and see Ref. [9] (case /=2). The
retention of this last term in eq. (4.9), although not strictly necessary at
the precision at which we are working (because it could be absorbed in
the coordinate transformation connecting the inner to the external metrics)
will clarify the way in which the inner and the external metrics match.

Eq. (4.10) solves the Step 3 of our strategy [see eq. (1.7) above]. Let
us now turn to the (last) Step 4, namely the matching between the external
and the inner gravitational fields. Our procedure for doing this matching
is presented in detail in Section VI of Ref. [ 12], it can be summarized by
the equation

[source]]} = PN { T * [source]}, (4 .11 )
where PN means ’Tost Newtonian Expansion of, where ~ [source]
are the sought for expressions of the algorithmic multipole moments as
functionals of the source variables, and where T denotes some (PN-
expanded) coordinate transformation connecting the inner and the external
metrics. Note that in the left-hand side of eq. (4 .11 ) the PN expansion
applies both to (for fixed which is what we denoted by

above and to the functional M[source] which contains power
(and logarithms) of c -1 (see Ref. [ 12] for more details).

Let us start by asserting the effect of a PN-expanded coordinate
transformation on the metric. From the work of Refs [9], [ 12] and of
paper I we know beforehand that the PN-expanded transformation, T,
connecting the inner and the external coordinates will have the form

where all the terms written out are, in principle, explicitly needed for
proving the matching between the two metrics. In view of the high accuracy
of the expansions (4.12), one expects that it will no longer be possible
to treat the effect of T by the standard linearized expressions

as was sufficient in paper I). However, it turns out

(somewhat surprisingly) that this is possible, if one uses the gothic metric
components as basic variables. Indeed, the exact formula

for the transformation = x~‘ + (~), with cp° = 9 (3) and cpi = 9 (4), and
using the known PN structure, eq. (4 . 2), of the metrics of interest (as well
as the PN assumptions for pJ!) leads, after a straightforward calculation, to
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where the error terms are even better than what we need [0 (6, 7, 8) instead
of 0(6,7,6)].
One should note that with cp° = 0 (3) and cpi = 0 (4), the sole effect of a

coordinate transformation (4.12) on the lowest-order "linearized" metric
(4 . 2) is to change the "vector potential" Ui by a gradient ~~i(c303C60)
[leaving U fixed modulo (9 (2)]. Moreover, if the coordinate transformation
connects two harmonic charts, the Laplacian of C3 cp° will be of post-
Newtonian order, 0(c*~). Therefore, although Ui changes, both its curl,

and it divergence, as Us, are invariant [modulo 0(2)] under a
harmonic coordinate transformation (4.12). As the explicit quadratic
nonlinearities N0152r3 (U, UJ, eq. (3 .1), depend only on U, and the curl and
the divergence of U~, we conclude that N0152r3 (U, Ui) is invariant,
modulo 0 (2) relative errors, under the transformation connecting the inner
and the external metrics:

Let us take the (orbital) multipole expansion of the right-hand side of
eq. (4 .15) and apply the algorithmic inverse Laplacian operator, 
Thanks to our previous result (3 .18), we obtain,

The left-hand side of eq. (4 .16) is precisely the (quadratically) nonlinear
piece of while its right-hand side differs from the
nonlinear piece of [in the sense of the one generated by in eq. (4 . 7)]
by the sole but crucial fact that the kernel g appearing in [see eq. (4.10)]
gets replaced by the kernel k.

We can now perform the matching between the inner and the external
metrics. Inserting in our basic matching equation (4 .11 ) the information
contained in eqs (2 . 29), (3.12), (4.14) and (4.16) we get
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which should hold in e. in the external near zone (where
field quantities can be, simultaneously, multipole expanded and near-zone
expanded).

Inserting g --_ k + h/2 in the right-hand side, and simplifying 
terms we are left with an extra-term which, using eq. (3.9~), can be written
as

where we recall that E12 acts only on the (Y1’ y2) source points (as an
integro-differential operator) and that the dependence on the field point x
is contained entirely in h(x; yl, y2) and Õ12 (x; yl, y2). The term (4.18) is
followed by (47rc)’~/~ of the following integral

Note that all the integrals appearing in eq. (4 .19) are convergent. The
verification of (4.19) rests on the validity of the well-defined integral
relation

which can be checked in various ways (a straightforward one being to use
the integral formula (2) in section 12 of the first Ref. [22]).
On combining eq. (4 . 18) + (4 7r c) -1 eq. (4.19) we recognize the first

two terms in the following near-zone expansion

The term ~i 2 ( - 2 jr b 12) is a distribution in x which is of compact support
(because of the definition of 812) and which appears now in the right-
hand side of eq. (4 .17) preceded by the same operator as the material
source term, 167i:Gc’~(l+4U~c~)T~. We are thereby naturally led to
introducing the following quantity

Annales de l’Institut Henri Poincare - Physique " theorique "



139POST-NEWTONIAN GENERATION OF GRAVITATIONAL WAVES

This quantity is a distribution in x with a spatially compact support, and
plays, in the external near-zone De, the role of an effective stress-
energy tensor in the precise sense that eq. (4.17) is written now as

The result (4.23) is remarkably simple. In words, it says that, in the
external near zone the linearized algorithmic gothic metric is

equal, modulo 0(6,7,6), to the linearized coordinate transform of the

linearized harmonic gothic metric generated (via the retarded Green’s

function) by the spatially compact effective stress-energy tensor More-

over as, by construction, both the inner and the external coordinates are
harmonic (in the full curved spacetime sense 0= D~= D~~), we know
that the four functions (x) are also harmonic in the curved sense, which
implies

This, on using the fact that ~~=/""+0(2,3,4), gives in the near zone
[where a o = O ( 1 )]

Let us now define, in De, the following quantities

We can conclude from eqs (4 . 23), (4 . 24 b) and the fact that, by con-
struction, °ri = 0 in De (independently of the higher-order corrections

that, in D

With this notation, eq. (4. 23) transcribes simply to

with the additional information that both "gothic deviations" are har-
monic solutions of the linearized Einstein equations (i. e. that they satisfy
both and modulo the indicated error terms). One
should beware of the fact that, by its derivation, the equality asserted by
eq. (4 . 27) holds only after having performed the (orbital ) multipole expan-
sion of the right-hand side (as indicated by the ME), as well as an implicit
or explicit near-zone expansion of both sides (as symbolized by the over-
bar). We shall take up in the next section the task of deducing from
eq. (4 . 27) explicit expressions for the algorithmic multipole moments in

Vol. 54, n° 2-1991.



140 T. DAMOUR AND B. R. IYER

terms of the source. As a final comment let us emphasize that we have
been able to reduce the problem to what is essentially a linearized gravity
one only because we had already gone through a detailed analysis of
nonlinearities, both for the external field (Section II) and for the inner one
(present section). Even after having derived our final linear-looking result
we do not see how it could have been obtained (or even heuristically
guessed) without the foregoing careful analysis of the nonlinearities of
Einstein’s field equations.

V. POST-NEWTONIAN (MASS AND) SPIN MULTIPOLE
MOMENTS

To sum up the results of the previous sections, we have shown that the
linearized algorithmic external gothic metric h i~ [~~] was equal, in the
external near zone De n D~, modulo a linearized coordinate transformation
and (9 (6, 7, 6) near-zone error terms, to the multipole expansion of the
linearized harmonic gothic metric generated via retarded potentials by
an effective stress-energy tensor ’t~r3. The latter effective source is a distribu-
tion in x having compact support and defined in the following way. Let
us start from the usual pseudo stress-energy tensor for the matter and
gravitational field system taken at the approximation we need:

The quantity is not of (spatially) compact support because of the
quadratically nonlinear contribution On inserting the explicit
Newtonian-potential expressions (3.3) for uin and U~ in the definition
(3 .1 ) of (U) one sees that can be written as a sum of double
(in fact, sextuple) integrals (over two source points yl, y2) of derivatives
(with respect to Y1 and y2) of the product of the kernels of the two
Newtonian potentials : I x - Y 21- 1. Let us, as above, denote
symbolically this structure as

[see eqs (3.4) and (3.6)]. It is clear from the structure (5.2) (where ~12
contains two spatial derivatives), that falls off only as I x 1- 4 at
spatial infinity.

Let us now replace the product of two kernels, r~ 1 r2 1, in eq. (5 . 2) by
a compact-support distribution according to the following prescription
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where Õ12 (x; y2) is the distribution describing a uniform linear density
along the segment joining y1 and y2 (with density =1 per unit length). In
explicit mathematical terms one has

where

and denotes the three-dimensional Dirac distribution in x

(i. e. a unit mass located at x = y). The application of the prescription
(5 . 3) in eq. (5.2) defines a compact-support distribution [23], say

and the work of the previous sections shows that the compact-support
effective stress-energy tensor iaa which generates [~~] modulo a linear-
ized coordinate transformation and (9 (6, 7, 6) error terms is [see eq. (4 . 22)]

Explicitly, we find from eqs (3 .1 )

where
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and where 0"1 is a short-hand notation for 03C3(y1) [resp. 03C3(y2)].
Let us now consider the retarded potential generated by say /~

given by eq. (4 . 25), and study its multipole expansion outside the (com-
pact) support of This question has been considered by us recently
[ 18] . Let us first emphasize the important subtle differences between the
problem treated in Ref. [ 18] and the present problem. Indeed, in Ref. [ 18]
we were working within the framework of linearized gravity, i. e. we were

assuming that the compact-support source (denoted of the gothic
deviation (denoted - satisfied the local conservation law °ri = O. By
contrast, in the present problem the effective compact-support source 
is not locally conserved, but satisfies only an (approximate) "quasi-conser-
vation" law which is discussed in Appendix A. This quasi-conservation
law is weaker than the full conservation law and therefore, among all the
integral identities used for in Ref. [ 18], only a sub-class of them are
still satisfied [modulo some additional error terms compatible with the
error terms in eqs (4 . 26) and (4. 27) above] in our present problem where

is replaced by This sub-class of "allowed" integral identities
coincides (modulo the just alluded addition of error terms) with the class
of identities among the STF tensors appearing in the original (unreduced)
multipole expansion of the gothic deviation which can be derived from
the harmonicity condition °ri = 0. This class was shown in Refs [5] and
[10] to consist of the relations (5.27)-(5.28) of Ref. [18]. Now, it is easy
to check that the exact results (5 . 33) and (5.35) in Ref. [18] for the mass
and spin multipole moments have been derived by using only the allowed
identities (5.27)-(5.28) (with a special use of eq. (5 . 17), with eq. (5.27 b),
to simplify the final expression of the mass moments). The main conclusion
is therefore that we can apply the "linearized" results (5.31)-(5.35) of
Ref. [ 18] to our "quasi-linearized" problem, with the simple replacement

-+ As we shall emphasize below, this conclusion does not apply to
other forms of the multipole moments of linearized gravity, in particular
to the expressions derived by Thorne [5]. This again shows that is only
an effective source for describing the external gravitational field after a
multipole expansion in De n Di [remember the symbol ME in the right-
hand side of eq. (4 . 27)], and that non-linear effects are still playing an
important role in our final linear-looking results.
The final result of Ref. [ 18] is that the multipole-expanded external

linearized gravitational field can be written, modulo a coordinate
transformation ~[source], as the linearized algorithmic gothic deviation
[see eqs (2.9), (2.10) above] computed for some "source multipole
moments" given as some explicit integrals of the right-hand side of the
linearized field equations. In keeping with the notation of the Introduction
(and of paper I) we shall denote these explicit integral expressions of source
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variables as IL (for the mass moments) and JL (for the spin moments).
Beware of the change of notation from Ref. [ 18] where GIL and GJL were
denoted respectively as ML and SL (which we keep for algorithmic moments
in this paper), and where the linearized gothic deviation (of the present
paper) was denoted 2014~.

In. Ref. [18] we have obtained both the exact closed-form expressions of
IL [source] and JL [source] and the first two terms of their near-zone

expansion. Let us consider now the effect of the 0 (6, 7, 6) error terms
contained in eq. (4.23). It is easy to see (for instance by following
paper I in eliminating the coordinate-transform terms (p" and w" [source] by
computing the linearized curvature of both sides) that eq. (4.23) allows
one to conclude that the algorithmic multipole moments, ML, and SL, of
the left-hand side must coincide with the source multipole moments, IL
and JL, of the right-hand side modulo fractional error terms O (c - 4) for
both types of moments:

It is therefore sufficient to insert into the near-zone expanded forms
derived in Ref. [18] [eqs (5 . 38) and (5 . 40) there] ’t~r3 instead of to

define the source multipole moments

Both sides of equations (5.11) are evaluated at the same coordinate time
Let us recall that, for the multi-index STF denotes

L

the projection operation onto the symmetric and trace-free (STF) part of
some cartesian tensor of rank l, and that ~ denotes the STF part of

... xit. The subscript "c " (for "compact") on ’t~r3 should not
be confused with the velocity of light which appears explicitly in eqs
(5.11).

Finally, let us emphasize that one would obtain incorrect results if one
would perform the replacement -~ in the "Thorne form" of the
linearized multipole moments (eqs (5 . 39) and (5 . 41 ) of Ref. [ 18]), or, in
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other words, the replacement -~ ’t~r3 in the formal expressions (5.32 a),
(5.32 ~) of Ref. [5] (see Appendix A).

V. A. The post-Newtonian mass moments

The main aim of the present paper was to obtain the post-Newtonian
spin source moments, JL [source] + 0 (4), because the post-Newtonian mass
source moments, IL [source] + (9 (4), have already been derived in paper I.
However, as the method we used here is different we should first check
that our new form (S .11 a) is equivalent to the one derived in paper I
which was simply [eq. I (2 . 27)]

where a and ~‘ are defined as in eqs (5.9) above. Remembering that the
(nonlinear) 03B412-terms in 03C403B103B2c, eqs (5 . 8), bring additional terms of relative
order O (c- 2) in and T~, but of order in r~, we see that eq.
(5 .11 a) will be consistent with eq. (5.12) if the additional 03B412-terms

present in cancel with the present in the

same integral. Adding the trace of eq. (5 . 8 c), we see that it reduces to
checking the validity of

In the second term we can interchange the d3 x with the d3.y1d3y2
integration, letting the distribution 812 (x) act on the "test" function XL
to produce from eqs (5 . 4), (5.5)

where ... ~), with each vector ya being given by eq. (5.5)
(with a common value of a). It is then easy to see that eq. (5.13), being a
quadratic functional of o (y), is equivalent to
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To see that eq. (5 .14 a) holds it is convenient to work with the variables

such that

With these variables eq. (5.14 a) is equivalent (taking into account

. 

which is easily verified to hold. For completeness, let us note that the

integral identity (5.13) can also be proven by verifying the following
differential identity among distributions:

Having checked that the post-Newtonian mass moments agree with the
results of paper I, let us next turn our attention to the spin multipole
moments.

v. B. The post-Newtonian spin moments

The calculations done for the mass moments indicate the route to

obtaining an explicit expression for the spin source moments. First one
notices that one needs to keep the 03B412-additional terms only in the first
and the third terms in the right-hand side of eq. (5.11 b), but that the
replacement T~ ~ (jb is accurate enough in the second term. Let us also
introduce a special notation for the integrals that appear when one per-
forms the a~~ x integration first:

(where + (~" o0 ~2). and for their derivatives
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Note that YL is a STF tensor that depends on two source points (and on
the choice of origin for the spatial coordinates xi), and that

Y 1) while the order of indices after the comma in

is important : y,). With the notation (5 . 17),
we can now write down from eqs (5.11 b) and (5 . 8) the main new result
of this paper, i. e. the explicit expression of the post-Newtonian spin source
moments, JL [source] + (9 (4):

where all quantities on both sides are evaluated at the same coordinate
time, t, and where ~i = 6 (yi, t); i =1,2 [we recall also the definitions (4 . 3 a)
and (4 . 4)] .
Our central result (5.18) can be cast in another equivalent form (for

the isolated systems that we are considering) by using, in the 1 PN correc-

tion terms, the Newtonian momentum balance equation:

Replacing in eq. (5 . 18) using eq. (5 .19), performing an integration
by parts in the term containing and employing (see Ref. [18])

(where r2 denotes x2) it follows after some computation that the 
and Tbs terms reduce to
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Thus JL can equivalently be rewritten as

In the form above the are not STF projected, and the explicit
contribution of the stress term disappears for l =1 (but not for /~2). It
may be noted however that, both in eq. (5.18) and in eq. (5.21) only the
STF part of the stress tensor, contributes.

The integral forms (5.18) or (5 . 21 ) constitute our complete and general
answers to the problem of finding explicit expressions for the post-New-
tonian spin algorithmic moments in terms of source variables. However,
we shall next indicate how the forms (5.18) or (5 . 21 ), which contain

explicit double integrals d3y1d3y2), can be transformed into some
‘ potential" forms whose explicit appearance will contain only simple inte-

grals d 3 y , the second integral being absorbed into the definition of

some intermediate potentials The

algorithm for going to the potential form is most conveniently implemented
by expressing all quantities in terms of the pair of variables (yl, y 12)’ with

instead of the original pair of source points (y 1, Y 2).
Since one needs to evaluate expressions of the form
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r
one begins by expanding in terms of the new variables. This is

Jo
easily done by starting from

where S denotes the symmetrization operator over the l indices present
on z (P = i1... ip) or y (L - P : = ip+ 1... zj. One finds

One thus ends up with having to evaluate expressions of the form

~ ~yb1~yc2(12f(y1, Yi2)) which yields

(where r12, b denotes ~12/~yb12, and where the partial derivatives in the
left-hand side refer to the pair (yl, y2), while the ones in the right-hand
side refer to (y 1, Y 12)).

Consequently at the end of the computations for YLab one is left with a
sum of terms whose general structure is

The integral over y2 introduces some generalized tensorial "potential’
which we designate as 

where rxy : and nxy : (the unit vector being oriented
from the "source point" y to the "field point" x).
Note that the scalar potential is just the usual Newtonian potential

of cr, eq. (4 . 3 a) (we shall henceforth drop the label "in" on U)). Note
also that all our potentials are generated by the scalar source o, we shall
not introduce any potential generated by the vector source cri.
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In terms of the P’s the spin moments are thus expressible as a sum of
terms of the form

We illustrate the above procedure for /= 1 and discuss it in detail. The
result for /=2 is also explicitly given below. From our discussion and the
examples it is clear that the procedure is generic and the general structure
of the terms constituting the spin moments will be written down. The
relevant numerical coefficiens may be computed if needed and the only
complication is a proliferation of terms.
For l =1 eq. (5 . 21 ) becomes

where

denotes the familiar looking "Landau-Lifshitz" form of the total spin,
with the replacement ~ and where

A straightforward calculation gives

and eqs (5 . 26) and (5 . 27) become respectively
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The above forms look more involved than necessary. This however is

easy to remedy if one realizes that the potentials ab P~ _ 1 ~, p(~ 1) and &#x3E;
are not all independent but linked by algebraic relations. Using,

the expression of Qi becomes

An explicit calculation then shows that Q~ identically vanishes as a
consequence of the following identity

where the differentiations above are with respect to Thus for an
isolated system we have proven that

It may be worth pointing out that the above relation may be rewritten
entirely in terms of the potential as

It may be then transformed to the following "Fock" form of the
conserved total spin of an isolated system at the post-Newtonian
approximation [3]

where Ub is the vector potential (3 . 3 b) and

This identity between our algorithm-derived l =1 spin moment and the
usual conserved 1 PN spin is a necessary check on our analysis because
we knew in advance that the algorithmic spin Si is exactly conserved, and,
we had shown that [eq. (5.10~)]. We can note in passing
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that, contrarily to the Fock formula (5 . 33), or our "compactified Landau-
Lifshitz" formula (5 . 26), the original Landau-Lifshitz one,

with t given by eq. (5 .1 ), is mathematically ambiguous as the integral on
the right-hand side is not absolutely convergent. This convergence problem
evidently worsens for higher values of l, and shows again the necessity of
a proper treatment of nonlinear gravitational effects.
For completeness let us note that if one starts from eq. (5.18) and does

not use the momentum balance equation (5.19), but makes use of the
Newtonian mass conservation law,

to transform the last ( 1 PN) term in eq. (5.18), one derives yet another
"potential" form of the total spin:

Let us now discuss the "potential" form of the spin quadrupole (/=2).
For /=2 eq. (5 . 21) becomes

Implementing the procedure outlined above for introducing potentials
is long but straightforward and yields
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It may be worth pointing out that, contrarily to the l =1 case, the stress
terms have not been eliminated in the expression for J1~ by our use of the
momentum balance equation (5.19). In fact, if we had not used eq. (5 . 19)
the expression for J~~ would have been slightly simpler, the last three terms
in the right-hand side of eq. (5 . 36) getting replaced by

As a check on the algebra which led to eq. (5 . 36) we have verified that
the right-hand side of eq. (5. 36) transforms under a shift of the origin of
the spatial coordinate system by the formulas discussed in Appendix B
below.

Let us end by outlining the structure of the potential form of the general
spin multipole moment.
From an examination of the form of JL, eq. (5 . 21 ), it is easy to

demonstrate that in the 1 PN terms (with c, the implicit STF
operation on a L -1 [see the definition (5 .17)] can be replaced by a mere
symmetrization since the trace terms do not contribute. Further in the
terms containing an inner contraction between up and down indices,

only the terms involving a single trace over either as or sik
contribute beyond the untraced symmetrized ones. With these comments
it is easy to show that for arbitrary l, JL may be written in the following
potential form
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where k = b, il _ 1, and the symbol ~ means that the numerical coefficients
of (most of) the terms are omitted. Finally let us remark that, similarly to
eq. (5.32), one could express JL in terms of only scalar potentials

(x) ( y) I x - y and their derivatives [using the generalizations

of eq. (5.28 a) to arbitrary values of a and arbitrary number of deriva-
tives] .

VI. SUMMARY AND CONCLUSION

This paper is the second one in a series of papers that develop a new
formalism for investigating the generation of gravitational waves by semi-
relativistic sources. The main idea of this formalism dates back to

Fock [3] and consists of splitting the problem into two sub-problems (near-
zone problem and external problem) whose solutions are then "matched".
The main tool used for implementing this formalism is a recently developed
multipolar post-Minkowskian (MPM) algorithm ([8] - [ 12]) which is sum-
marized in Section II above. This algorithm (which implemented ideas put
forward by Bonnor and Thorne) makes an essential use of a skeleton of
time-dependent "algorithmic multipole moments", ML, SL, which play the
role of arbitrary functional parameters in the construction of the external
gravitational field. The first paper in this series [6] had achieved two
results:

(i) to show that the "radiative multipole moments" that parametrize
the asymptotic outgoing gravitational wave amplitude [5], say and

SradL [see eq. ( 1. 4) above], are related to the algorithmic multipole moments
by

where U==T2014R/c is the retarded time in some "radiative" coordinate

system; and
(ii ) to show that the algorithmic mass multipole moment, ML, is related

to the distribution of energy, momentum and stress in the material source

by a relation of the form

where IL [source] denotes a well-defined spatial integral over the compact
support of the material source [see eq. (5 .12) above].

In the present paper we have succecded in finding the analogue of
eq. (6 . 2) for the spin multipole moments, namely
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where SL is the algorithmic spin multipole moment and JL [source] a well-
defined compact-support integral involving only the source variables [given
by eq. (5.18) or by eq. (5.21)]. The new tools that have allowed us to
succeed in getting eq. (6 . 3) were: (i ) the results of a recent

reexamination [ 18] of the multipole analysis of the linearized gravitational
field emitted by a compact source, and (ii ) a study of the various kernels
appropriate for solving the quadratic nonlinearities of Einstein equations
(Section III above).
Our post-Newtonian spin-dipole source moment Ji [source] has been

shown to coincide [modulo 9(c’~)] with the usual post-Newtonian total
spin vector for an isolated system [3], eq. (5. 33), for which our method
provides several new expressions, eqs (5 . 26), (5.31), (5.32) and (5 . 34).
We have shown explicitly how to express our post-Newtonian spin-

quadrupole source moment, J~~ [source], originally given in the (compact-
support) double-integral form (5.35), in an alternative (compact-support)
simple-integral form (5 . 36) involving some auxiliary potentials, eq. (5 . 25).
This transformation to a "potential" form works for all higher moments
as outlined in eq. (5.38) for the lth-order post-Newtonian spin moment
originally obtained in the double-integral forms (5.18) or (5 . 21 ).
Our new results are important in two separate respects. On the one

hand, they bring (in conjunction with the other explicit results of Section II
above) an explicit knowledge of the multipole expansion of the external
near-zone field entirely in terms of the source at the level of accuracy
8~=9(c~), S~=~(~), §~=9(c’~) (which is well beyond the
1 PN level of Ref. [6], being nearly at the 2 PN level). On the other hand,
they bring [in conjunction with eqs (6.1)] an explicit knowledge of the
"magnetic part" of the gravitational wave amplitude in terms of the source
with unprecedented accuracy. This knowledge can be useful for different
purposes. It can allow one to refine the recent formalism of Ref. [24] in
which a consistent post-Newtonian formulation of the dynamics and
gravitational wave generation of a semi-relativistic source has been given
in a form suitable for numerical calculations. Indeed, the contribution to
the gravitational wave amplitude ( 1. 4) of the post-Newtonian terms in JL
and thereby SradL is of order O (c - 3) (because of the extra c -1 in front of
spin moments) relatively to the dominant (Newtonian) quadrupole contri-
bution and this is bigger than the fractional error (0(c’~)) in the treatment
of the source dynamics in Ref. [24]. Moreover, as emphasized in Ref. [25],
an accurate knowledge of the radiative spin-quadrupole moment is impo-
rtant for improving the estimate of the physically important "rocket effect"
induced in a black-hole binary system by the emission of gravitational
radiation, and this is provided by the present work. For such applications,
we give in Appendix C below the point-particle limit of our result for the
post-Newtonian spin quadrupole.
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Finally, let us note that the improvement brought about by the present
paper in the relation between algorithmic moments and source moments
[O (c-4) error terms in both eqs (6 . 2) and (6 . 3)] obliges us now to refine
the link between the radiative moments and the algorithmic ones [only
O (c-3) accuracy in eqs (6.1)]. This refinement is, for instance, necessary
in eq. (6 .1 a) if we want to control the full gravitational wave amplitude
modulo errors O (c - 4) relative to the dominant quadrupole contribution.
This problem will be the subject of a subsequent paper.
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APPENDIX A

QUASI-CONSERVATION LAWS FOR QUASI-LINEARIZED
METRICS

Let us call a tensorial field a "quasi-linearized" (gothic) metric if it
is generated via retarded potentials by a spatially compact source and
if it is divergence-free outside some spatially compact domain. The first
condition reads

If we then define, possibly in the sense of distributions, for all values

the second condition states that Eq (x~‘) has, like (~), a spatially compact
support. Combinings eqs. (A.1 ) and (A.2), it is easy to deduce that t:r3
satisfies the following "quasi-conservation" law:
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Reciprocally, if some spatially compact source satisfies (in a distribu-
tional sense) the quasi-conservation law (A.3) for some spatially compact
Eq the retarded field (A.1 ) satisfies (A.2), and is therefore divergence-free
outside some spatially compact domain. From the results of Refs [5] or
[10], the various coefficients, AL, BL, ..., JL of the exterior multipole
decomposition, eqs (2.25) of Ref. [10], of satisfy the relations (2.27)
and (2.28) of Ref. [10]. This proves that the quasi-conservation law (A.3)
is sufficient to entail the latter relations (which are numbered (5.27) and
(5.28) in Ref. [ 18] and which were explicitly verified there by assuming
the full conservation law: This proves therefore that the equa-
tions (5.31), (5.32) of Ref. [18] apply also to any quasi-linearized metric,
with mass and spin multipole moments given by the remplacement

~ iqa in eqs (5.33)-(5.35) there.
Let us apply these considerations to our effective, compact-support,

source iap. Starting from its definition (5.7), and using eqs. (3.9) and (5.1 ),
(5.2), (5.6), we see that

where the linear operation ~ 12 was defined in Section III. We know
that ’[0152r3, defined by eq. (5.1 ), satisfies the following (approximate) strong
conservation law

but we need to compute (in a distributional sense) the divergence of
~0152r3 (k). From eq. (3.13) it has the form

Using the translational invariance of the kernel k we can replace the
spatial x-derivatives appearing in eq. (A.6) (which act only on k) by yl-
and y2-derivatives according to

As for the time derivative, they are either negligible (when a = i) or
they act (when a=0) only on 03C3103C32 according to

Using eqs (A.7) and (A.8) the calculation (A.6) is reduced to computing
some combinations of third-order yl- and y2-derivatives of the kernel k.
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After several simplifications one is left with terms that contain only the
yl- or y2-Laplacians of k. The problem is then reduced to calculating, say
the y1-Laplacian of k (x; Y l’ y2), considered as a distribution in x, depend-
ing on the parameters y 1 and y2. This calculation is somewhat delicate.
One way of doing it is to take the yl-Laplacian of both sides of eq. (3.9 c).
This leads to

In the calculation of the right-hand side of eq. (A.9) from the definition
(3.8) of 812 there appears the following x-distribution

More precisely, thanks to some simplifications the right-hand side of
eq. (A.9) is found to be simply 203C00394x03B4(2)12. This x-distributional identity
allows one to conclude that

where it is important to note that 8~ is, like §12, a distribution which is
entirely concentrated on the segment connecting y 1 and y2 (but, contrarily
to Õ12’ the linear mass density of 8~ is not uniform).

Finally, these explicit calculations lead to the proof of the following
(approximate) quasi-conservation law for 

with

where ~221 is defined by exchanging Y 1 and y2 in the definition (A.10) (it
comes from 6 y2 k = 27r b221).
The explicit expressions (A.12), (A.13) allow us to investigate the effect

of using various forms for the post-Newtonian-accurate multipole
moments in linearized gravity as starting points for the replacement

~ We have seen in the text that this replacement gave the correct
moments when starting from the BD (Ref. [6]) or DI (Ref. [ 18]) forms.

. Let us now consider the "T form", defined as the linearized-gravity limit
of the results of Ref. [5] (which are given as formal integrals of the non-
compact effective source in the post-Newtonian case). As exhibited in
Ref. [ 18], one needs to use the full conservation law to go from the BD
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and DI forms to the T forms. However, the compact effective source 
satisfies only the quasi-conservation law (A.12). This means that extra-
terms appear in going from the BDI to the T form. An explicit calculation
shows that

with

Using the explicit expressions (A.13) one can show that the extra-terms iL
and jL are zero when l ~ 1. For Ji one thereby recovers the result (5. 31 ) of
the text, while for IL one gets new expressions for the BD mass and dipole
moments:

On the other hand, it seems that iL and jL are not identically zero for
/~2. Indeed, using eqs (A.13) one finds an extra-term in the mass quadru-
pole equal to

which is generically non zero.
Let us emphasize that the conclusion reached here of a "superiority"

of the BD and DI forms over the T forms depends on our imposing as
rule of the game a replacement or ~ t~r3) in expressions
derived in contexts where the use of a conservation law was allowed.

When one does not change the rule of the game, and when all the various
forms are mathematically well defined (which means when one restricts
oneself to linearized gravity) they are all equivalent.
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APPENDIX B

TRANSFORMATION OF MULTIPOLE MOMENTS
UNDER SHIFTS OF THE SPATIAL ORIGIN

Let us put ourselves in the same general framework as Appendix A,
i. e. let us consider a quasi-linearized metric generated by a spatially
compact source satisfying the quasi-conservation law (A.3) for some
spatially compact ~:. Note that all this setting is covariant under the
Poincare group. However, when we wish to analyze in multipoles we
need to break the Poincare invariance [down to an 0(3) invariance] by
choosing a particular central worldline, say Thereby, the values of the
multipoles, in particular the "physical" (i. e. gauge invariant) mass and
spin multipoles of say ML and SL, depend on the choice of For

simplicity’s sake, we shall restrict ourselves to considering a three-para-
meter family of parallel central wordlines (i. e. to a free choice of an origin
in space). Then, given an infinitesimal vector in Euclidean space, say E,
we shall define

where L~ is obtained by shifting L by -~ in space. The minus sign
introduced in the shift is chosen to ensure that the spatial vector going
from the central worldline to some given field point P, say 
(projected onto the three-space orthogonal to the common time direction
defined by the family of parallel central worldlines) changes by

Let us recall from Refs [5] and [ 10] that the full multipole decomposition
of (P) can be uniquely written in the form (indices omitted)

where denotes the set of "physical" mass and spin
moments, W={WL, XL, YL, ZL} the set of "gauge" moments, Fcan the
"canonical" multipole series expressing a gothic metric in terms of physical
moments [explicitly given by eqs (2.9), (2.10) above] and

"gauge" part (see Refs [5], [ 10] or [ 18] for
the explicit expression of w0152 [~]). Let us note that we have taken advantage
of our considering only parallel wordlines to forget the time dependence
in the right-hand side of eq. (B.3). -

Under a shift of the spatial origin, i. e. under a translation of the central
worldline 2, keeping the geometrical field-point P fixed the left-hand side
of eq. (B.3) must stay invariant, while in the right-hand side both the
various multipole moments and the relative vector shift by:
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Expressing that the shifts (B.4) must compensate themselves 
we find that 8g ~l must be equal to

where the letter ~~ appearing in front of the right-hand side of eq. (B.5)
denotes the operation of extracting the physical multipoles out of the
(quasi-) linearized metric enclosed in curly brackets (it being clear that for
any exterior solution of the linearized Einstein equations, -~~h03B103B2
defines another such solution which can also be analyzed in multipoles).
The explicit formulas for computing for any linearized exterior

metric are given by eqs (2.26 a), (2.26 b) of Ref. [10]. By applying these
formulas to = 2014 Ei ~/~xih03B103B2can one could directly derive the following
"shift" formulas

where one should not confuse the shift vector with the Levi-Civita

symbol 
In fact, we have used a more indirect, but simpler, method for proving

eqs (B.6). Indeed, it is rather easy to prove that the algorithm
will, because of tensorial, dimensional, parity and time-

reversal considerations, necessarily lead to shift formulas having the struc-
ture (B.6) with some universal l-dependent coefficients. It then suffices to
determine these coefficients (i. e. l, 20144//(/+1)~, etc.) in some particular
cases. We have determined the coefficients of and 

by considering the particular case of the linearized gravitational field

generated by a time-independent (fully conserved) source and by
introducing a shift 8 ~ = Ei in the stationary-limit of the exact expressions
(5.33) and (5.35) of Ref. [18]. Then we have determined the other coeffici-
ents by considering the wave-zone limit of the invariance requirements
8~~(P)=0. In this limit, one is considering two different sections of
Minkowskian future null infinity related by a shift of the retarded time
variable equal to b£ u = - c. n (where n = Writing the geometrical
invariance of the time-antidcrivative of the news function,

with m = one finds, after some amount
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of algebra, the shift formulas for the lth-time-derivatives of the (radiative)
multipole moments, which determines the other coefficients in eqs (B.6).
One can also conclude from this last argument that the ~~-time derivative
of eqs (B.6) will give very generally the transformation formulas of the

(I) (I)
differentiated radiative moments, for any asymptotically simple
curved Einstein metric, under the sub-group of the BMS group defined by
8gM== 2014~.n(8, cp), where u, 8, cp are some Bondi coordinates. In particular,
these transformation formulas will apply to the differentiated radiative
moments of eq. ( 1.4) above, under a shift 8gU== 2014s.N of the radiative
coordinate U = T - R/c. However, in the present context we are not inter-
ested in applying the time-differentiated formulas (B.6) to the radiative
moments of our physical metric ~a.r3 [as given by eqs (1.9) with a loss of
information at the O (c - 3) level], but to our 1 PN-accurate source multipole
moments IL and JL [known up to O (c - 4)] .
We have set up the proof of the shift formulas (B.6) in a way which

makes it clear that they apply to any quasi-linearized metric in the sense of
Appendix A, i. e. a tensor which satisfies the linearized Einstein equations
outside some world-tube, and which is generated by an effective source

which might be only quasi-conserved in the sense of eq. (A.3). This
situation applies to the metric of eq. (4.25) above. Therefore, we can
conclude that our 1 PN source multipole moments, IL[source], JL[source],
defined by eqs (5.11 ) above transform according to eqs (B.6) [modulo
additional O (c - 4) error terms in both equations] under the transformation

of the harmonic coordinate system used in Section IV
to describe the source and the curved metric in the inner region. We have
explicitly verified, by a long but straightforward calculation, that the

potential form, eq. (5.36), of our source spin quadrupole indeed transforms
according to eq. (B.6 b) for l = 2, 

Note that in the right-hand side of eq. (B.7) both the 1PN spin vector
Jj and the 1 PN (BD) quadrupole moment Ibi appear, while it is enough
to use the Newtonian value of the spin octupole. In evaluating the time
derivative of the 1 PN source quadrupole moment one needs to use a
1 PN-accurate continuity equation. The relevant equation follows from

V J! TO J! = 0 and reads
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or, in the notation (4.4),

APPENDIX C
THE POINT-PARTICLE LIMIT

The multipolar gravitational wave generation formalism introduced in
paper I and extended here considers weakly self gravitating sources. This
still leaves the possibility of considering systems of well-separated extended
bodies. A good theoretical description, at the 1 PN approximation, of such
N-body systems by means of a set of individual 1 PN moments for each
extended body has been achieved only recently [26]. As such an analysis
is rather intricate, we shall content ourselves in this Appendix to use the
familiar formal description [2] of N well-separated bodies, at the 1 PN
approximation, when neglecting all information about the inner structure
of the bodies, that consists of taking a stress-energy tensor of the form,

and of neglecting all the ill-defined (formally infinite) terms. See also the
appendix of Ref. [27] for a treatment of intermediate rigour (between (C. 1 )
and Ref. [26]) of this point-particle limit for the 1 PN quadrupole moment.
Modulo O (c - 4) error terms, eq. (C.1 ) yields

where A = 1, ..., N labels the N separate bodies, and

Ref. [27] has obtained the point-particle limit of the 1 PN mass quadru-
pole. We shall here compute the (formal ) point-particle limit of the 1 PN
spin quadrupole, starting from the potential form (5.36). It is then clear
that the O (c - 2) contributions appearing in eqs (C.2) need to be kept only
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in ~b and when evaluating the leading term in eq. (5.36). Noting that
(formally)

where we obtain our final point-particle limit
for the spin quadrupole moment of a N-body system:

( Manuscript received October 31st 1990.)
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