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Invariant subspaces for the Schrödinger
evolution group
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Nagoya 464, Japan
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Dedicated to Professor Shigetake Matsuura ,
on his sixtieth birthday

ABSTRACT. - The formation of dispersion with finite velocity of quan-
tum states is described in detail. To be more specific, we prove the
invariance of the domains D ( I x D ( ~ p and of their topolo-
gies under the Schrodinger evolution group where we denote by x
and p the position and momentum operator, respectively. Moreover, we
give a characterization of invariant subspaces under unitary groups in a
rather general setting.

RESUME. 2014 Nous analysons la formation de dispersion de vitesse finie
des etats quantiques. Plus precisement nous prouvons 1’invariance des
domaines D ( I x I m) (1 D ( ~ p Im), et de leur topologie par Ie groupe
d’evolution de Schrödinger {e-itH} ou x et p sont les operateurs de
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44 T. OZAWA

position et d’impulsion respectivement. Nous donnons de plus une carac-
terisation des sous espaces invariants par des groupes unitaires dans un
cadre plus general.

1. INTRODUCTION

In this paper we prove that the Schrodinger evolution group preserves
the regularity and decay properties in the scale of weighted Sobolev spaces.

Let H = Ho + V be a Schrodinger operator in the Hilbert space
L2 = L2 (f~n), where Ho = - (1/2) A is the free Hamiltonian and V is a Ho-
bounded symmetric operator of multiplication with relative bound less
than one, so that by the Kato-Rellich theorem H is self-adjoint in L2 with
domain D (H) = D (Ho). We consider the Schrodinger evolution group

in the scale of weighted Sobolev spaces

and denotes the is a Hilbert space with the norm III. 
given by 03C82m - I ~2m, o m’ The free Schrodinger evolution group

leaves invariant since the Fourier transform is an isometry
on and the multiplication operator by exp ( - i (t/2) I ~ 12) preserves 
We now state our main results:

THEOREM 1. - Suppose that

holds when ~~3. Then:
(1) and , Hm, 0 ’ are invariant under e-itH for any 
(2) The map (t, continuous from IR X Jt m to , Jt m and from

IR x Hm, 0 ’ 

(3) e - itH has the estimates

where ’ C (m) is independent of t and cp. In particular,
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45INVARIANT SUBSPACES

(4) For any ae(f~U{0})" with and , any the map
is continuously differentiable and

THEOREM 2. - Suppose that (Hm) holds for all m &#x3E;_ 3. Then:
( 1 ) For any (t, e-itH03C6~F and the map R~e-itH03C6~F

is C co .

(2) The map IR is continuous.

The estimate (1 .2) is optimal with respect to the growth rate in time.
In fact we have:

THEOREM 3. - Let If 03C6~Hm, then

In particular,

Theorems 1-2 describe the formation of dispersion with finite velocity
of quantum dynamics. In other words, quantum states are well localized.
Of course, as was noted by Hunziker [9], the description of localization
in terms of supports of wavefunctions is in vain. The results of Hayashi-
Ozawa [7], Masuda [11] ] and Ozawa [ 12] will explain this kind of useless-
ness.

There is a large literature on the problem of invariant domains for
e-itH ([3], [4], [6], [9], [ 13], [ 14], [ 18]). Hunziker [9] showed that for any
m E rBJ U 0}, Dm = n D (x°‘ Hj) is invariant under e- itH without

for ~~3. Moreover, in [9] it is shown that part (2) of
Theorem 2 holds if all derivatives of V are bounded and continuous. The

space Dm, however, does not always fit into a detailed description of the
regularity preservation property For example, if

while Radin and Simon [ 14] obtained part ( 1 )
and ( 1. 3) of Theorem 1 in the case ~~2, where the condition (H 1) is

guaranteed by the Heinz-Kato theorem [16]. In addition, they showed
some examples which illustrate how local singularities in V cause the
breakdown of invariance in the case m &#x3E; 2. This leads to the observation
that the assumption controls local singularities in V. The problem
then arises what conditions on V ensure (Hm). A sufficient condition is

Vol. 54, n° 1-1991.



46 T. OZAWA

give’n by:

THEOREM 4. - Let m E When m &#x3E;_ 3, suppose that a°‘ V is bounded

from H1 + I r/. I, 0 to L2 for all 1 ~ I (X | ~ m - 2. Then D (I H (m/2) = Hm, o.
Theorem 4 improves the previous results of Arai [2], Ozawa [ 13] and

Wilcox [18]. As a simple application of Theorems l, 4 and an inequality
of Herbst ([8], Theorem 2. 5), we have:

 = max The assumptions in Theorem 1 are satisfied in the following °

cases:

The contents of the paper are as follows. In Section 2 we prove
Theorems 1-3. The proof of Theorem 1 uses a differential inequality for

([3]. [4], [ 14]) and an integral representation for [9].
For this purpose we approximate the weight functions by rapidly decreas-
ing functions [9] and the initial data by the resolvent of H. The regulariza-
tion by the resolvent has the advantage that it commutes with which
enables us to obtain a priori estimates without regularizing the potential V.
In Section 3 we prove Theorem 4 by expanding out. Section 4
is devoted to a characterization of invariant subspaces for in terms
of the resolvent estimates for H. This will be done in a rather general
setting by making use of the Hille-Yosida theorem. Related results have
been obtained by Schonbeck [ 15] .
Throughout the paper we use the following notations. For 

denotes the largest integer  s; [.,.] denotes the commutator; 
denotes the distributional derivative with respect to the j-th coordinate;
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47INVARIANT SUBSPACES

ý denotes the Fourier transform according to the normalization

(ff "’)(1;) = (2 7t) -n/2 exp ( - ix .1;) B)/ (x) denotes the Fréchet space of

rapidly decreasing functions from Rn to C; f/’ denotes the dual of ;F L2
denotes the Lebesgue space L2 (tR") or L2 ([R") (8) Cn, with the norm denoted
by 11.11; ( . , . ) denotes the L2-scalar product and various anti-dualities;
C (I; B) denotes the Frechet space of continuous functions from an
interval IctR to a Banach space B; Ck (I; B), denotes the space of
k-times continuously differentiable functions from I to B; 2 (B) denotes
the Banach space of bounded operators in B.

Different constants might be denoted by the same letter C, and if

necessary, by C (*, ..., *) in order to indicate the dependence on the
quantities appearing in parentheses. The summation over an empty set is
understood to be zero. A function, its value at a point, and the multiplica-
tion operator by that function might be denoted by the same symbol when
this causes no confusion.

2. PROOF OF THEOREMS 1-3

We start with some fundamental lemmas. For and ç£ and roS
denote the functions on given respectively by ~E (x) = exp ( - I ~ x ~2) and
(o’(~-)=(l+~~)~.For~e[RB{0},wesetR~=(H+~)’~.

LEMMA 2 . 1 (Hunziker [9; Lemma 2]). - Let L2),
then Em M -~ 0, ç£ C (tR; L 2) as E -+ 0.

Proo, f : - It suffices to prove (2 .1 ) for since C~ is dense in Jt m
and the is an equivalent norm

on (see Triebel [17], Theorems 1, 3 and 4). The L.H.S.
of (2 .1 ) is estimated by By Holder’s

!"!=j I0152I=j

Vol. 54, n° 1-1991.



48 T. OZAWA

inequality,

By an interpolation inequality of Lin [ 10],

Collecting these estimates, we obtain (2 .1 ).

Moreover, iÀRÀ ~ 1 strongly in as ~ 00.

(2) Suppose in addition that (Hm) holds when m &#x3E;-_ 3. Then for any I À I ~ 1,
°) and sup Moreover, iÀRÀ ~ 1

I À I ~ 1

strongly in 2 °) as I À I ~ 00.
Remark. - Related results have been obtained by Amrein, Cibils and

Sinha [ 1 ], Lemmas 1-3 .

Proof of Lemma 2 . 3 . - ( 1 ) The proof uses induction on m. For m = o,
it suffices to consider the case |03B1 I = 1. Let L2. Since D (I H 11/2) = H1,0,
we obtain by the closed graph theorem and the moment inequality [16]

as required. Let ~~ 1 and assume that part ( 1 ) holds for We

where

Annales de l’Institut Henri Poincare - Physique " theorique "



49INVARIANT SUBSPACES

By the induction hypothesis and Lemma 2.1, the R.H.S. of (2 . 2) converges
to inL2 as where

~M=W2)(~~M+(~-2)~~)~-~(~~M=~~-~M. It fol-
lows from the closedness of the multiplication operator that 
and that

Therefore, again by the induction hypothesis we obtain

as I À -~ oo . Noting j that every term on the R.H. S. of (2 . 3) is in H 1 ~ °, we
have " ’ 

so that for ~ = 1, ~ (o~ R~ B)/) - (aa o~) R~ ~ e L2, x. ,
Consequently,

This proves part ( 1 ).
(2) Since D (I H |m/2) = Hm, o, we obtain for 03C8~Hm, 0

Proof of Theorem 1. - From (HJ, the commutativity on 
of and and the unitary in L2 of we see that 
leaves invariant and has the estimate ( 1.1 ) and that the map
IR x (t, p) H e - ‘tH cp E Hm, 0 is continuous. From now on we use these
facts without particular comments. Parts ( 1 )-(3) will follow if we can show
that

Since (Hm) implies for by the Heinz-Kato theorem [ 16],
we use induction on m in order to prove that (Hm) implies ( 1 )m - (3)m, For
m = 0 we have nothing to prove. Let ~1 and assume that our claim
holds for We proceed to the case m. For

Vol. 54, n° 1-1991.
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By Lemma 2.2, the R.H.S. of the last equality is estimated by

Now, for cp E ~m~~ 0 }, we set u (t) e ~. By the induction hypo-
thesis, M6C(M; It follows from Lemma 2 . 3 that for

I À I ~ 1, i ~, RÀ cp E 20 o n HO, ~)B{ 0} and furthermore,

Since RÂ, and commute, H~’~) and

Integrating (2 . 4) with W replaced by /~R~(p, we obtain

Annales de l’Institut Henri Poincaré - Physique theorique
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By Lemma 2 .1 and (2 . 5), the R. H. S . of (2 . 9) converges to

as s-~0. By Fatou’s lemma, and
is estimated by (2.10). Now we use (2 . 6), (2 . 7)

and the commutativity of RÀ and to obtain

where C is independent of I 7~ I &#x3E;__ 1. In the same way as above,

where C is independent of I À I, I JlI ~ 1. By (2 . 8), (2 .11 ), (2.12) and the
closedness of the multiplication operator we obtain and (3)m.
Since part (4) with (3)m gives (2)m, we prove part (4), following
Hunziker [9]. Let !a!~~. By integrating the Heisenberg type equation

Since we already know (3)m and Hm, ° n HO, m - 1), we see from
Lemma 2 . 2 that L2) and that (2 . 13) converges to

in L2 as E ~ 0. Part (4) then follows by the standard argument.
Q.E.D.

Proof of Theorem 2. - It follows from Sobolev’s lemma and Lemma 2 . 2
constitutes a fundamental system of seminorms

on ~, and hence part (2) follows from Theorem 1. It remains to prove
is for any In view of part (2), this is

equivalent to showing that for any By assumption, for

Vol. 54, n° 1-1991.
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any 

so that n H~’~. Therefore we are reduced to proving that
~o

for any To this end we first prove by induction
m~O

on k that for any m~1 and 

Let k = 1. We have [H, B)/ = - (1/2) B)/ - (V V B)/. By
Lemma 2. 2, as required. Let and assume
that (2 . 14) holds. We proceed to the case k+ 1. We use the formula

Now By (2.15) and the induction hypothesis,

where we have used (H~), Lemma 2.2, and Hunziker’s lemma [9],
Lemma 1. Similarly,

Therefore (2 .14) holds for any k E I01.
We now prove that n for any By (2.14) and

~~0

Lemma 2 . 2,

as desired.

Q.E.D.

Proof of Theorem 3. - Let By making use of the Fourier
transform and the Hermite polynomials, we have for I B1.1 = m,

Annales de l’Institut Henri Poincaré - Physique - théorique
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where [P/2]=([PJ2], ..., [p,/2]). By Lemma 2 . 2, the R.H.S. of the last
equality converges to zero in L2 as t 1-+ oo . This implies the first equality
in the theorem. The second equality follows from the first one since

3. PROOF OF THEOREM 4

It is enough to consider the case ~~3. Let A:== [~2/2]. By the assumption
made on the derivatives of V, Vi is bounded from H~ ~ to L 2 for all

. 
~

and moreover, n is bounded from H’+I 0152t +... +0152II, 0 to L2
~!=1

whenever 1~/~-1, l~~i+...+a~2(~-/). We have by
induction that for all j= 1, ..., k, Hj03C8 is in and

where every term on the R.H.S. is in L2 by the preceding remarks. This
and

If m = 2 k+ 1, again by the above remarks every term on the R.H.S. of
(3.1) with j=k is in H1,0 and

which when combined with the fact shows

The inclusion D (I H Im~2) ~ then follows from (3 . 2) and (3 . 3), since ~
is dense in and H is closed. We now prove the reverse inclusion

Vol. 54, n° 1-1991.
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by induction. Let ~3 and assume that

D (I H I(m-1»2) c Hm-1, o. By the induction hypothesis,
In order to prove that we distinguish between the

following two cases:

( 1 ) When m = 2 k + 1, it is sufficient to prove that for all

! a =1. This will follow if we can show that

We approximate 03C8 by a sequence { in !/ such that W in 
asj  oo . Consequently, in L2 asj  oo . By (3 .1 ) withj=k,

In the same way as before, we obtain

and therefore

Taking the limit j -&#x3E; oo in (3 . 5), we have

which yields (3 . 4) since

(2) When m = 2 k, it suffices to prove that This will follow
if we can show that

The proof of (3 . 6) is parallel to that of (3.4). We approximate W by a

sequence {03C8j} in F such that in Consequently,
B)/, -+ W in L2 as j -+ oo . In the same way as before,

Annales de Henri Poincare - Physique " theorique "
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and therefore

which in turn implies (3 . 6).

Remark. - The argument given above shows that the inclusion
follows from a weaker assumption that is bounded

from to L2 for because this implies that n 
h=i

is bounded from H2l+1 Ctl +... to L2 whenever 

4. A CHARACTERIZATION OF INVARIANT SUBSPACES UNDER
UNITARY GROUPS

Our purpose in this section is to prove the following:

THEOREM 6. - Let X and Y be Hilbert spaces such that Y is densely
and continuously embedded in X. Let T be a self-adjoint operator in X. Let
m, M E (0, 00). Then the following conditions are equivalent.

( 1 ) leaves Y invariant for any and has the estimate

(2) (T + i ~,) - k leaves Y invariant for any kEN and any and ’

has the estimate

where r denotes the gamma function.

Proof - ( 1 ) =&#x3E; (2): Let For any ~, &#x3E; 0 and we have in X

Since the map is continuous and statisfies (4 . 1 ), it
follows that the map is weakly continouous (see,
Ginibre-Velo [5], Appendix 2), so that the maps

Therefore, by Bochner’s theorem the integral in (4. 3) converges in Y and
the R.H.S. of (4. 3) is estimated in Y by

Vol. 54, n° 1-1991.
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since for any X

This implies part (2).
(2) ~ ( 1 ): Let (peY. By (4 . 2), we have for any and 

By Stirling’s formula,

On the other hand, in X as k -~ oo . Therefore,
and ( 1 ~ i ( t/k) T ) - k cp -~ e + itT cp weakly in Y (see

Ginibre-Velo [5], Appendix 2). This implies part ( 1 ).
Q.E.D.
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