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The simplified Wheeler-DeWitt equation:
The Cauchy problem and some spectral properties

João-Paulo DIAS Mário FIGUEIRA

C.M.A.F., Av. Prof. Gama Pinto, 2
1699 Lisboa Codex, Portugal

Ann. Inst. Henri Poincaré,

Vol. 54, n° 1, 1991, Physique ’ théorique ’

ABSTRACT. - In this paper we consider the simplified Wheeler-DeWitt
equation which describes the minisuperspace model for the wave function
W of a closed universe (cf [4], [ 1 ]). We study this equation as an evolution
equation in the scalar field y~R with a scale factor jce]0, R[. We solve

the Cauchy problem for the initial data (~, 0) and -’ (jc, 0) and wey p ~( ~ ) 
ay 

( ~ )

study the spectrum of a differential operator related to the equation
(cf [4]).

RESUME. - Dans ce papier nous considerons 1’equation de Wheeler-
DeWitt simplifiee qui décrit Ie modele de mini-superespace pour la fonction
d’onde W d’un univers ferme (cf [4], [1]). Nous etudions cette equation
comme une equation d’evolution dans Ie champ scalaire y~R avec Ie
facteur d’echelle xe]0, R[. Nous resolvons Ie probleme de Cauchy pour

des donnees initiales x 0) 0) et nous etudions Ie spectre d’un
ay 

( ~ ) p

operateur differentiel associe a 1’equation (cf [4]).
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18 J.-P. DIAS AND M. FIGUEIRA

1. INTRODUCTION

The simplified Wheeler-DeWitt equation can be written as follows

(cf [4], [1]):

where is the scalar field, R[(R&#x3E;0) is a scale factor, pER and
k2 &#x3E; 0 are given constants (p reflects the factor-ordering ambiguity and k2
is a mass factor) and B(/: ]0, R[ x R -~ C is the wave function of the universe
for the minisuperspace model. The equation ( 1.1 ) is equivalent, in the
sense of distributions, to the following equation:

which can be considered as an evolution equation in 

Given 03C8 (x, 0) and -- (x, 0), we will solve the corresponding Cauchy
~

problem, assuming that the initial data belong to some suitable weighted
Sobolev spaces.

In second part of the paper we study the following eigenvalue problem
c. [4], V):

in a suitable domain.
In order to solve these problems we must introduce some weighted

Sobolev spaces related to those introduced by P. Grisvard (cf [2]) in the
case where ]0, R[ is replaced by R + .

2. FUNCTION SPACES

Let (pe~(]0, R[) (extended by zero to R + ) and put

We have, by theorem 330 in [3],

Annales de Henri Poincaré - Physique theorique t



19SIMPLIFIED WHEELER-DEWITT EQUATION

Hence, we obtain

In the special case p =1, applying (2.1 ) to p =1 + E, s&#x3E;0, we get

We define, for pER,

with its natural norm, where Lp (]O, R[) is the L2 space for the measure
We denote by the closure R[) in Hp. By (2.1),

(2.2), we get that du dx I is, in o, an equivalent norm to u denoted

By (2.1 ) we can also conclude that, if we have 

where  means continuous injection.
We can finally remark that, following the ideas of [2], the functions

belonging to Hp, o, for p  1, are the functions of H~ that are equal to
zero at the boundary of ]0, R[.
We need the following lemmas:

LEMMA 2.1. - We R[) dense in for its natural
norm.

Proof. - Let R[) such that in Hi, o.
We can choose such that

Let n =1, 2, ... We have R[).
With we get, by (2.1 ) and (2. 3),

Vol. 54, n° 1-1991.
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Hence, since we obtain

Furthermore, we have

But

and

Hence, 1~1 ~ 0 and we conclude that

Hence, x~p~2&#x3E;-1 u in L2 and, if M- x-p~2 cpn, we have

Hence,

We get and 
By (2.1 ) (with p = 0) it follows that {u |x1/2 Me HÕ } :+ L2 1. 0

LEMMA 2 . 3. - We have

and ’ hence b lemma ’ 2 . 2

Annales de l’Institut Henri Poincaré - Physique " theorique "



21SIMPLIFIED WHEELER-DEWITT EQUATION

we get

Hence, u E Ho and 1 u u 
o.

For p =1, by lemma 2 .1, we can choose R[) such that cpn -+ u
in H i , o n L2 1 and the proof is the same. Furthermore,

We can now prove the following:

PROPOSITION 2 . 1. - The injection Hp, Lp is compact, for every pER.

Proof. - Assume first p ~ 1. Since the injection H~ :+: L2 is compact,
the result is a consequence of lemmas 2. 2 and 2 . 3 and of the mappings

Suppose now j~= 1 and let we have

Hence " Furthermore, by applying j lemma ’ 2 . 3 with

3

~=-, we get

The result is now a consequence of the compact injection L6 and of

the mappings

Vol. 54, n° 1-1991.
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3. THE CAUCHY PROBLEM

In order to study the Cauchy problem for the equation ( 1.2) let us put

The equation ( 1.2) can be written as follows:

We consider the Hilbert space o 
x L2 -2’

We put

where

THEOREM 3 . 1. - The operator A : D (A) ~ H defined by

is skew-self-adjoint in H.

Proof. - Let (w, h) E D (A*): there exists (q, l) E H such that, for every
(u, v) E D (A), we have

that is

In particular, with u = 0, we get

which implies

Since w E Hp, 0’ we get w~D (B).
Now, put v = 0 in (3.4). We obtain

Annales de l’Institut Henri Poincaré - Physique - theorique



23SIMPLIFIED WHEELER-DEWITT EQUATION

We have

Hence, if R[), there exists o such that

that is in ~(]0, R[). Then MeD(B) and

Since cp is arbitrary we conclude that o. Hence, (w, h) ED (A)
and so D (A*) c D (A). Furthermore, if weD(B) and it
is easy to see that (v, o = - (v, B W)L~-2’ by lemma 2 . 1.

This implies D (A) c D (A*) and that, in D (A), A* == - A. This achieves
the proof of theorem 3.1. D

PROPOSITION 3 . 1. - The operator D : H --+ H defined by

is continuous.

Proof - We have ’

by (2. .1 ) and (2 . 2). 0

By applying a well known result (cf [5]) we get

COROLLARY 3 . 1. - The operator T = A + D : D (A) -+ H is the infinitesi-
mal generator of a strongly continuous group of operators in H, denoted
by eyT, y E R.

Hence, for

there exists a unique

such that ( ’" (0) ) = ( "’0 ) and verifying (3.3) for "’1 (0) "’1,0

Vol. 54, n° 1-1991.
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We = e’’T Wo ), YER.W 1 (.v) WI, °
Returning to the equation ( 1.2) we obtain

THEOREM 3 . 2. - Assume n L;-2’ Then, there
exists a unique

such that

and verifying £ ( 1. 2).
We have ’ also 0 the following £

PROPOSITION 3 . 2. - Then we have ’

Proof. - Suppose MeD(B): we have (and hence by
lemma 2. 3),

Hence

and

Conversely, if u~H1p, o and x(p/2)+1 u~H2, we get

Hence,

that is x2 u" + pxu’ E L;- 2 and so u E D (B). 0

4. SPECTRAL PROPERTIES OF A RELATED OPERATOR

We want to find À E C such that there exi.sts u verifying

Annales de l’Institut Henri Poincaré - Physique theorique



25SIMPLIFIED WHEELER-DEWITT EQUATION

where B and V are defined by (3 .1), (3 .2).
Since implies V u, we can replace condition (4.1 )

by the following

The equation in (4.2), which is the same in ( 1.3), has an important physical
meaning, namely if we can find sufficient conditions such that À = 0 is not
a possible eigenvalue (cf [4], V).

In order to solve this problem, we consider the following hermitian
continuous sesquilinear form over Hi 0:

By (2.1 ), (2.2), we have

and 03B2~4R2 |p-1|2 
for p=f 1, 03B2~R2 for p= 1.

It is easy to check that if

then, with ( 1 + [i9 - t) [i -1 ], 1 + p9), we have

Furthermore, by proposition 2.1, the injection , 
is compact.

Hence, by a well known result we obtain:

PROPOSITION 4 .1. - Let y &#x3E;_ 0 be such that (4.5) is verified. Then there ,

exists an increasing j ; 1 +00 such that, for each n,
the equation

has a ’ nontrivial solution , o.

It is casv to rove that (4.7) is equivalent to

Vol. 54, n° 1-1991.
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Hence, we can find a nontrivial solution MeD(B) for (4.1 ) if

Then, since 8~&#x3E;0, we have ~&#x3E; 2014y, n =1, 2, ...

If k2 R4  ~i -1 we can choose y = 0 a sufficient condition is
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