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1. INTRODUCTION

One aim of this paper is to review and tie together some recent advances
in the theory of unimodal maps with negative Schwarzian derivative. Our
interest is focused on maps with sensitive dependence to initial conditions,
so we do not mention recent work on maps with solenoidal attractors,
although most of our references contain also contributions for those maps.
The papers we shall concentrate on are [BL2], [Ma], [GJ], [K], and [HK],
more exactly those parts of these papers which discuss the relations
between attractors, transient and recurrent behaviour, and invariant densit-
ies. Additionally we show that the examples from [HK] have a nonintegra-
ble invariant density. To the best of our konowledge these are the first
examples of unimodal maps for which the existence of such a density is
proved.
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414 F. HOFBAUER AND G. KELLER

2. SURVEY OF RESULTS

Let f: [0, 1 ] -~ [0, 1] ] be a unimodal map with negative Schwarzian
derivative and critical point c, e. g. f (x) = ax ( 1- x), (0  a _ 4), where

c = 2 We assume that f is sensitive to initial conditions, i. e. that f ’ has no

stable periodic orbit and is also not infinitely renormalizable.
It was proved independently and with different methods in [BL2], [GJ],

and [K] that for each such map there is a compact set A such that

co (x) = A for m-a. e. x and that A is either a finite union of intervals which
is cyclically permuted by f (interval attractor) or a Cantor-type set (1).
Here ffi (x) is the set of all accumulation points of the sequence x, f (x),
,f’2 (x), .f’3 (x), ..., and m denotes Lebesgue measure on [0, 1]. If A is an
interval attractor, it agrees with the topological attractor Atop of f, and if
f is topologically mixing, then Atop is just one interval.

The following relations between A and co (c) are known:
. o (c) ~ A.
. If A is of Cantor-type, then A = co (c) (2).
Blokh and Lyubich [BL2] show:
. m is ergodic for f (3).
. The restriction of f to A is conservative (4).
. If A is of Cantor-type, then f A is minimal and the topological entropy

of f A is zero.
. If f has an integrable invariant density, then it has positive metric

entropy with respect to this density.
The results of Martens [Ma] allow a classification in terms of ffi (c) (5).
He proves:
. If fi m (c) is minimal, then (D (c) is of Cantor-type and m (c)) = 0.
. is not minimal, then A is an interval attractor.
. If A is of Cantor type, then A=(D(c) and f A is minimal.

(~) We would like to remark that Blokh and Lyubich announced this result already in
1987 [BLl] (Russian) and that it is also contained in a 1988 version of Guckenheimer’s and
Johnson’s preprint [GJ]. Working on his forthcoming thesis M. Martens gave another proof
of it.

(~) This is stated explicitly in [BL2] and [K], but less explicitly also contained in [GJ].
(3) Ergodic means that f -’ (B) = B implies m (B) = 0 or =1 for each measurable B ~ [0, 1].
(4) Conservative means that (B) g B implies m ( f ~ A (B)"’-B) = 0 for each measurable

B~A.
(5) This is the aspect of his work fitting best into our discussion. His point of departure

is the classification of maps into two classes according to the lengths and distortion properties
of the branches of their iterates. In particular, his classification is not topological but of
metrical nature.
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415S-UNIMODAL MAPS

~ If co (c) is of Cantor type but Jj OJ ~~~ is not minimal, then f has an
invariant density (integrable or not).

Keller [K] studies the Markov extension f : k - X associated with £
This is a piecewise smooth dynamical system with a countable Markov
partition which admits f as a factor. / is either dissipative, or it has a

unique absorbing subset on which it is conservative (we say "essentially
conservative"). In the latter case it admits a 6-finite invariant density
(integrable or not). In detail:
. If l is essentially conservative, then A is an interval attractor and f A

is conservative and ergodic.
~ If/is dissipative, then A = c~ {c).
~ If f has an integrable invariant density, then also f has an integrable

invariant density.
~ If f has an integrable invariant density of positive entropy, then also

/has an integrable invariant density of positive entropy.
The work of Guckenheimer and Johnson [GJ] does not fit so well into

our discussion, because in their approach periodic orbits play a fundamen-
tal role, whereas in the above cited references the critical orbit is more
important. They obtain a dichotomy similar to the one of Keller. Further-
more they obtain a topological condition on the critical orbit (they call it
"critical monotonicity") which implies that A is an interval attractor, that
f A is conservative, and that a certain transformation induced by f has an
integrable invariant density. They also show that if f is not critically
monotonic, then 03C9 (c) is of Cantor-type. In particular:
~ If co (c) is not of Cantor type, then f A is conservative.
. If A is a Cantor attractor, then A is the intersection of a nested

sequence of forward invariant Cantor-type sets each of which absorbs
m-a. e. point.
Combining the above results, we arrive at the following classification

of S-unimodal maps with sensitive dependence:
(I) Cantor attractor:
In this case f A is minimal with topological entropy zero, m (A) = 0, and

/is dissipative (6).
(II) A is an interval attractor and 00 (c) is of Cantor-type:
In this case A = is conservative and ergodic, m (00 (c)) = 0, and f

is essentially conservative.

(6) These maps are just the "non-Markov" maps in the terminology of [Ma].
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(III) A = 0) (c) is an interval attractor:
In this case A = Atop and fi A is conservative and ergodic.
In the next section we furnish proofs for the following additional pieces

of information on the above classification:

THEOREM l. - Each map of type has an invariant density (integrable
or not).

THEOREM 2. - There are maps of type which have a nonintegrable
invariant density.

Remark l. - The maps in Theorem 2 can be constructed with various

additional properties. We describe some of them:
For a probability measure ~. on [0, 1] let

By ~Y denote the unit mass in the point x.

THEOREM 3. - There are maps f of type without integrable invariant
density.

So, even if for such maps / has a (necessarily nonintegrable) invariant
density, this cannot easily be "pushed down" to an invariant density for f
as for type (II) maps (see the proof of Theorem 1).

Remark 2. - Looking a bit closer at the proofs of [HK] one can even
construct examples of type (III) maps satisfying either of the two assertions
of Remark 1.

Here are some open problems:
. Are there maps of type (I) with sensitive dependence? This was already

asked in [Mi], [BL2] and [GJ].
~ Are there maps f of type (III) which have no invariant density

(integrable or not), or for which/is dissipative?
. Are there maps f of type (III) with a nonintegrable invariant density

for which / has no invariant density?
We close this section with an example of a map f which seems a

reasonable candidate for a type (I) map. We want to stress that this does
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417S-UNIMODAL MAPS

not express a strong believe in the existence of such maps. However, if
there exist type (I) maps at all, then the following map might be one.

Example 1 (The Fibonacci map). - Developping ideas from [Ho] we
proved in [HK] that the following recursive construction leads always to
a (admissible) kneading sequence for a map of the 

For 03B3 ~ N~{+~} let

and

Here " &#x3E;_ " denotes the lexicographic ordering on sequences of integers.
Given a kneading map Q : Ny  Ny U ~0~ we construct a 0-1-sequence

as follows: Let

Then, starting with ei = 1, define e recursively by

(where e’ =1- e) and, if y  oo, also by

In [HK], Theorem 4, we proved that for the sequence e thus produced
there exists a parameter a such that the critical point of fa is nonperiodic
and fa has e as its kneading sequence. The fact that each kneading sequence
of a map fa arises from a kneading map was already observed in [Ho]. It
is not hard to show that the kneading sequence e is indecomposable (i. e.
the associated map has no restricted central point or, equivalently, is

topologically mixing on its topological attractor) if and only if y = oo and
there is such that Q ( j) &#x3E;__ k for all j &#x3E; k.
The kneading sequence of the "Feigenbaum map", which is the simplest

example of an infinitely decomposable kneading sequence, is generated by
the kneading map

Similarly, the kneading map

generates in a very simple manner an indecomposable kneading sequence
which, from the point of view of kneading maps, is as close as possible to

Vol.53,n°4-1990.
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that of the Feigenbaum map. So a corresponding map fa seems a natural
candidate for a type (I) map. We call it a Fibonacci map, because the

sequence o generated by Q [see (3)] is just the Fibonacci sequence.
As the kneading sequence of a Fibonacci map f is indecomposable, f is

topologically mixing on its topological attractor Atop, and Atop is just one
interval which contains in particular the unique fix point of f to the
right of the critical point whose itinerary is 1~. It is easily seen that a
neighbourhood of this point is disjoint from (0 (c), cf. the proof of
Lemma 2. Hence (D (c) is different from Atop and must be of Cantor type. 
It is also an easy exercise in symbolic dynamics to show that fi ro ~~~ is

minimal and has topological entropy zero.
Using Proposition 1 of [HK] (cited as ( 11 ) below) one can modify the

Fibonacci example such that co (c) is of Cantor type, fi co ~~~ is minimal and
has topological entropy zero, and f has no finite invariant density but
instead at least two different measures in ~~. (b~).

3. PROOFS 
’

For the proofs we use heavily properties of the Markov extension
/: X -~ X. For facts about Markov extensions we refer to [K], section 3.
We recall that X = U Dk, where the Dk are disjoint copies of subintervals

Dk of [0, 1]. Indeed,

In particular, both endpoints of each Dk belong to the forward orbit of
c. 1t: X ~ [0, 1] ] denotes the canonical embedding (identifying Dk with
Dk ~ [0, 1]).
A simple, but important, observation is:

LEMMA 1. - Let f be of type (I~, and denote by h : X ~ R the invariant
density of f If x E [0, (c) and if x ~ f k (c) for all k &#x3E;_ 0, then there
are a neighbourhood U of x and C  00 such that for all y E U

Proof - As f has no stable periodic orbit, the preimages of c under f
are dense in [0, 1]. Hence, for (c) with x ~ f k (c) for all k &#x3E; 0

there is n &#x3E; 0 such that Zn [x], the maximal monotonicity interval of f n

clo l’lnstitut Henri Poincaré - Physique théorique



419S-UNIMODAL MAPS

that contains x, has empty intersection with the forward orbit of c. Let

U = Z = Zn [x]. (If x is a preimage of c, we can take for Z either of the
two monotonicity intervals with endpoint x and for U the union of these
two intervals.)
As the endpoints of the intervals Dk belong to the orbit of c, U n Dk = U

or Dk = 0 for all k &#x3E;_ 0. Indeed, there is ð &#x3E; 0 independent of k such
that the distance of U to the endpoints of Dk is &#x3E; ð. Hence the "local"
densities U n Dk have uniformly bounded distortion (7), and it suffices
to prove (8) for just one Y E U.

Fix a subinterval V ~ Z. If Z n Dk =1= 0. then /" maps
diffeomorphically onto Di for some ~~

see (7), and V Pt Dk diffeomorphically onto n-1 W n Di, where

W = f~ (V) . This implies

Proof of Theorem 1. - As for maps of type (II) m (0) (e)) = 0, Lemma 1

applies to m-a. e. x E [o, 1], such that

As li is Î-invariant, h is f-invariant, cf [K], Lemma 2. 0

Proofs of Theorems 2 and 3 together with Remark 1. - In [HK] we
constructed various examples of S-unimodal maps f without integrable
invariant density, in particular maps with the additional properties descri-
bed in Remark 1. In order to prove Theorem 2 together with Remark 1,
we show that these examples have (ù (c) of Cantor-type (Lemma 2 below).
As the restrictions of such maps to 03C9 (c) are of positive entropy or have a
fix point (i. e. are nonminimal) they cannot be of type (I). Theorem 3 will
follow if we can show that the construction from [HK] can be modified
such that M(c) contains a nontrivial interval and contains
more than one measure for Lebesgue-a. e. x (Lemma 3 below). D

In order to show Lemmas 2 and 3, we consider the family of

maps fa: [0, 1 ] - [0, 1 ], where fa = ax ( 1- x) and 2  a  4. We remark

C) This follows from applying Theorem 1 of [K] to the Markov extension as it is done in
section 3 of [K].

Vol. 53, n°4-1990.
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that the itineraries of points x are exactly those

0-1-sequences which satisfy and 1... e for all

i &#x3E;__ 1, where e = e 1 e z... is the kneading sequence of fa. Here denotes
the following order relation on ~0, 1 }N:

If and zl z2 ... are two elements of ~0, 1 }N, then

y 1 y2 ... z 1 z2 ... , if they are equal, or if there is i &#x3E; 0 such that either
z; contains an even number of 1 and yi  zi, or such

that yl ~2 - ’ Yi = zi z2 ... Zi contains an odd number of 1 and yi &#x3E; zz.
The same notation can be used for finite 0-1-sequences. (See [Ho] and

[HK] for more details.)
We have the following results: Suppose e is indecomposable (cf

Example 1). If there is a block xi x2 ... xr with Xl =1 satisfying

We recall some definitions and facts from [HK]. A sequence

of integers is called a frame, if it satisfies

For a frame ff we define the skeleton J (ff) as the set of all kneading
maps Q : N -~ N U ~0~ with

In Proposition 1 of [HK] we proved:
For each N &#x3E;__ 1 there are uncountably many different frames ~ with

U 1 ~N+1 such that for each and each fa with associated
kneading map Q holds:

1. has no integrable ergodic invariant density of positive entropy. ( 11 )

Annales de l’Institut Henri Poincaré - Physique théorique
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Given a frame ~ , we constructed in [HK] special kneading maps
satisfying

and for n &#x3E;_ 1

The values in the last line of (13) are determined by prescribed generic
points of measures. The corresponding kneading sequences are clearly
indecomposable.

LEMMA 2. - For each of the assertions of Remark 1 there are S-unimodal

of Cantor-type satisfying the assertion.

Proof - Let Q be one of the maps defined by (12) and (13) with
4 and with a frame satisfying (10). As Q is a kneading map, it

determines a 0-1-sequence e by (3) and (4), which is the kneading sequence
of a map fa. It is shown in [HK], that such maps fa satisfy 1 or 2 of

Remark 1, if the values of the last line in (13) are chosen suitably. Hence
it remains to show that o (c) is of Cantor-type. To this end we prove that
the block B : =1010101 is not contained in e, but B satisfies (9), since

Su~ =U~ +1~5 implies that e begins with 100 [see (14) below].
By (3) the kneading map Q determines the sequence o and by

(4) the kneading sequence e determined by Q satisfies

and for n &#x3E;_ 1

consists of blocks 11 and 0 beginning with 11. (17)

As 5, we get = es ~ul~-1= o by (14), and (18) holds
for ~=0. For n &#x3E; 1 we have 5 by
(10), since U 1 &#x3E;_ 4. Hence the block in ( 17) has at least length 5 and

Vol. 53, n° 4-1990.
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therefore contains ~s(u~+i)-4- - -~s(Un+i)-r As the block in ( 17) is built

up by blocks 11 and 0, (18) follows for n &#x3E;_ 1.

Now we can show that e does not contain B. To this end we show by
induction on n, that es (Vn) does not contain B. By (14) this holds
for n=I. Suppose it is shown that does not contain B.

Adding the blocks of (15), (16) and (17) to this block, we get
By induction hypothesis and (18) the blocks

e1 1 e2 - - - es (Un-j)-1 e’S(Un-j) for 0 ~ j ~ n-1 of (15) and ( 16) do not contain
B and contain either 00 or 11 in its last five coordinates. If we add these
blocks to e 1 e2 ... es according to ( 15) and ( 16), we get
~1~2’ ’ which does not contain B. This could happen only, if
the first part of B is an endsegment of e1 or of some

e 1 ~2 - ’ ’ es es ~~ and the remaining part of B is an initial segment
of some ~1~2’ ’ es ~U~~-1 es But this is impossible, since the last five
coordinates of el e2 ... es and of each el e2 ... es es 
contain either 00 or 11 and since ~1~2- ’ es es begins with 100
(remember that for all/). Finally we add

the block in ( 17) . This block is built
up of the two blocks 11 and 0. Hence it cannot contain B. This block in

( 17) begins with 11, hence the same arguments as above apply and we get
that ~1~2- - es 1) does not contain B, finishing the induction. D

LEMMA 3. - There are S-unimodal maps f with

and such that {~(/): v ergodic) contains a nontrivial interval
for Lebesgue-a. e. x.

Proof. - Let Q be a kneading map defined by (12) and (13). We
construct inductively a kneading map Q : N --~ N U ~0~ together with a
sequence 31 of blocks. We begin with Q (j) = Q (j~ for 1 ~7~ U2, which
determines S j for j _ U2 by (3) and the initial segment ci 1 Cz... Cs (U2) of
the corresponding kneading sequence by (4). Let B contain all blocks

x 1 x2 ... xl with x 1=1 and l = U1-1 satisfying

After the (n - l)-th step Q ( j) for j _ Un is defined, which determines Sj
for j _ Un by (3) and C1 Cz... by (4). We add to B all blocks

xl x2 ... Xl with and l = satisfying (19). We describe the
n-th step. Let xl x2 ... xm be the (n -1)-th block in £3. As in each step at
least one block, namely an initial segment of c1 c~..., is added to £8, we
have m __ Sun -1-1. Define 1 and t2, ... , ts -1 - &#x3E;_ 1 such that

Annales de l’lnstitut Henri Poincaré - Physique théorique
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It follows from (19) and Lemma 1 (iii) of [Ho] that ti = for some

Let u be minimal, such that Because of
m  SUn-1’ we have u _ Un-1’ Set Then m  TS and we set

This means that xl x2 ... xTs has been split up into blocks c; _ 
with for 1 _ i __ s. We get 

r r

For i = s this follows from the definition of For is this follows from
 The proof of Lemma 2 in [Ho] implies for 1 _ i  s that

Furthermore sn = s __ + ts  + Su __ 2 1. Together with

(1.9) of [HK] this implies

finishing the n-th step in the construction of Q.
We have to check that Q is a kneading map. From the fact that Q is a

kneading map and from (20) we get ( 1 ). As for j _ U2 and
as all blocks in B begin with 1, which implies (Un+1-sn + 1)=P(1) ~ 1,
we get (2) for kE{Vn+n-2, Vn + n - l, ..., by the same proof
given in [HK] for Q. Furthermore, for all

get (2) from (21). For we have
for some l E ~ 3, 4, ... , n~ and 

since by (22) and ( 10). As 
by (24) and (20), we by ( 1 ) . Hence

Q (k + 1) &#x3E; 1 ) and (2) follows, finishing the proof that Q is
a kneading map.

Finally let c be the kneading sequence determined by Q using (3) and
(4). Every block satisfying and (19) is a subblock of
some block, which was added to B in a step n with Un-1 &#x3E; I. Hence it is
contained in c, since (24) is chosen in such a way, that all blocks of f!4 are
contained in c. This implies that a map fj having c as its kneading sequence
has dense critical orbit (as c is not eventually periodic by (2.10) of [HK],
j’a has no stable periodic orbit). This proves the first part of the lemma.

Vol. 53, n° 4-1990.
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Let e be the kneading sequence determined by Q. For n &#x3E;__ 1 it follows
from (23) and ( 13) that

For the first inequality consider 2 sn _ 2Un -1 + 2,
which follows from the last line of (13) and from (22). Furthermore
S(Vn+n)  2vn+n by (1.9) of [HK] and S(Un+1) ~ Now the first

part of (26) follows from (10). The second part follows in the same way,
since by (24) and (3) and since

2Un-1 + 1 by (22). Recall that vx,a,n = 1 03A3 03B4fka(x). If a is such that f ’a’ ’ 

n k= 1 
"

has e as its kneading sequence, and if c = 1 2 is the critical point of both f.,

and fa’ then (25) and (26) imply

where [0, 1] - ~0, associates with each point x its itinerary under
fa (see [HK] for more details) and (v) = v 0 

Let L~ and La denote the sets of weak accumulation points of the
sequences of measures s &#x3E; o and S &#x3E; 0’ respectively. (27)
implies 

’ ’ ~ ’ ’

Write a(03B4x) for fa (03B4x). From (11) we conclude that for Lebesgue-a. e. x
the set contains the set L~. Hence

But Q (equivalently e or a) can be chosen such that v ~ La,
v ergodic} contains a nontrivial interval, cf [HK], Proposition 2 and
Theorem 1. This finishes the proof of the lemma. 0
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