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ABSTRACT. - There are two stochastic descriptions of relativistic quan-
tum spinless particles. In the first one, suggested by Feynman’s path
integral approach to Klein-Gordon propagator, the main ingredients are
diffusions in Minkowski space parametrized by some kind of proper time.
The second description, on the contrary, is based upon jump Markov
processes giving the space position of the particle in the sense of Newton
and Wigner with the time as parameter. In this paper we bridge the gap
between these different probabilistic scenarios by constructing the space
jump processes by means of space-time diffusions. We give some applica-
tions to the nonrelativistic limit of the hamiltonian semigroup
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302 G. F. DE ANGELIS AND M. SERVA

where

RÉSUMÉ. - Il y a deux descriptions stochastiques de la mécanique
quantique relativiste pour une particule sans spin. Dans la premiere,
suggere par la théorie de Feynman, les ingredients principaux sont des
diffusions dans l’espace de Minkowski parametrise par une sorte de temps
propre. La deuxième description, par contre, emploie des processus de
Markov à sauts donnant la position de la particule dans l’espace au sens
de Newton et Wigner avec le temps comme parametre. Notre papier va
relier les deux prescriptions probabilistes car nous construisons les pro-
cessus à sauts dans l’espace par les diffusions dans l’espace-temps. Nous
donnons aussi des applications a l’étude de la limite non relativiste du
semi-group hamiltonien

ou

1. INTRODUCTION

The task of extending Nelson’s stochastic mechanics ([1] to [4]) to the
relativistic realm has not been yet fully performed, nevertheless there are

partial results both for Klein-Gordon and Dirac equations ([5] to [10]). In
the case of Klein-Gordon theory two different approaches exist which we

briefly discuss here since they are the starting point of our paper. For

simplicity we bound ourselves to free evolution where a single particle
picture of (positive frequency) Klein-Gordon wave functions is physically
meaningful. The first probabilistic scenario ([5], [6], [8], [9]) rests upon

diffusions 1, ..., D in ( 1 + D)-dimensional space-time. If

s H xs obeys classical relativistic mechanics revisited a la Nelson

([ 1 ], [5], [8]), one can reconstruct from it a wave function
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303JUMP PROCESSES AND DIFFUSIONS

Bf1 (s, xO, ..., xD) = ~ (s, x) which satisfies the "Schrodinger equation in
Minkowski space":

whose stationary solutions

obey Klein-Gordon equation D (p + - (p = 0. The relativistic covariance
of such description is tricky because space-time is lacking of a natural
positive definite metric as it is required in the Fokker-Planck

equation

for the probability density p (s, x°, ..., XD) = p (s, x) 
In order to overcome this difficulty, people proposed two solutions. In

the first one [6] a positive definite metric (x) is introduced in Minkowski
space by means of suitable fields of Lorentz transformations (a sort of
gauges fields) while the second approach [8] forsakes the Markov property
by choosing s H xs inside the larger class of Bernstein’s stochastic pro-
cesses. By doing that, as shown in [8], the obviously covariant equation

for p (s, x) naturally emerges. The situation is especially simple when

describes a spinless relativistic particle of mass M at rest namely,

(ground state for a free particle). The corresponding diffusion, when it is
chosen to start from the origin of Minkowski space, is, in both versions,

with

Here s - (wf, ..., w~) is a ( 1 + D)-dimensional Wiener process. In absence
of quantum fluctuations (~ = O) S H .xs gives precisely the worldline of a
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304 G. F. DE ANGELIS AND M. SERVA

particle at rest while, when h &#x3E; 0, the space-time path s H xs wanders
wildly over Minkowski space by crossing infinitely often each spacelike
hypersurface x° = ct coherently with Feynman’s ideas.
The second probabilistic scenario about Klein-Gordon equation [10]

gives up explicit relativistic covariance as it uses Markov processes 
in space with the time t as parameter. When a positive frequency solution
p (t, x) of Klein-Gordon equation

is given, one can construct a jump Markov process t such that

at every time t and for each Borel subset B ~ IRD, the right hand side of
this equality just being the quantum mechanical probability of finding, at
time t, the particle localized inside B in the sense of Newton and

Wigner [1 1]. The jump character of stochastic processes involved is at

variance with the Nelson’s theory, indeed it is a relativistic feature which
disappears in the nonrelativistic limit. If

the corresponding jump Markov process has independent and sta-
tionary increments and, when it is chosen to start from the origin of ~D,
its characteristic function is given by

The stochastic process ~’2014~ admits, as generator, the pseudodifferential
operator

which is related to the relativistic free quantum hamiltonian

by Ho = - ~ ~ + M c2 0 . The fact that L is the generator or infinitesimal

operator of a time homogeneous Markovian family, has been exploited
by T. Ichinose and H. Tamura [12] in constructing a Feynman-Kac for-
mula for quantum hamiltonians of the form where

V(.):[~)-~ is some well behaving potential. In Ichinose and Tamura
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305JUMP PROCESSES AND DIFFUSIONS

formula the ground state process plays the same role as the Wiener
process t ’2014~ wt in the usual Feynman-Kac formula.
From the standpoint of relativistic stochastic mechanics, the ground

state processes (3) and (5), albeit not associated to a normalizable wave
function, are of the utmost importance. In fact, all processes describing
other quantum states can be constructed on the probability space of (3)
in the first scenario and of (5) in the second by solving suitable stochastic
differential equations. Therefore we concentrate ourselves upon the task
of finding useful relations between the two stochastic processes (3) and
(5). We are, in fact, able to construct, in a natural way, (5) from (3) and
this provides the core of our paper.

In the nonrelativistic limit it is known that the path space probability
measure of t H ~t, which lives on cadlag paths, is weakly convergent to
the Wiener measure and this result gives some control [13], by probabilistic
techniques, on the nonrelativistic limit for the hamiltonian semigroups

where H = Ho - M C2 ~ + V (.). We obtain a stronger result

as we construct both ~t-~ and the Wiener process on the same

probability space and it is easy to prove that t ~ ~ converges in probability
to as c i + ~, uniformly in 0 ~ t _ T for all T&#x3E;O. This fact allows
us to get a more transparent probabilistic control of the nonrelativistic

limit for the hamiltonian semigroup H. We derive the ground

state jump process from the space-time diffusion

in a very simple way. Let be the least of s at which hits the
"space at time t" namely the spacelike hypersurface

then we claim that other words the space random varia-

ble §§ represents the intersection of the path with the spacelike
hypersurface 1:t at the first hitting time s.
The plan of the paper is the following: in the second section we

show that such construction provides the right result, namely that

is a stochastic process with independent and time homogen-

eous increments whose characteristic function is exp t L (p). In the third
section we study the limiting behavior of Markov time ~ (t) when c i + 00
and we show that converges in probability to t uniformly on each

Vol. 53, n° 3-1990. 
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compact interval. It follows converges in probability

to /2014w, uniformly in 0 _ t - T for all T&#x3E;0. In the fourth section, weB M t y --

exploit this result by studying, via probabilistic techniques, the nonrela-

tivistic limit of the hamiltonian semigroup where

H = Ho - M c2 D + V (.), a typical result will be that t - exp - ! H convergesh
strongly to

in each L/ 1 ~/?  + oo, uniformly in 0 _ ~ T, when V ( . ) is continous
and bounded below. Finally, in the conclusions, we describe some problems
which are worth studying along this line.

2. CONSTRUCTION OF THROUGH BROWNIAN MOTION

We begin this section by studying some elementary properties of the
Markov time

where ~0. Let be a one-dimensional Wiener process and, for 
define

It is well known [ 14] that oc H i (a, 0) is a Levy process, namely a nonnega-
tive and nondecreasing stochastic process with independent and time
homogeneous increments, moreover a. s. and, for all

nonnegative y, E (exp - yr (a, 0)) = exp - a J2 y.
LEMMA 1. - For all the stochastic process 03B1 ~ ’t (oc, #) is a Levy

process, moreover ’t (ex, ~3)  + oo a. s. and, for all nonnegative y,
E (exp - yi (a, P)) = exp ex (P - + 2 y).
Proof. - The first part o Lemma can be exactly proven as in the

known particular case P=0 while the easy inequality ’t (ex, 0) &#x3E;_ ’t (oc, B)
assures that a. s. r(a, P) + oo . Therefore the only thing we must demon-
strate is the formula

Annales cle l’Institul Henri Poincaré - Physique théorique
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By Dynkin-Hunt theorem, the stochastic process s - ws = (ex, ~~ 
- 

w~ (a, p)
is a new Wiener process independent from i (a, P). Let X be any

nonnegative random variable independent from s H ws and

?(X)==inf{~0: 5~ = X ) . It is easy to see, from ’t (oc, 0) &#x3E;_ ’t (oc, fl) , that

i (oc, 0)=r((x, ~i) + t (ex, ~i)). From this observation it follows that

because

By choosing J2 y = - (P 2014 + 2 y) we obtain the result.
If we observe that

we conclude that ~ ’2014~ (~) is a Levy process with

If ..., wD) is a D-dimensional Wiener process independent

from i c ( ) t it follows that is a stochastic process with

independent and time homogeneous increments starting from the origin
of I~D as i~ (0) = 0 and the only thing we must still show is that t H ~~ has
the right characteristic function.

THEOREM 1. - I f 03BEct = h wTc (r) then t ~ 03BEct is a stochastic process with

independent and time homogeneous increment whose characteristic function
is given by

Proof - We already know that has independent and time
homogeneous increments. Furthermore, since

it follows that

Vol. 53, n° 3-1990.
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and it is sufficient to apply Lemma 1.
This theorem is a straightforward generalisation of the well known

construction of the D-dimensional Cauchy process t )2014~ ct, with generator
- J - A as c~ = where T (t) = 0 : wf = t ~ and it provides the link
between the space-time diffusion

and the jump Markov process t which we described in the introduc-
tion.

In Nelson’s stochastic mechanics, the diffusion associated to the ground
state wave function B(/ (t, x) = Const. of a free nonrelativistic particle with

mass M is therefore we ex p ect that the jump p rocess 
B M

converges to t when c~ +00. In the next section we study
B M

the nonrelativistic limit of ~’2014~ and we show, indeed, that

/ 2014w~ in probability.
c~ +00 B M 

p Y

3. THE NONRELATIVISTIC LIMIT OF t H ~t

We begin this section by studying the behaviour of

when in the following (S2, ~ , ~ ~ . )) will be the probability
space underlying the ( 1 + D)-dimensional Brownian motion

LEMMA 2. - For all ~0 and S&#x3E;0

P~oof. - From

it follows that and E( T,(~)-~P)= 20142014. and the result is an
Me

obvious consequence of Chebyshev’s inequality.

Annales de l’Institut Henri Poincaré - Physique théorique
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Now we can prove a better result.

Proof - (i) Because ~ ’2014~ (t) is nondecreasing and

(ii) but, for arbitrary ð &#x3E; 0,

and the result follows from Lemma 2 and

LEMMA 4. - Let s H ws be a D-dimensional Wiener process, then, for
all T&#x3E;O and s &#x3E; 0

Proof - Let 6~ be any sequence of positive numbers  1 which con-
verges to 0 as and sup sup 

Since is uniformly continous on compact intervals (and also
globally a. s.), XB (w) will be 0 for n large enough. The result follows,
therefore, from Lebesque’s theorem on dominated pointwise convergence.
We can discuss now the non relativistic behaviour 

Vol. 53, n° 3-1990.
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Proof - (i) sup ’ 

by Lemma 3, that lim [p&#x3E; s) = 0, (ii) on the other hand, for each
c - + 00

8&#x3E;0,

and the result follows by Lemma 4.
The Theorem 2 is our main result about the nonrelativistic limit of the

ground state jump process ~~~. As an application, we will study the
nonrelativistic limit of the semigroup t ~--~ p~ where

4. NONRELATIVISTIC LIMIT OF RELATIVISTIC FEYNMAN-
KAC FORMULAS

In this section we want to apply the results previously obtained to the

nonrelativistic limit of the hamiltonian semigroup t )2014~ exp 2014 - H where
h

for a potential V(.) which, for simplicity, we suppose continous and
~

bounded below. Let 20142014A+V(.) then we want to show, by using
2M

probabilistic techniques, that

where this convergence is studied in each LP (R~), 1 __p _ + 
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By bearing in mind Ichinose-Tamura [12] and Feynman-Kac formulas,
we define the semigroups t - I&#x3E;§ and t 1--+ P~ ° by:

and we are interested in the convergence of the first semigroup to the
second when c i +00. In order to do that, we first consider the free case
V(.)=0.

Because

given any s &#x3E; 0 we can first choose a &#x3E; 0 such that

Under the conditions xeK both points x + ~t and

x+h M Wt belong to some fixed compact K(K, a) c IRD for each 
Therefore, by the uniform continuity of 03A8(.) inside K we can choose

Vol. 53, n° 3-1990.
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for all xeK and all 0 _ t _ T and, finally, Theorem 2 provides the result.
It is easy to see, by the same technique, that

uniformly w. r. t. x E [RD and 0 _ t __ T vanishes to the infinity,
therefore

when V ( . ) = 0 and 0/ (.) is vanishing to the infinity. Let ~(.) be the
translate of 0/ ( . ) by ç E fRD namely (x) _ ~ (x - ~).

Proof

As

we can choose b &#x3E; 0 such that the last term be arbitrarily small for all

and then we exploit again the Theorem 2.
In the free case V ( . ) = 0, by Fubini’s theorem, convexity of x H xp and

translation invariance of Lebesque’s measure

therefore we just proved that

Annales de l’lnstitut Henri Poincaré - Physique théorique
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In order to extend such results to the case of a nonvanishing potential
we prove first the following Lemma.

LEMMA 7. - Let V (. ) : [RD 1---+ R be continous and bounded below, then,
for all compact K c ~D and for all T &#x3E; 0

moreover, for all 1  p  + 00

uniformly in 0 ~ t  T .
Proof - We prove only (i) as the proof of (ii) is exactly similar.

Without any loss of generality we can suppose V(.) ~ 0.
Let Ba, b, T as in Lemma 5 and

then

Given any 8&#x3E;0 we first choose a&#x3E;0 such that 2P( max &#x3E;~)e/3.

Under the condition (ù e ~,

can be made uniformly small in xeK and 0 __ t _ T when b ~ 0. Then, since

we can choose 0  b _ 1 such that

Vol. 53, n° 3-1990.
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In this way, for each 8&#x3E;0, we can choose 1 such that

for all 0  t _ T and the result is again a consequence of Theorem 2
Now we can state the first theorem of this section.

THEOREM 3. - Let V ( . ) continous and bounded below, then, ~ ~r ( . ) is
a continous and bounded function, for all T &#x3E; 0 and for all compact K c f~D

Proof - Without any loss of generality we suppose V (.) ~ 0.
Let

and

as in Lemma 7. Because

the result is a consequence of Lemma 5 and the first part of Lemma 7.
It is not difficult to see that

uniformly in 0 _ t _ T when B)/(.) vanishes to the infinity. In order to

manage lim Pct 03C8 in LP (RD) with 1 ~p  + CIJ we need one more Lemma.

LEMMA 8. - Let V ( . ) continous and bounded below and 03C8 ( . ) continous
with compact support then, for all 1 -p  + 00 and for all T &#x3E; 0

uni.f’ormly in 0 ~ t_T.
Proof - Without any loss of generality we suppose V ~ . ) &#x3E;_ 0.

Ajtraulcs de l’Institut Henri Poincaré - Physique théorique
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By exploiting the easy inequality

we obtain the result from Lemma 6 and the second half of Lemma 7

because, by translation invariance of Lebesque’s measure

where K is the support of 03C8 (.).
Finally we can state our last theorem.

THEOREM 4. - Let t~r (. ) E LP ([RD) with 1 p  + oo and V ( . ) continous
and bounded below then, for all T &#x3E; 0

uniformly in 

Proof - Given B)/ ( . ) E LP (IRD) we can find a sequence o/n (.) of continous
functions with compact support which converges to B(/ ( . ) in the LP norm.
Now

Without any loss of generality we suppose V (.) ~ 0.

and we can exploit the convergence of ( . ) to B)/ ( . ) and the Lemma 8.
We have therefore seen that the semigroup t H Pr has good properties

of convergence to t - P~ for c i + oo at least when the potential V ( . ) is
continous and bounded below. More general potential could be considered
but this would be outside our pourposes because the main target of this
paper is building a bridge between the jump markov process t- §) and
the Brownian motion with just some examples of applications.

Vol. 53, n° 3-1990.
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5. CONCLUSIONS AND OUTLOOK

We implemented, at least for ground state processes, our program of
bridging the gap between the alternative stochastic descriptions of a spin-
less relativistic quantum particle at which we alluded in the introduction.
As an additional bonus, we reached a deeper understanding of Feynman-
Kac formula for relativistic hamiltonians and a better perception of the
probabilistic mechanism behind the nonrelativistic limit of hamiltonian
semigroups, we think that this subject deserves further developments. A
next interesting problem is the study of semiclassical limit (h 1 0) of rela-
tivistic quantum mechanics in the probabilistic approach of G. Jona-
Lasinio, F. Martinelli and E. Scoppola [15] through the theory of small
random perturbation of dynamical systems. We feel that the relation we
found between the jump Markov process t - ~ and the Brownian motion
will help such analysis too.

After the completion of this paper, we learned that the construction of
the process t ~ ~ through the Brownian motion is a particular case of a
general construction first introduced by D. Bakry [16]. R. Carmona, W. C.
Masters and B. Simon ([17], [18]) recognized the usefulness of Bakry’s idea
in their investigations on the asymptotic behavior of the eigenfunctions of
relativistic Schrodinger operators via the relativistic Feynman-Kac
formula (10) and we refer to them for the description of a large class of
acceptable potentials.
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