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ABSTRACT. - We investigate the phase diagram of the ground state for
a spin J coupled linearly to a Bose field. We prove, under suitable infrared
conditions, that there exists a critical coupling strength, (J), above which
the left-right symmetry of the system is broken: the spin becomes localized.
We establish lower and upper bounds on a~ (J). In particular, they imply
that rJ..c (J = oo) agrees with the critical coupling strength of the semiclassical
theory.

RESUME. - Nous etudions le diagramme de phase de 1’etat fondamental
pour un spin J couple lineairement a un champ de Bosons. Nous montrons
que sous des conditions infrarouges appropriees, il existe une valeur
critique Clc (J) de l’amplitude du couplage au dessus de laquelle la symetrie
droite-gauche du systeme est brisee : Ie spin devient localise. Nous donnons
des bornes superieures et inferieures pour Clc (J). Elles impliquent en parti-
culier que coincide avec la valeur critique de la theorie semi
classique.
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1. INTRODUCTION

The spin-boson Hamiltonian models a spin 1/2 coupled to a bosonic
field. It is the prototypical example of a dissipative quantum system. We
refer to [1] ] for a recent review. The coupling between the spin and the
environment may be so strong that the ground state of the system becomes
twofold degenerate with a broken left-right symmetry. This phenomenon
is necessarily associated with the generation of an infinite number of
infrared bosons ([3], [4]). From a quantum mechanical point of view a
natural question to ask is what happens if the spin 1 /2 is replaced by a
spin J. For large J one can use the semiclassical theory ([2], [13]). How
does then the quantum regime (small J) link up with the semiclassical
regime?
The spin J-boson Hamiltonian reads

Here S = (Sx, SY, SZ) are the spin J matrices with SY] = i Sx plus cyclic
permutations and S. S = J (J + 1). {~ (k), a* (k) I k E are annihilation and

creation operators in momentum space of a d-dimensional Bose field,
[a (k), a* (k’)] = 6 (k - k’). Since dimension plays no particular role, we set
d= 1 for simplicity. Our results hold for any dimension. is the

dispersion relation of the Bose field and X (k) = A (k)* are the couplings.
For convenience we require

is the coupling parameter. We normalize it by setting

The integral in (3) has to be finite in order to ensure that H is bounded
from below.

For h = 0, H is invariant under the discrete symmetry, T, defined by

Clearly i2 =1. We want to understand under what conditions this left-

right symmetry is spontaneously broken in the ground state. We approach
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the problem by means of an order parameter (other, equivalent, possibili-
ties are discussed in [3], [4]), denoted by m*, which may be defined through
the following limit procedure: We confine the Bose field to a finite box,
A, in physical space and impose periodic boundary conditions. Moreover
we introduce a ultraviolet-cutoff The k-integrals in ( 1 ) become
then finite sums over a momentum lattice, denoted by K. The Hamiltonian
with these cutoffs has a unique ground state, denoted by ~. The order

parameter is given by

The order of limits is essential. It is part of our proof that these limits
exist. If m* = 0, then H has a unique ground state. The T symmetry is
unbroken. If m* &#x3E; 0, the 03C4-symmetry is spontaneously broken and H has
a twofold degenerate ground state. In the following E will be kept fixed
and we investigate how m* depends on a and J. Actually, m* is increasing
in a. This allows us to define a critical coupling strength, a~ (J), by

The two extreme cases, J =1 /2 and J = oo, are well understood. For the
spin 1 /2 case the central quantity is the effective potential

(note that W (t) is bounded because of (2) and 1 by (3) . If

then m* = 0 and hence o~(l/2)= oo . On the other hand, if the limit in (8)
is strictly positive (or infinite), then (x~(l/2)oo. For sufficiently strong
coupling the T-symmetry is broken. At a = (1 /2), m* either vanishes or
not, depending on details ([3], [4]).
On the other hand, for large J we can use the result of Lieb [2] who

proves that in the limit J - becomes a classical variable and the
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partition function for the Hamiltonian ( 1 ) converges to the partition
function for the semiclassical Hamiltonian

where 0~(p2Ti. Since now x- and z-component of the spin
commute, the ground state is easily determined. Computing m* through
the limit /! B 0, one obtaines 0~(00) =e, independent of the large t decay
of the effective potential W (t), cf Appendix.
The problem posed is the behaviour of inbetween these two

extreme cases. To our own surprise, the spin J-boson Hamiltonian interpo-
lates in the simplest possible way: For and general W (t), we have

where m (J, h) is defined in (5) but without the limit A B 0 and msc (J, h) is
the corresponding quantity obtained from the semiclassical Hamiltonian
(9). If cx&#x3E;s, then has a jump discontinuity at h= 0. For h = 0 and
if a decay condition slightly faster than in (8) holds, then (J) = oo for
every J. On the other hand if

then ~. Presumably 03B1c(J) is decreasing in J. We will prove the
bounds

If the limit in (11) is infinite, then

We expect this property to hold whenever (11) is satisfied. In the following
figure we present a schematic phasediagram.
The technique to prove results as (12), (13) is similar to the spin 1 /2

case with one extra twist however. For spin 1/2 one exploits a mapping
to a ferromagnetic one-dimensional continuum Ising model

(spin (j (t) = :i: 1 /2) with pair potential a W (t). m* becomes then the usual
order parameter of spontaneous magnetisation. If the pair potential decays
sufficiently slowly, then the Ising model orders and m* &#x3E; O. It turns out
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that in the corresponding mapping for the spin J model the spin magnitude
J introduces an extra dimension. The continuum model now consists of
2 J coupled Ising-lines. be the spin configuration in the j-th line,
1 ~/~2J, ~~ ~t) _ ~ 1/2. The energy of the spin configuration in the two
dimensional volume [- P/2, f3/2] x {1~2, ..., 2J } is then

In the t-direction the strength of the potential decreases, whereas in the J-
direction the coupling is independent of the location of the pair of spins.
As it should be, the total energy is extensive, i. e. proportional to fiJ.
The energy (14) has two mechanisms for ordering. If W (t) decays slowly

and if a is sufficiently large, then the spin system orders in the t-direction
for fixed J. On the other hand, for fixed P, as J - oo the energy (14) is of
mean field type and the system must have a mean field phase transition.
Note that as J - 00, converges to 6 (t - s) and, a priori, it is
not quite obvious how the two mechanisms combine.
To give a short outline of the remainder of the paper: In Section 2 we

establish the mapping between the spin J boson Hamiltonian and the just
mentioned system of 2 J coupled Ising lines. In particular, we relate the
order parameter m* to the spontaneous magnetisation. In Section 3 we
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prove a lower and in Section 4 an upper bound on the critical coupling
strength r1c (J).

2. ORDER PARAMETER
AND FUNCTIONAL INTEGRAL REPRESENTATION

To define the order parameter we first have to introduce a cutoff

Hamiltonian, HK. Let A c I~ be an interval of length the physical
volume. We impose periodic boundary conditions. Let K be the set of
modes in A with ultraviolet-cutoff (if necessary, zero modes are
also removed from K). Then the cutoff Hamiltonian is given by

with a suitable choice of ffik and Àk, cf. the proof of Proposition 2.

{ k e K} constitute a representation of the CCR. Since K  oo, this

representation is equivalent to the Schrödinger representation. Therefore
HK can be regarded as a linear operator on ~f~=C~~0~, where

is the symmetric K -particle Fock space. Here v N,
Ne N, denotes N-fold symmetric tensor product.
HK is a finite particle Hamiltonian generating a positivity improving

one parameter semigroup, and thus HK has a unique ground state
We define the order parameter by

We will prove below that the sequence in ( 16) is monotone increasing and
that m (h) decreases monotonically to m * .
We want to express m (h) as an expectation value with respect to

a stochastic process on the time interval [ - ~i j2, P/2] taking values in

{ - J, ...,J}. For this purpose we construct first the measure generated
by exp (t E Here and in what follows we will work in the Sz-basis. In

this basis the ground state of Sx is given by

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Let rl1 be the set of piecewise constant paths on [ - 03B2/2, fl/2] taking values
in {- J, ..., J}. Let S(.) be a path in rl1 with jumps at

- 03B2  t1  ...  tn  03B2 and with the value S (t) = m; e ( - J, ... , J ) for
2 2

to = - fl/2, = 03B2/2. We assign to S ( . ) the weight

where

are the matrix elements of S~ in the SZ-basis. The so defined (unnormalized)
measure on r~ is denoted by (S).

Let us define an action functional by

where

This is a Riemann sum with limit

compare with (7). Expectation values with respect to the normalized

measure - 1 exp [ - J are denoted by . )J (Ø, K).

PROPOSITION 1. - Let B}I K, h be the ground state o, f ’ HK. Then

Proof. - Let H~ be the Hamiltonian (15) with a=/!=0. This is the
Hamiltonian of a spin J and I K I independent harmonic oscillators. Its

ground state, 0,~ is the product of °0 and K harmonic oscillator ground
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states. Since s- lim exp [ (HK - EK, 0)] = h, 
the orthogonal projec-

o - 00 
’

tion on 03A8K, h, and since  &#x3E; 0 by positivity, we have

 e - SZ e - can be rewritten as a functional integral. The
J

free process is a product of (S) and independent Ornstein-Uhlen-
beck processes. The action is given by

where the qk ( . ) are Ornstein-Uhlenbeck paths on the time interval

[ - [i/2, P/2]. The bosonic degrees of freedom can be integrated out, com-
pare with [3, 5]. The net result is

It turns out that the limit J - oo can be better controlled in a system
of 2 J coupled Ising lines, which we introduce next. As an additional bonus
this system makes it easy to prove correlation inequalities. The 2 J coupled
Ising lines can be viewed as a quantum version of Griffiths’ method of
analogue systems, [6].
For 1 _ j _ 2 J let o~(.) be a piecewise constant path on [ - [3/2, P/2] with

values ±1/2. By d03BD03B2(03C3j) we denote d 03B2 (S) for J =1 /2. In particular, if

pendent of the initial and final values of ~(.).

(1) Note that due to our boundary conditions expectation values are taken in the harmonic
oscillator ground states rather than over thermal states as in [5} or [3], compare with equation
(5.47) in [5].

Annales de l’Institut Henri Poincaré - Physique théorique
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Proof - Let S (t) take values mi in the intervals 
2J 

-

to = - 03B2/2, tn + 1 = 03B2/2. Its weight under 03A0 d03BD03B2(03C3j) is of the form
j= 1

where u (mo) is the number of ways mo
can be realized and p (m, m’) is the number of ways m’ can be obtained
given m, weighted by E/2 J (the factor 1 /2 is the proper normalisation).

-III ~ ....,... ,

Comparing with (19) the claim follows from

As a Consequence of Lemma 1 we have

for any (bounded) function f on I’~.
2J

The 2J coupled Ising lines have n dv~ «(J j) as free measure and in terms
j= 1

of the the action (20) reads

where we use o as a short hand for (03C31,...,03C32 J). Expectations with

respect to the normalized measure- 1 03A0 d03BD03B2(03C3j) are denoted

by  . &#x3E; K).
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The functional (27) is explicitly ferromagnetic. Also each dv~ (a) can be
approximated by discrete Ising spin chains with ferromagnetic interactions,
see [3]. Therefore the 2 J coupled Ising lines is a ferromagnetic spin model.

PROPOSITION 2. - The limits (16) and (17) exist and m* agrees with the
spontaneous magnetisation of the 2 J coupled Ising lines. Furthermore the
limits 03B2 - oo and K ~ R commute,

.. 2 J

Proof - By Proposition 1 and Lemma 1,

Let us first prove that  1 03A3 03C3j(0) &#x3E; (03B2, K) increases monotonically as

~7=1

We choose the discretisation of o (k) and À (k) such that VVK (t) approx-
imates monotonically from below for all Let kEK and kl, k2

be in the closed interval of length 2 ~ with center at k such thatg 
!~!

o (k1)~03C9 (k’) and |03BB (k2) |~| 03BB (k’) for all k’ in the corresponding interval.
Let and kEK. Then

~ I ~ ~ ~ (k~) 2 (&#x26;’)) 11 for all t. Since (21 ) is a Riemann sum approx-
imating the integral (22), this choice amounts in approximating the integral
monotonically from below as for all By Griffiths’ second

inequality, the same mono tonicity property holds then for

1 
2J 

1 
2J

- E CF,(0))(P,K) for all P&#x3E;0. Therefore  J 03A3 o,(0))(P,K) is mon-

otone increasing in K also in the limit P -+ oo and m (h) is well defined.

1 
2J

The limits and 03B2 ~ ~ commute 
Jj=i

increases monotonocally with P for all K because each Ising line has free

boundary conditions at t = ~ p/2.
Again by Griffiths’ second inequality, m (h) decreases with h. Therefore,

m* = lim m (h) is well defined. It is known that this m* agrees with the
h 0

spontaneous magnetisation defined by taking the infinite volume limit

with " + " boundary conditions ([3], [4]). 0

Annales de Henri Poincaré - Physique theorique
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We have shown that ground state expectations of the spin J-boson
Hamiltonian agree with the expectations for the 2 J coupled Ising lines.
Because they are ferromagnetic, the "infinite volume" limit P -~ oo and
the limit K - R exist. From now on we study the 2 J coupled Ising lines
and adapt our notation accordingly. (.) (a) denotes infinite volume
expectations, where the brackets indicate the coupling parameter.

Finally we note that A (0-) originates in the Euclidean action of a
Hamiltonian. Integrating out the bosonic degrees of freedom in a system
of 2 J independent spins coupled linearly to a harmonic lattice yields the
effective action A (a).

3. LOWER BOUNDS ON THE CRITICAL COUPLING

Let us differentiate the pair correlation for h = 0 with respect to a. Using
the Lebowitz inequality we obtain for the infinite volume expectations

for 1 ~7~~ 2 J. ( crj (0) ak (t) ~ (ex) is bounded by the solution of the differ-
ential equation corresponding to (29) with initial condition

Thus we have

where W (m) and G (m) are the Fourier transforms of W (t) 
4

respectively. (30) is valid as long as 1 &#x3E; a W (c~) G (~) for all m. Since
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W (w) and G (o) take their maximum at o=0, this means

at the mean field bound

PROPOSITION 3. - then ~*=0.
If the interaction decays faster than t - 2 for t - ~, we can use the

energy-entropy argument of [3] and [7] to prove

PROPOSITION 4. -

and all J.

4. UPPER BOUNDS ON THE CRITICAL COUPLING

We state the main result of our investigation.

THEOREM 1. - Let lim t2 W (t)&#x3E;0. Then for any J~1/2 there exists a

a+ (J) such that

The bound E _ (J) is an obvious consequence of Proposition 3.
Our proof of oc+ (J)  00 and (33) is divided into two steps. We first

partition the system into blocks of length 8 and decouple the free measure
(this yields a lower bound on m*). The magnetisations per block form
then a standard spin model over the one dimensional lattice. Applying
Wells’ inequality, its magnetisation is bounded below by the magnetisation
of a ::l: 1 Ising spin system- a well understood model [12]. To obtain useful
bounds we have to control the a priori distribution of the magnetisation
in a single block, in particular its behavior for large J. This is carried

through in step two. The crucial point there is that for sufficiently large
coupling the single block has a mean field phase transition as J - aJ.
Therefore the single site measure cannot concentrate at zero as J -~ oo .

Annales de l’Institut Henri Poincaré - Physique théorique
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STEP 1. - We change the time-scale in the action (27) by setting t’ = t/J.
2 J

Let (3‘ = P/J, then the free process, fl dvw (o~), refers to paths on the time
j=i

interval [ - [3’/2, P’/2] and the action is given by

With the new scale the action is explicitly extensive, i. e. proportional to
(34) has a mean field interaction in the "spatial" direction,

{ - J, ...,J}. In the time direction, [ - [i’ j2, P’/2], the interaction strength,
JW (J t I), becomes strong and shortranged as J increases with total (inte-
grated) strength independent of J.
We partition the interval [ - PV2, P’/2] into intervals of length Õ, indepen-

dent of J. For notational convenience we set P’=N8 with NEN. For

2J

Then W~-~W(~). As in Section 2 let S(~)= ~ and define the
j=i

magnetisation per volume in the block I by

By d03C6J (Ml) we denote the distribution of Ml under

Here dJlo (S) is the measure on rs generated by exp (Eð S") with free

boundary conditions as defined in Section 2 and Z is the normalisation
constant. If obvious from the context we will supress the J dependence of
dcpJ. Let ~ . &#x3E; (J) (a) denote expectations with respect to the normalized
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measure

Since compared to ~ . )(ex) ferromagnetic interactions have been decreased,
m* &#x3E;_- lim  (ex).

0

To control the width of the single site measure in the limit J -~ 00 we
use the following property.

PROPOSITION 5. - For each ex&#x3E; E there exists a v &#x3E; 0, independent of J,
and a 03B41 &#x3E; 0 such that for all Õ &#x3E; b 1

This proposition will be proved in step two.
Let ( . &#x3E; 1 (ex’) denote expectations with respect to the normalized Ising

measure

We apply Wells’ inequality [3, 9] to (38). By Proposition 5 there exists
then a independent of J, such that

The phase diagram of the Ising model (40) for N -+- 00, equivalent
03B2’ - ~, with coupling oc’ = eL J2 b2 u2 is discussed in [12]. If

lim t2 W (t) &#x3E; 0, then the Ising model orders provided a’, equivalently (x,
t ~ 00

is large enough. This proves (32). Let us chose an arbitrary a &#x3E; E and let

lim t2 W (t) = oo . Then the nearest neighbor coupling, J2 W (J t), diverges
i - m

as J - oo . Furthermore, for J sufficiently large,

Therefore, E  cx+ (J)  cx provided J is large enough. D

STEP 2 (Proof of Proposition 5). - We have to investigate the single
block measures d03C6J in the limit J - ~. Substituting JW (J t) by õ (t) (which

Annales de l’lnstitut Henri Poincaré - Physique théorique
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gives a negligible error) we obtain the mean field problem

In more familiar cases the single site space consists only of two points,
Here we must deal with the a priori measure Fortunately

such general mean field systems have been studied before. In [10] the
single site space is a bounded volume in IRd equipped with the Lebesgue
measure. The proof in [10] has to be modified only slightly in order to
apply to (43). Before doing so let us explain the main result of [10].

Let p be a bounded density relative to 0 ~ p _ a, with normalisation

the entropy

and the free energy

F (p) is bounded from below. Let -4Y ~ be the set of p’s minimizing F.
For each p we can build the product measure

Now let us choose a subsequence J -~ oo such that PJ converges weakly
to (p. Since p must be permutation invariant, the theorem of Hewitt and
Savage ensures that (p can be decomposed into product measures as

The main result of [10] is that the decomposition measure, ~r (dp; cp), is
concentrated on In particular, along the chosen subsequence,

Thus the proof of Proposition 5 is accomplished by studying the minima
of the free energy functional (46).

Let us now introduce some notation. We write rij2 for rs if J = 1 /2.
Let ~ be the set of all probability measures on which are
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invariant under permutations. This means, 
... for any measurable sets Al’...’ An C r~/2’ all

n e N and all permutations 1t of {1, ..., ~}. Let !7 a c y be the set of all
permutation invariant measures d~ on such that there exist densities

..., bounded above by ak for some a &#x3E; 0, and satisfying

LEMMA 2. - The sequence of measures, has weak limit points in ~a
as J ~ ~. Each limit point, (p, can be decomposed into extremal measures
such that the decomposition measure is concentrated on If ~ (dp; (p)

denotes the decomposition measure, then

Proof - We first prove that the sequence of measures PJ has weak
limit points in Y. We cannot adopt the argument of [10] since is not

compact. Instead we apply results of [ 11 ], chapter 4, in particular Proposi-
tion 4. 7 and Example 1. We have to check that for all 1 __ j __ 2 J

is bounded uniformly in J. This is obvious since (51) is bounded by 8/2
(in the terminology of [11] ] this means that the interaction is absolutly
summable).
The Lipschitz continuity used in [10] is replaced by

Here we have used that

where Z is the normalisation constant. Let Zo = Then we have

Annales de l’Institut Henri Poincaré - Physique théorique
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This replaces the corresponding estimate (2.6) in [10]. Furthermore there
exist constants C, a &#x3E; 0, independent of J and k, such that for all k _ 2 J

This replaces Lemma 2 in [10].
Along the given subsequence, converges weakly to a limit he which

is the marginal of (p on the sites {1, ... , k ~ . The main technical tool in
[10] is to make sure that also the entropy of ff converges to the entropy
of fk. For this weak convergence is not enough. In [10] the uniform

Lipschitz continuity of the densities f2 Jk was used. This is substituted here
by (55). By the theorem of Arzela Ascoli it implies the existence of

pointwise convergent subsequences of as J - 00 on compact sets. Since

by weak convergence the limit is unique, --~ fk almost surely. Because
of (54) this implies the convergence of entropies. The energy of the "state"

p is given by (44) since JW (J t) - 6 (t) as J - 00. The remainder of the

proof is identical to [10]. D

Let us write (.)p for expectations with respect to the measure

p ( cr) dvs ( cr) and let m (t) _ ~ cr (t) ~P. p is a stationary point of the free

energy functional F (p) iff

Clearly, the weak coupling solution is ] - 
1 

with

m (t) = 0 for all t. To prove Proposition 5 we have to show that there are
absolute minima of F (p) with 

LEMMA 3. - For a  E there exists a §o&#x3E;0 such that for all 03B4 &#x3E; Õo po is
the unique minimum of F (p).
For a&#x3E;8 there exists a 8i&#x3E;0 such that for all 8&#x3E;8i po is an unstable

stationary point of F (p).

Proof. - By inserting (56) into F (p) we obtain the functional

Since the stationary points of F (p) and F (m ( . )) with ~(~)=(cr(~))p
agree, we only have to investigate the absolute minima of F (m ( . )).
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The quadratic variation of F with respect to m ( . ) at m (. ) = 0 is given
by

For J = 1 /2 we have °0= 1 2(11) and thus)2 1

The Fourier coefficients of 8 (~) - -~ "’ ~ - 8/2 ~ ~ 8/2, are given by

with 03C9n = 03C0 n/03B4, n E Z. (59) is positive for all 03C9n if a  E and 03B4 is large
enough. This implies stability.

Uniqueness follows by a contraction argument analogous to the one
given in [10] in the proof of Theorem 3. We remark that nonuniqueness
also contradicts Proposition 3 because the argument in step 1 would yield
m*&#x3E;0 for r:t  E.

If a &#x3E; E, then (59) is negative for I small enough and 8 sufficiently
large. From this we conclude that the quadratic variation of F at m ( . ) = 0
is not positive definite. 0

Proof of Proposition 5. - Let a &#x3E; E and let cp be any weak limit point
of PJ as J -~ oo. Then, along the given subsequence, lim cpJ is given

by (49). Suppose that Then and hence 
for almost all which contradicts Lemma 3. Hence cpJ has to
be bounded away from zero uniformly in J. D

The proof of Proposition 5 has the

COROLLARY. - For a &#x3E; E we have

independent of the choice of W (t).
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APPENDIX

As an example we explain how to calculate ground state expectations

of 1 J SZ in the semiclassical limit J ~ ~. We introduce the cutoff Hamil-
J

tonian corresponding to the semiclassical Hamiltonian (9),

where we suppress the K dependence of H~ in our notation. This Hamil-
tonian is defined on Yf K, sc - [/2 Q ~ K~ where [/2 is the two sphere.
Diagonalizing H~ one finds that its ground state energy for fixed e and
p is given by

By H~ we denote the Hamiltonian (61) with all terms except L wk ak ak
k e K

multiplied by (J + 1 )/J. Its ground state energy for fixed e and p is given
by

Thus the ground state energies of H ~ are determined by

Taking the limit P - oo in equation (5.4) of [2] yields then the bounds

for all 11 ~ O. In (65) one can take the limit K -~ IR. We have
lim g+ (e, cp) - g ~ (e, cp) * g (e, cp)- Thus

Taking the limit J - oo and then 11 ? 0 for the lower and 11 B 0 for the
upper bound in (65) yields
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then g (~, ~p) has a unique minimum (90 (h), Po (h)) and (67) yields

Let h=0. If then ~(9,(p) has the unique minimum

and
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