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Maxwell’s equations satisfy Huygens’ principle
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ABSTRACT. - We show that there exist no Petrov type D space-times
on which the Weyl neutrino equation or Maxwell’s equations satisfy
Huygens’ principle. In passing we give a new proof of the same result for
the conformally invariant scalar wave equation which does not require
the use of the seventh necessary condition.

RESUME. 2014 On demontre qu’il n’existe aucun espace-temps de type D
de Petrov sur lequel 1’equation de neutrino de Weyl ou les equations de
Maxwell satisfait au principe d’Huygens. On donne en passant une preuve
nouvelle du même resultat pour l’équation invariante conforme des ondes
scalaires ou on n’emploie pas la septieme condition necessaire.

1. INTRODUCTION

This paper is the fourth in a series devoted to the solution of Hadamard’s
problem for the conformally invariant scalar wave equation, Weyl’s neu-
trino equation and Maxwell’s equations. These equations may be written
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respectively as

The conventions and formalisms in this paper are those of Carminati and

McLenaghan [3]. All considerations in this paper are entirely local.
According to Hadamard [9], Huygens’ principle (in the strict sense) is

valid for equation ( 1.1 ) if and only if for every Cauchy initial value

problem and every the solution depends only on the Cauchy data
in an arbitrarily small neighbourhood of S n C - (xo) where S denotes the
initial surface and C - (xo) the past null conoid from xo . Analogous
definitions of the validity of the principle for Weyl’s equation ( 1. 2) and
Maxwell’s equations ( 1. 3) have been given by Wunsch [ 18] and G3nther
[7] respectively in terms of appropriate formulations of the initial value
problems for these equations. Hadamard’s problem for the equations
(1.1), (1.2) or ( 1. 3), originally posed only for scalar equations, is that of
determining all space-times for which Huygens’ principle is valid for a

particular equation. As a consequence of the conformal invariance of the
validity of Huygens’ principle, the determination may only be effected up
to an arbitrary conformal transformation of the metric on V4

where (p is an arbitrary function.
Huygens’ principle is valid for ( 1.1 ), ( 1. 2) and ( 1. 3) on any conformally

flat space-time and also on any space-time conformally related to the
exact plane wave space-time ([6], [ 11 ], [19]), the metric of which has the
form

in a special co-ordinate system, where D and e are arbitrary functions.
These are the only known space-times on which Huygens’ principle is valid
for these equations. Furthermore, it has been shown ([8], [12], [19]) that
these are the only conformally empty space-times on which Huygens’
principle is valid. In the non-conformally empty case several results are
known. In particular for Petrov type N space-times Carminati and McLen-
aghan ([1], [2]) have proved the following result: Every Petrov type N
space-time on which the conformally invariant scalar wave equation ( 1.1 )
satisfies Huygens’ principle is conformally related to an exact plane wave
space-time (1. 5). This result together with Günther’s [6] solves Hadamard’s
problem for the conformally invariant scalar wave equation on type N
space-times. An analogous result has been proved for the non-self adjoint
scalar wave equation on type N space-times by McLenaghan and Walton
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[15]. For the case of Petrov type D space-times Carminati and McLen-
aghan [3] (CM in the sequel) have established the following theorem:
There exists no Petrov type D space-times on which the conformally invariant
scalar wave equation (1.1) satisfies Huygens’ principle. A similar result also
holds for space-times of Petrov type III under a certain mild assumption
[4].
The purpose of this paper is to extend the result obtained on a type D

space-time for the conformally invariant scalar wave equation, to Weyl’s
equation and Maxwell’s equations. The precise result obtained is stated

in the following theorem

THEOREM. - There exist no Petrov type D space-times on which the

conformally invariant scalar wave equation ( 1.1 ), Weyl’s equation (1 . 2) or
Maxwell’s equations (1. 3) satisfy Huygens’ principle.
The proof will proceed by making use of Theorem 1 and Theorem 4 of

CM which apply to all three wave equations on a type D space-time. We
restate them here for ease of reference:

THEOREM 1. - The validity of Huygens’ principle for the conformally
invariant scalar wave equation { 1. 1 ), Weyl’s equation ( 1 . 2), or Maxwell’s
equations (1.3) on a Petrov type D space-time implies that both principal
null congruences (defined by the null vector fields I and n) of the Weyl tensor
are geodesic and shear that is

THEOREM 4. - There are no space-times of Petrov type D where both
principal null congruences of the Weyl tensor are hypersurface orthogonal,
on which the conformally invariant scalar wave equation (1.1), Weyl’s
equation (1 2) or Maxwell’s equations (1 . 3) satisfy Huygens’ principle.
A space-time of Petrov type D where both principal null congruences

of the Weyl tensor are hypersurface orthogonal, satisfies

In the proof of the Theorem only the third and fifth necessary conditions
for the validity of Huygens’ principle will be used in contrast to the earlier
result obtained for the scalar wave equation in CM which made use of
the seventh necessary condition. This is the new feature in the proof of
the scalar wave equation result. The absence of a requirement for the
seventh necessary condition is also important in obtaining the results for
Weyl’s equation and Maxwell’s equations since the condition has not been
computed for either of these equations, being only available for the

conformally invariant scalar wave equation [16].
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2. PROOF OF THEOREM

The spin or form of the third and fifth necessary conditions (III’s and
V’s) are [5], [12], [ 13], [14], [17]and [ 18]

where k1 takes the values 3, 8, 5 and k2 the values 4, 13, 16 depending
on whether the equation under consideration is the conformally invariant
scalar wave equation, Weyl’s equation or Maxwell’s equations respectively.
A type D space-time is characterized by the Weyl spinor having a pair

of two-fold principal spinors, that is there exist two linearly independent
spinors oA and vA satisfying OA tA= 1 such that

If ~ is chosen as the spin frame, it follows immediately that the
only non-vanishing component of the Weyl spinor is B}I2 = B}I.
The conformal invariance of Huygens’ principle is particularly useful in

that we can employ a conformal transformation to simplify the form of
the Weyl spinor. In particular the conformal transformation (1.4) induces
the transformation

Before proceeding with the proof we will obtain a stronger form of
condition Ill’s. From the Ricci identity we have

Applying the Bianchi identity

to the left hand side of (2. 5) gives [10]

Together with condition III’s (2.1) this implies that

For the remainder of this paper we will refer to this equation as condition
III’S. In order to refer to the individual components of conditions III’s
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and V’s we shall subscript the roman numerals III and V in a manner
analogous to that used to refer to the components of the Ricci spinor.
The result of Carminati and McLenaghan (1.6), ( 1. 7) implies that in

the canonically chosen spin frame we have

Taking the condition 11100 and removing the term in Dp using the NP
equations we have

If we use the conformal transformation (2.4) to set

we obtain on differentiating

and

We may eliminate ’the second derivative terms appearing in equation
(2. 13) using equation (2.10) and it’s complex conjugate. Simplifying the
result with (2 . 11 ) and (2.12), we obtain

We now invoke the condition vll, in view of (2.9) it reads

Removing the second derivative terms in the above using equation (2.10)
and it’s complex conjugate and using as before equations (2 .11 ) and
(2.12) we obtain with the aid of the NP equations

Elimination of the term in between equations (2. 14) and
« ~ 1 [,B -~ - - - -

Under the assumption that p =1= p, we may solve for DW in the above
obtaining
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Returning to equation (2. 16) we now substitute for D’P and Collect-

ing the terms in 03A600 on one side of the equation and then completing the
square we find

We first note that if p i= p, then and therefore the right hand side of
the above equation is real and strictly negative provided 4 kl &#x3E; k2 &#x3E; 0 and
2 kl ~ k2, which is the case for all three of the wave equations under
consideration. However, the left hand side of the above equation is clearly
real and positive, we therefore must have

in contradiction to our assumption that p =1= p. Placing p = p in equation
(2.16) we immediately obtain

Both the terms appearing here are real and positive and so we must have

By an exactly similar procedure one can show that

The equations (2.22) and (2.24) imply that the two principal null con-
gruences of the Weyl tensor are hypersurface orthogonal. It follows that
the conditions of Theorem 4 of CM are satisfied and hence the Theorem
is proved.
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