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ABSTRACT. - Let: el (h) __ e2 (h) __ ... ~~(~)~ - - -  0 be the negative
eigenvalues of P(/!)=2014/~A+V where V is a Coo potential such that

lim infV(Jc)&#x3E;0 and consider the quantity: 

y&#x3E;0.
Lieb and Thirring proved, under the condition y&#x3E; Max (0,12014~/2),

the existence of a universal, best constant, LY, n, satisfying:

A natural problem is to compare with the classical limit:

By a very accurate study of harmonic oscillators we prove here that

RESUME. - Soit : e 1 (h) -_ e2 (h) __ ... ~~(~)~ ’ ’ -  0 les valeurs propres
negatives de ou V est un potentiel C tel que:

lim et considerons la quantité :

î’ &#x3E; o.
Lieb et Thirring ont montre, sous la condition y&#x3E; Max (0,12014~/2),

l’existence d’une meilleure constante universelle, Ly. n’ satisfaisant:
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Il est alors naturel de comparer avec sa limite dassique:

Par une etude fine d’oscillateurs harmoniques nous prouvons ici que
pour tout y  1 et n &#x3E;_ 1.

0. INTRODUCTION

This paper is a continuation of [HE-RO]2 where we have stated results
related with some Lieb-Thirring’s conjectures, using semi-classical
methods.

Let us briefly recall the problem. Consider the Schrodinger operator
in R":

where V is a C°~ potential such that lim infV (x) &#x3E; o.

Let: el (h)  e2 (h)  ... ...  0 be the negative eigenvalues of
P (h) and consider the quantity:

rY is the Riesz mean of order y [HO]. This quantity appears in some
physical problem ([HE-SJ], [LA], [PE], [SO-WI]).

Denote: V _ = Min (V, 0).
Lieb and Thirring [LI-TH] proved, under the condition

y&#x3E; Max (0,1- n/2), the existence of a universal, best constant, Ly, n, satis-
fying :

for every V and h &#x3E; 0.

Of course, by scaling, we can reduce to h =1 but it is easier for us to
introduce the Planck constant h. A natural problem is to compare Ly. n
with the classical limit:

clo I’Institut Henri Poincaré - Physique théorique



141RIESZ MEANS OF BOUNDED STATES

For V smooth, lim inf V&#x3E;0, one can prove that L~~ n exists and

has the numerical value:

r being the gamma function.
Clearly we have:

and it was proved in [AI-LI] that:
(0.6) y --&#x3E; L is monotone, non increasing. So a natural question is
to compute the smallest y~ such that:

If (0 . 7) holds for y~, then, from (0.6), we have also (0 . 7) for every
In [HE-RO]2, using Lieb-Thirring’s results and functional calculus

in the context of h-dependent pseudodifferential case, we have got another
proof of the inequality: for every y3/2 (the first proof of
that is due to Lieb and Thirring [LI-TH]). In this paper we prove a result
valid in all dimensions:

This result seems to be in contradiction with some conjectures given in
[LI-TH] (p. 272 it was conjectured that y~, 3 &#x26;# 0.863 and ~ 0 for n &#x3E;_ 8).

In the last section we try to clarify the limit case y =1. The proof of
theorem (0.1) consists in an accurate computation of R (h, V) for the

harmonic oscillator: V (x) = x2 -1. For that we use expansions in h impli-
citly proved in the physical litterature ([SO-WI], [CA]) in the context of
De Haas-Van Alphen effect (see [HE-SJ] for a mathematical proof).
Remark that we have, using ( 1. 2), ( 1. 3), ( 1. 4):

We can also compute this limit using general results proved in [HE-
RO]1:

.. e f8,

the two computations agree!
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1. PROOF OF THEOREM (0.1): PRELIMINARY RESULTS
IN THE n= 1 CASE

First of all, we recall some results previously used in the study of the
de Haas-Van Alphen effect in [HE-SJ]. Let us denote:

From [He-Sj] [Lemma (2 .1 )] we have the following asymptotic as h - 0:

where:

pY is a 2-periodic function.

The coefficients ai are given by the expansion:

In particular we have:

We consider first the one dimensional case to see how the proof will
work in the general case. For y  1, we have the following asymptotic for
rY (h):

If for some So E [R we have Py (so) &#x3E; 0, then clearly we get a contradiction
with the equality: Ly,1= L~ 1 by choosing a sequence 0 such that:

We have no general proof of this property of Py but it is sufficient for
us to prove it for y near 1 :

clo l’Institut Henri Poincaré - Physique théorique
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As a consequence we get Ly, 1 &#x3E; L~ 1 if y  1. Recall that we gave a

proof for this property when y3/2 in but the proof here is
much simpler and will work in any dimension.

Proof of Lemma ( 1.1 ). - It is sufficient to consider the case y =1 (the
result follows by perturbation). We have:

But pi is the Fourier serie of a 2-periodic parabolic function:

/(~)=~+~(-1~1). (We have to thank J. P. Guillement for this

remark.) Elementary calculus gives:

So pi 1 (s) has the simple form:

Then we can take:

2. PROOF OF THEOREM (0.1): THE n-DIMENSIONAL CASE

We have to consider:

By induction on I, we get:

(Pascal triangle rule)
Finally we have:
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Now the game is to compute (h) in term of some (g) where:

we have:

and

Now write:

Using (2 .1 ) and (2 . 2) we get:

. ,,, " , ,, .

We can apply to the general result stated in [HE-RO]1 :

From (2 . 3) we compute an asymptotic for r~(A) with remainder
(9(A""~); using ( 1. 2) and (2 . 4) we have only to consider the oscillating
coefficient This coefficient comes from (2 . 3) by the contribu-
tion corresponding to k = r~ -1 and m = 0. This gives:

From (2.2) we have:

Suppose n odd. As in section 2, consider a sequence /~0,
gk 1--_ sl (mod 2) and we get the same conclusion. This finishes the proof
of theorem (0.1) for every n.

The same computation as in section 2 gives:
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From we have:

So, the coefficient of h2 in (3 .1 ) is non positive and we have no
contradiction with L i , 2  L 1, 2

~w ~ 1 v

So the coefficient of /~ in (3.1) can be written as: - ~ +2014~0
32 8

which don’t give any contradiction with L~ ~I~ ~.
General case:

and:

The coefficient of h2 in (3 .1) is:

In conclusion we are not able to decide something about the Lieb-
Thirring conjecture for y =1, ~ 2. Anyhow we know from Theorem (0 . 1 )
that, for every n &#x3E;_ 2, the critical constant y e, n satisfies: Yc ~~ 1.

Vol. 53, n° 2-1990.
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4. FURTHER COMPUTATIONS FOR THE HARMONIC
OSCILLATOR

For integer, it is possible to get a more accurate formula for
(h) related to P (h) _ - ~ + x2.
First of all, we have an explicit formula for rY (h) = Y~,1 ~ (h). To see that

we start with:

Remember that where the B, are

the Bernouilli’s polynomials ([DI], p. 298); then the residue theorem gives:

By a known property of the Bernouilli’s polynomials we have also:

Of course, we can extend (4. 3) using:

For y =1 we have already remark in section 1 that:

Using the explicit knowledge of Bernouilli’s polynomials we get:

We can apply this to precise the sign of for n = 2, 3.

We have

Using (4.2) we get:

From (4. 4) and (4. 6) we see easily that ’12) (h) - (24) ~  0 for every
h in ]0,1/2], hence for every h &#x3E; 0 because from (2 .1 ) we get ~(A)=0 if
h &#x3E; 1 /2.

Annales de l’Institut Henri Poincaré - Physique théorique
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By an easy computation we get:

From (4.2) we know that r13} has a natural decomposition into a
sum of a rational function and an oscillating function in

h : ,B3) (h) = Rat3 (h) + Osc3 (h). We have explicitely:

Now, using (4 . 4), (4.5), (4.6) we get: ~(/!)-(192)’~’~0 for every
h in ]0,1/2], hence for every h &#x3E; 0 because from (2.1) we get ~(A)=0 if
h&#x3E;1j3.
Note added in proof. After this paper was accepted we heard about the paper by A. Martin,

New Results on the Moments of the Equivalues of the Schrodinger Hamiltonian and
Applications, Commun. Math. Phys., n° 129, 1990, pp. 161- 168, which gives an improvement
of the Lieb-Thirring bound in the case n = 3.
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