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ABSTRACT. - We propose an extension to the relativistic case of the
stochastic variational principles both of Lagrangian and Eulerian type.
The action we use is the mean classical action evaluated on the paths of
relativistic covariant diffusions. The resulting equations of motion are the
relativistic stochastic Lagrange equations.

RESUME. 2014 Nous proposons une extension au cas relativiste des prin-
cipes variationnels de type lagrangien et eulérien. Nous utilisons comme
action l’action moyenne classique évaluée sur les trajectoires des diffusions
covariantes relativistes. Les equations du mouvement obtenues sont les
equations de Lagrange stochastiques relativistes.

1. INTRODUCTION

The problem of formulation of the stochastic mechanics in a relativistic
framework has not at the moment a unique and complete answer ([1]-[9]),
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98 R. MARRA AND M. SERVA

however some satisfactory results have been obtained for the description
of a relativistic spinless particle in a classical electromagnetic field. A kind
of approach utilizes stochastic diffusion processes in the four dimensional
space-time, which are labelled by an invariant parameter (proper time).
This approach tries to implement in a stochastic framework the Feynman’s
picture [10] of relativistic quantum mechanics in which the virtual paths
moving backward in time are interpreted as antiparticles moving forward.
The first attempt in this direction is due to Guerra-Ruggiero ([ 1 ], [2]),

who consider random processes which are characterized by suitable condi-
tions on conditional expectations and which do not have the usual Markov
property. Dohrn-Guerra ([3], [4]) proposed a different way to overcome
the difficulty of constructing non trivial relativistic Markov diffusions.

They use Markov processes on R4 but allow the Brownian metric to be
different from the kinetic one, provided that two metrics verify a compati-
bility condition. Then the Klein-Gordon equation turns out from an
Eulerian variational principle. The covariance property is recovered con-
sidering a class of processes connected with generalized frames of reference.

Recently a new class of processes has been introduced [5], which take
values on the Minkowski space and are labelled by an invariant time, as
solutions of stochastic equations with boundary conditions both at initial
and final time. These processes belong to a Bernstein [11] class of processes
and do not have in general the usual Markov property. The notion of
transport derivative naturally associated with this kind of processes is used
to give the stochastic relativistic Lagrange equations, which are known to
be equivalent to the Klein-Gordon equation.
A different and independent approach to the relativistic stochastic mech-

anics of a spinless particle has been used by De Angelis [8]. He is able to

reproduce the kinematics of the system utilizing a 3d Markov jump process
labelled by the physical time. In [9] it is shown that this jump process can
be recovered from the relativistic process introduced in [5] by a suitable
elimination of the invariant time.

In this paper we formulate variational principles of Lagrangian and
Eulerian type using the processes introduced in [5]. We construct the
stochastic action starting from the classical one in the covariant four-

dimensional formulation in terms of the proper time. Then the mean

classical action evaluated on the stochastic paths, in analogy with the
classical stochastic case [12], gives the stochastic action in terms of a

Lagrangian, which is manifestly covariant.
Moreover the Lagrangian principle, when suitable boundary conditions

on the variation are chosen, gives rise to rotational solutions which

can be seen as a generalization to the relativistic case of the Morato

solutions [13].

Annales de l’Institut Henri Poincaré - Physique théorique



99VARIATIONAL PRINCIPLES

2. THE RELATIVISTIC PROCESS

Work on a flat Minkowski space-time M4 endowed with the usual
Lorentz metric ( 1, -1, -1, - 1 ). We consider the stochastic process on
M4, introduced in [5], defined in the interval [0, T] by means of the
following stochastic integral equations

where w=(~B w2, w3). w° and wi for j =1, 2, 3 are four independent
brownian motions starting from 0 at time 0. b = (b°, b) is a quadrivector
drift. q’ _ (~~, q’) is a random variable given independently of

w(~)=(~),=~~~=[0,T].
(2 .1 ) can be considered as a particular type of stochastic integral

equation with mixed boundary conditions. One can give sense to (2 .1 )
constructing a solution using a method of successive approximations [14].
Then under the usual regularity conditions on b, it is possible to show
that there exists a unique solution for the fixed point problem (2 .1 ).

This process belongs to the class of Bernstein processes [11] in the sense
that

for where ~,(~) is the a-algebra generated by q (u), for
and NS, NS, are the present a-al gebras generated by

q (s), q (s’) respectively.
Furthermore the process q has a peculiar property. Let us introduce the

following a-algebras. Let Xs, Ys denote the a-algebras generated by q0 (s)
and q (s) respectively and by the ones generated by q° (s’),

and by q (s’), s  s’  T. Since the process q (t) for times s _ t _ s’
can be reconstructed from (2 .1 ) by the only knowledge of qO (s) and q (s’)
then it is easily seen that the solution of (2 . 1 ) verify

for sts’.
Therefore we can introduce a probability transition density p (sx |qt s’ y)

depending on 3 times such that for any smooth function f

This probability transition density satisfies a differential equation in q, t.
The following derivation of this equation relies mainly on the property
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(2.3). Consider

The second equality follows from (2.3). The limit

which has been considered in [5] is the natural definition of the mean

derivative associate with the processes we are considering. The explicit
expression of ~ is

where is the d’alambertian operator 
Moreover we have

where the second equality turns out from (2 . 5), (2 . 7).
Finally, since f is arbitrary, we obtain the equation for p

The boundary conditions are

Also the density p (q, t) satisfies an equation of the same kind as one can
see from the relation
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p (sx, ,~’ y) in (2 . is the two times initial probability density. In other
words p (sx, s’ y) is the joint probability that the 3 d backward component
of the process is in y at time s’ and the 1 d forward component is in x at
time s. Equations (2.9) and the analogous one for the density exhibit the
relativistic covariance property. ’This is the reason why we call the process
defined by (2 . 1) a relativistic process. From the point of view of the
process, the stochastic equations (2.1) assume a different form under a
change of reference frame. Henceforth the class of all processes which are
obtained from (2 . 1) by a Lorentz boost has to be considered. It turns
out that the probability transition densities of all the processes of this
covariant class will satisfy the equation (2 . 9), provided that the boundary
condition (2.10) is changed according to the Lorentz transformation

(see (5]).. We can conclude that the relativistic process is characterized by
the covariant equation (2.9). Therefore we can work in the reference
frame in which the stochastic equations assume the form (2.1) withouth
any lack of generality. As a remark we note that the process we have
introduced is markovian when the two point initial density p (sx, s’ y) is a
product p (sx) p (s’ y) and the space component of the drift depends only
of q (s) as well as the time component only of qO (s). In fact in this case
one can separate the evolution of the 3-dimensional part of the process
from the I-dimensional one which are independently markovian. It can
be shown that in the general case the process is not markovian. As a

simple example one can consider the case of zero drift but an initial
condition p (sx, s’ y) which does not factorize. What happens is that the
correlation between qO (0) and q (T), given by p (sx, s’ y), does not allow
the future to be independent of the past if the present is known. The main
advantage in our opinion of the introduction of the relativistic process is
the manifestly relativistic covariant form of the equation for the density
and for the probability transition. In [5] it is shown that the operator ~
(and the time reversal counterpart naturally associated to this kind
of process allows to construct a relativistic stochastic Newton equation,
which is equivalent to the Klein-Gordon equation. In the following we
will show that the theory can be founded on a variational principe whose
main ingredient is this kind of relativistic process.

3. PATHWISE VARIATIONAL PRINCIPLE

The relativistic action for a classical particle in a given external electro-
magnetic field, with vector potential A can be written explicitly as a
functional of the pathsq (s) in the Minkowski space-time labelled by a
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proper time parameter s

Since we promote the configuration variables q to stochastic processes

evolving in the time s under the equations (2 . I) {we introduce a diffusion
coefficient a= /2014) we need to give meaning to (3 . I). To this end we

consider, following Nelson [12], the mean value of the classical action on
the stochastic trajectories of the relativistic process.
The Lagrangian is obtained considering a conditional expectation

suitable for the relativistic process, that is the one suggested by the

property (2. 3). Consider the limit

The limit (3.2) can be computed taking into account the expressions for
the increment dq up to the order h3/2 and using the property of indepen-
dence of the brownian increments for different components (see for

example [5]).
The result is

The divergent term is independent of the specific path and can be dropped
in the variation. Therefore we introduce the Lagrangian

We can also define the time reversal counterpart of F as

where The Lagrangian reduces to the
classical one in the limit a - 0.
The action associated to J5f is

Since the proper time s is not observable we will only be interested to

Lagrangians independent of s, but for sake of completeness we formulate
the variational principle in the general case.

Annales de l’lnstitut Henri Poincaré - Physique théorique



103VARIATIONAL PRINCIPLES

We introduce the following class of variations inspired by [ 13] (see also
[15]). Given a drift b we consider a varied drift b’. Let us call q (s) and
q’ (s) two paths under band b’ respectively. We consider only variations
q’ - q such that q’ and q have the same brownian realization w° (s’),

w (s’ ), T2014~~~T. In other words we require that

Introducing a small variational parameter E and putting we

have for the infinitesimal variations ðq the equations

The processes 6q have differentiable paths but 6q(s) depend on the
entire realization w° (s’), 0 _ s’ _ sand w (s’), T - s  s’ _ T.
The variation of the action (3 . 6) under the variations õq is

where we have set v + u = b, v - u = b* and we have taken into account
that

Let us now examine the integral in (3.9) which contains the temporal

derivative of ~q. Denoting we have
c

Vol. 53, n° 1-1990.
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where b. c. = - E { ~pa Õq0152) (P0152 6q? (so) ~ - Finally, taking into account
the properties of the variations 8~ we get

The second line gives zero because 6q (s) depends on w° (s’), 0s’ _ s
and w (s’), while the increments w (T - s) - w (T - s - h) and
wo (s + h) - wo (s) are independent of it.
For the action we have

We choose the following initial condition on the variations [16]

The boundary term at the final time is controlled adding to the action
a Lagrangian multiplier E {Sl (q (sl)) ~. Under the variation this term
becomes

which gives together with the boundary term E { (s 1) } the following
term in 6s/

It is a matter of algebra now to get the expression of 8~. The conclusion
is that the variation of the action with the boundary conditions is zero if
and only if the fields v, u satisfy the equation

and the initial condition

Annales de I’ln.stitut Henri Poincaré - Physique théorique
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It is possible to prove [15] that the gradient condition (3.18) at time zero
implies that p is a gradient at any time. So there exists some function
S (q, s) such that

As a consequence (3 . 17) becomes

Taking into account (3.19), (3.20) implies the following equation for S

We can write the right hand of (3.21) as - H, where H has the meaning
of the Hamiltonian of the system and represents the energy in the station-
ary case. It is easy to verify that (3.21) and the equation for the density
imply that the wave function

satisfies the equation

In the physical case the invariant time s is not observable and only the
stationary solutions of (3.21) are relevant. The solution corresponding to
the ground state energy has the form

where the spatial dependence of S is determined by (3 . 18). The correspond-
ing wave function assumes the Feynmann’s hansatz form

where (p results to be a solution of the Klein-Gordon equation.

Vol. 53, n° 1-1990.
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Remark. - It is possible to fix different boundary conditions in the
variational principle [16]. Let us consider the following ones

E {8~ (so)/q (so) = q ~ _ 0, E ~ S~’°‘ (Sl) = ~’ ~ _ 0. (3 . 26)
Under this different choice of the boundary conditions we can get from
the variational principle equation (3 .17) which admits also non gradient
solution for the momentum p. This equation appears to be a relativistic
generalization of the Morato equation [13].

4. EULERIAN VARIATIONAL PRINCIPLE

In this section we explore a hydrodynamical approach to the variational
principle. In this case the action ~ is regarded as a functional of the drift
field.

Introduce the stochastic Hamilton-Jacobi function S (q, s) as a solution
of the equation

with the final condition

It is easily seen that this equation implies

Therefore we can apply the machinery of the Guerra-Morato [17] varia-
tional principle based on the variation of the drift field b. The boundary
conditions fix the density at times so, si .
The result is that the Hamilton-Jacobi condition

is necessary and sufficient for the stationarity of the action. The Klein-
Gordon equation is recovered from the programming equation (4.4) and
from the density equation (2.1). D. Dohrn and F. Guerra (DG) formu-
lated a variational principle [3] of the hydrodynamical type for the Klein-
Gordon equation in the more general framework of stochastic processes
on manifolds (see also [4] for an exhaustive discussion). The processes
they consider are Markov processes on a manifold M with a Brownian
metric 11. The kinetic metric g can be different from 11 provided a compati-
bility condition is verified. The relativistic Lorentzian case is implemented
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choosing

where u is some time oriented field. If g is the Lorentzian metric and

u = (1 , 0, 0, 0) then 11 is the usual Brownian metric in R4.
The relation between the relativistic process we use and the usual

Markov process on R4, that DG use, can be better understood if we

define

where b is the drift of the relativistic process. Then our covariant equation
for the density assumes the more familiar form

which can now be interpreted as a Fokker-Plank equation for a stochastic
Markov process in R~ of DG type. A solution p (q, t) of (4. 7) which
corresponds to the initial condition p (so x, for the relativistic process
is also a solution of the Markov process in R4 with initial condition

p (q, so), provided that two initial conditions p (so x, and p (q, so) are
compatible. Therefore the one time probability density coincides for both
processes but probability involving more times are in general different.
Moreover it comes out from (4.6), as expected, that the velocity field
v = ( 1 /2) (b + b*) is the same in both cases. For what concerns the action,
our Lagrangian and the one of DG are different but their mean values
coincide. Finally we note that the covariance properties of the theory in
the DG scheme are obtained by introducing a class of Brownian metrics
labelled by the field u and considering the corresponding Markov pro-
cesses. In our approach on the contrary the covariance emerges from the
manifestly covariant structure of continuity equation, mean derivatives
and all the other quantities which characterize the process.
As last remark we point out that if we write down the velocity fields in

terms of the wave function the mean stochastic Lagrangian differs from
the quantum relativistic one by a constant
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