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CS-814 73 Bratislava, Czechoslovakia

ABSTRACT. — Relations between vector-valued measures and Hilbert
space representations of quantum logics are studied. It is shown that a
sum logic admits a faithful Hilbert space representation if and only if
Segal product defined on bounded observables of the.logic is distributive.

REsuME. — Les relations entre les mesures aux valeurs dans un espace
d’Hilbert et les représentations des logiques quantiques dans un espace
d’Hilbert sont étudié. Il est montreé, qu’une logique ou pour tous les deux
observables bornées leur somme existe, prend une représentation fidéle
dans lespace d’Hilbert si et seulement si le produit de Segal sur les
observables bornées de la logique est distributif.

INTRODUCTION

Vector-valued measures on quantum logics have been studied by several
authors, e. g. [7], [14], [16], [19], [12], [13). In [16], there has been proved
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84 S. PULMANNOVA AND A. DVURECENSKIJ

that if there exists a vector-valued measure § on a quantum logic L with
values in a Hilbert space H, then there is a logic morphism ® from L into
the logic L (H) of all orthogonal projections on H and a vector v.eH
such that § (a)=® (a) v, for all aeL. In [7], there has been proved that a
sum logic with distributive Segal product admits a rich family of vector-
valued measures. These two facts are used in the present paper to prove
that a sum logic admits a faithful lattice c-morphism into a Hilbert space
logic L (H) if and only if Segal product defined on bounded observables
of the logic is distributive. In analogy with representations of C*-algebras
we call a morphisms from a quantum logic L into a Hilbert space logic
L (H) a representation of L in H. We show that any representation of a
sum logic can be extended to a representation of observables by self-
adjoint operators which preserves sums and Segal products of bounded
observables. We also show that the existence of joint distribution of type 1
for a finite set of bounded observables on a sum logic with distributive
Segal product implies the existence of joint distribution of type 2 for these
observables in a given state m on L, and the latter joint distribution is
identical with the joint distribution of type 1.

1. BASIC FACTS ABOUT LOGICS

A (quantum) logic L is a partially ordered set with 0 and 1 and with

orthocomplementation ’: L — L such that
() (@) =a,

(i) asb=b"=<d,

(i) ava'=1,ana =0,

(iv) asb'=avbexistsin L,

(v) asb=b=av (a' Ab) (orthomodularity).

Elements a, be L are orthogonal (written alb) if a<b’. A logic L is a
o-logic if v g; exists in L for every sequence (g;); .y of pairwise orthog-

ieN
onal elements of L.

A measure on L is a map m:L — <0, o0) such that m (0)=0 and
m (avb)=m (a)+m (b) for any a, beL, alb. A measure m on L is o-
additive (or a o-measure) if m ( v @)= Y. m (a;) for any sequence (a;); . n

ieN ieN
of pairwise orthogonal elements of L such that v g; exists in L.
ieN

A measure m on L is faithful if m (¢)=0 implies =0, and a measure
m is a state if m (1)=1.

Let L,, L, be logics. A map ®:L, — L, is a morphism if

@ e M=1,
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QUANTUM LOGICS. VECTOR-VALUED MEASURES 85

(i) a,beL,alb=® (a) LD (b) and ® (aVv b)=D (a) v ® (). A morph-
ism®:L; - L,isac-morphismif® (v a)= v ® (g, for any sequence
ieN ieN
(@); cn of mutually orthogonal elements of L, such that v a; exists. A
ieN
morphism ®:L, - L, is a lattice morphism if ® (avb)=® (a)v ® (b)
(® (anb)=d (a) A D (b)) for every a, beL, such that av b (anb) exists
inL,.

A subset A of a logic L is a compatible subset if there is a Boolean
subalgebra B of L such that AcB. A two-element set {a, b} is compatible
(or g and b are compatible, written a < b) iff there are a,, b,, ce L pairwise
orthogonal and such that a=a, ve, b=b, vc. (We note that a, =an b,
by=a Ab, c=anb). If L is a lattice then a subset A of L is compatible
iff a b for every a, beA.

Let L be a c-logic. An observable on L is a o-morphism x:B (R) - L,
where B (R) is the o-algebra of Borel subsets of the real line R. If x is an
observable and f: R — R is a Borel function, then x.f~ ! is also an observa-
ble. If x is an observable and m is a oc-additive state on L, then
m.:B (R)— (0, 1), m, (E)=m (x (E)) is a probability measure on B (R),
which is called the probability distribution of the observable x in the
state m. The expectation of x in m is then given by

m (x)= j tm (d),
R

if the integral exists. An observable x is bounded if there is a compact
subset EcR such that x (E)=1. If x is bounded then m (x) is finite for
every state m on L.

A set {x;|iel} of observables on L is compatible if | x; (B (R)) is a

iel

compatible set. We note that the range x (B (R)) of an observable x is a
Boolean sub-c-algebra of L. If x;, x,, . . ., x, are compatible observables
on L, then there is an observable u and Borel functions f, . . ., f, such
that x;=u.f; !, i<n.

Let L be a o-logic and let S be a set of c-additive states on L. We
shall say that S is strongly ordering if for any a, beL, a£b there is meS
such that m (@)=1, m (b) #1.

Let L be a o-logic and let the set % (L) of all o-additive states on L
be strongly ordering. We shall say that L is a sum logic if for any two
bounded observables x, y on L there is a unique bounded observable z
such that m (x)+m (yY)=m (z) for every me % (L). The observable z is
called the sum of x and y and we write z=x+y. If x and y are bounded
observables on a sum logic, then

xop= % (e 3)2 = (x— 3)7]

Vol. 53, n® 1-1990.



86 S. PULMANNOVA AND A. DVURECENSKIJ

defines Segal product of x and y. Segal product is distributive if for any
bounded observables x, y, z we have (x+y)ez=x°y+xez.

We note that a sum logic is always a lattice and (g,+¢,) {2}=anb
for any a, beL, where ¢, denotes the (unique) observable such that
q.{1}=d ¢, {0}=d.

For more details about quantum logics see ([2], [11], [21]). Sum logics
have been introduced and studied in [11], where they are called logics
with Uniqueness and Existence properties. Due to Christensen-Yeadon-
Paszkiewicz-Matveichuk theorem ([5], [22], [20], [18]), there is a rich class
of W*-algebras whose projection logics are sum logics with distributive
Segal product.

2. VECTOR-VALUED MEASURES ON QUANTUM LOGICS

Let H be a Hilbert space (real or complex). An H-valued measure on a
logic L is a map &:L — H such that a, beL, alb=(§ (a), & (b))=0 and
E(avb)=& (a)+E& (b). An H-valued measure & on L is o-additive if for
any sequence (g@;);.n Of pairwise orthogonal elements of L such that

v a; exists in L we have & (v a)= ) & (a;), where the series on the
ieN ieN ieN

right converges in norm in H. If £:L — H is an H-valued measure, then
the map a— ||& (a)|* is a measure on L which is c-additive iff § is o-
additive. We shall say that £ is an H-valued state if a— ||& (@] is a
state. The problem of existence of H-valued (o-) states on a logic is not
trivial in general, since the existence of such state entails the existence of
a state on L. It is well-known that there are logics with no states, and
hence no H-valued states [10]. The quotient algebra B (R)/I of the Borel
algebra B (R) with respect to the o-ideal I of all subsets of the first
category is an example of a logic with no o-states [3], hence no H-valued
o-states. But there exist finitely additive states on B (R)/I, and to every
finitely additive state m, the function K,, (a, b)=m (anb), a, beB (R)/I
is positive definite, which implies the existence of an H-valued state & such
that m (a)=||& (@) ||>, ae B (R)/I (see [17], [7]).

Another example of a logic possessing no c-additive H-valued state, is
the logic E (V) of all splitting subspaces of an incomplete inner-product
space V of N,-orthogonal dimension (we recall that a subspace MV is
splitting if M+M’=YV), since V is complete iff E (V) possesses at least
one o-state (see [9]). On the other hand, there exist many finitely additive
H-valued states. Indeed, let H=V, where V is the completion of V and
for any xeV, ||x||=1, define an H-valued mapping &,:E (V) > H via
£ (M)=2xy, MeE (V), where x=xy+xyL, Xy€M, xyr€M*. Then &, is
an H-valued state on L.

Annales de I'Institut Henri Poincaré - Physique théorique



QUANTUM LOGICS, VECTOR-VALUED MEASURES 87

In [13], an example of a finite logic is constructed, which possesses
ordinary states, but does not have any H-valued state in any Hilbert
space H.

The following principal criterion has been proved in [7]. Here we present
its more compact form.

THEOREM 2.1. — Let L be a (o-) logic and m be a (c-) measure on L.
Then there is a Hilbert space H and an H-valued (c-) measure & on L such
that || & (a)||*=m (a), a€L, if and anly if there is a map K,,:LxL - C
(or R) such that

@) K,, (@, b)=m(anb) ifa—b,

() Y oK, (g, a)=20 for all o,eC (or o,eR), gel, i<n,

i, j=n

K, (a, b))=K,, (b, a) in the real case.

Proof. — If & exists, we put K, (a, b)=( (@), & (b)). If K with
properties (i) and (ii) is given, the proof follows by a well-known theorem
(see e. g. [17], p. 489) using the same ideas as in [7].

We note that if an H-valued state on a logic L exists, then there exists
an H-valued state in an infinite dimensional, real Hilbert space. Indeed,
due to (i), (ii) in the above theorem, there is a probability space (Q, &, P)
and a Gaussian process {& (a)|aeL}cZ, (Q, &, P) such that
K (a, b)=(§ (a), & (b)) is the covariance function, and H=2%, (Q, &, P)
is that. Moreover, if K is a covariance function, then the real part of K is
also a covariance function (see [17]), hence we may choose a real H.

Two H-valued measures &, n on L are said to be biorthogonal if for
every a, beL, alb we have (§ (a), n (b))=0. Following statement is
straightforward.

LemMmA 2.2. — Let &, n be H-valued measures on L. Following conditions
are equivalent:

(i) &, n are biorthogonal,

(ii) for every o, BeC (or a, Be R if H is real) the map a — of (a)+ pn (a)
from L into H is an H-valued measure.

A family 4" of H-valued measures on L is said to be biorthogonal if
every two measures &, ne.4" are biorthogonal. A biorthogonal family 4
is a maximal biorthogonal family if every H-valued measure on L, which
is biorthogonal to every member of .4, necessarily belongs to .#". By
Lemma 2.4, every maximal biorthogonal family is a linear space over C
(or over R). Clearly, every biorthogonal family is contained in a maximal
one.

Following theorem shows that the family of all H-valued measures on
L (and also every maximal biorthogonal family) is sequentially closed.

Vol. 53, n° 1-1990.



88 S. PULMANNOVA AND A. DVURECENSKIJ

THeoreM 2.3 (Nikodym theorem). — Let L be a o-logic and let E,,
neN be H-valued o-measures on L. If for any a€L there is & (a)=lim &, (a)
(.e. ||&, (@—E (a)|| = 0), then & is an H-valued measure on L.

Proof. — Let & (@)=lim §, (a). If alb, then
€ (@, & (B)=1lim , (@), &, (6))=0

E(avb)=lim g, (avb)=lim &, (a)+1lim &, (b)=¢& (a)+E& (D).
We claim to show & (a)= ), & (a) if a;Lla;, i#j, and a= v a, The

ieN ieN
functions m (b)=||& ) ||, m, (B)=||&, ®)|*, beL, are additive and o-
additive measures on L. Moreover, for any beL,

|m (B)—m, ®)|=|[|&, ®) [P=[1& @) [=|& B |- [IE®)]].
16, @) [|+]1& @)= & B)—E B)||.K =0,

and

where
K=sup {m, (1), m (1) [neN} < c0.
Hence, by [6], m (@)= ), m (a;). Therefore,
ieN

1€ @— % E..(a,-)||2=||§(a/\(.\</ a))|P=m@n(v a))

i<n i<n

=m@-Y, m(a)~0,

hence & (@)=Y, & (a).
ieN

We note that if £,, neN belong to a maximal orthogonal family .4,
then & also belongs to 4. Indeed, if alb, then for any ne ", (€ (@),
n (B)=lim (, (@), n (6))=0.

Following theorem has been proved in [16] for lattice logics and complex
Hilbert spaces, but the method of the proof can be applied to logics which
are not necessarily lattices and real Hilbert spaces as well.

THEOREM 2.4. — Let L be a logic and let H be a Hilbert space (real or
complex). Let N be a maximal biorthogonal family of H-valed measures on
L. For every acL put & (a)={§ (a)|E€AN"}. Then following statements
hold.

(i) For every aeL, A (a) is a closed linear subspace of H.

(i) For every a, bel, alb, we have N (@)L AN (b) and
N (@avb)y=HN (@v AN (b), i.e. ®(avb)=® (a)+D (b), where © (a)
denotes the projection on A" (a). If, in addition, all the measures in N~ are
o-additive, then for every sequence (a;); . of mutually orthogonal elements
of L such that v a; exists in L we have ® (v a)= Y. @ (a;), where the

ieN ieN ieN
sum converges in the strong operator topology on H.

Annales de I'Institut Henri Poincaré - Physique théorique



QUANTUM LOGICS, VECTOR-VALUED MEASURES 89

(iv) For every e AN'there is a vector v, €H such that § (a)=® (a) v,
aeL.

CoROLLARY 2.5. — Let & be an H-valued measure on L. Then there is a
closed subspace H, of H, a morphism ® from L into L (H,) and a vector
v, €Hy such that € (a)=® (a) v, for every acL. If, in addition, L is a
o-logic and § is c-additive, then ® is a G-morphism.

Proof. — The measure & is contained in at least one maximal biortho-
gonal family of H-valued measures on L, so that we can apply
Theorem 2.4. We put Hy=.4" (1). Then H, is a closed subspace of H.
From @@ &/ ()=® () (N (@)v AN (@)=® (a) ¥/ (@) we get
A(a@)= AN (1)=H, for every acL, and ® (a)+ ® (a')=® (1), ® (a) LD (a')
imply that @ (a')=® (a)’ A® (1). Hence ® is a morphism from L into
L (Ho). Forevery aeL, @ (a) £ (1)=® (a) (€ (@) +§& (¢)=E (@)= (a) v,
hence we may put v, =¢ (1)e H,.

Following example shows that the morphism ® need not be a lattice
morphism. Let L=MO (3) be “Chinese lanterne” ( Fig.). Let H=R? and

1

0

let {x,y, 2z} be an orthogonal base in H. For every = (o, B, y)eR3
define &, (@)=ox, & (0)=Py, & ()=v2& (@)=By+yzE (b)=ax+yz
E ()=ax+Py, & (0)=0, & (D=ax+Py+yz It is easy to check that
A ={&,|teR?} is a biothogonal family of H-valued measures on L. Now
let { be an H-valued measure on L which is biorthogonal to all members
of A". Then { (a)L&, (a') for all teR? implies that € (@)=0a,; x for some
oy €R. Similarly, { (b)=8,y, { (¢)=7,z for some Bi» Y:€R. Further,
€ (a') LE, (a) for every ¢ implies that { (a')= B,y+7v,z, and analogically
%(b’) =y x+v;2, {(¢)=ayx+PB;y for some a,, B, v,, a3, Bs, v3€R.
rom

CM=C(@+L(@)=CB)+L B)=L ()+L (¢)
we obtain
001x+B2y+'Y22=0£2x+B1y+'Y32=063X+[33y+'Y12,

and independence of x, y, z entails o, =a, =03, Bi=PB=PBs Y1=7,=7s.
Hence {e /', i.e. A" is a maximal biorthogonal family. Now A" (@) =[x],

Vol. 53, n° 1-1990.



90 S. PULMANNOVA AND A. DVURECENSKIJ

N O)=Dl, N ()=[z], & (@)=, 2], & ®)=[x,z], & ()=I[x, )]
A" (1)=H, where [u, v, . . .] denotes the linear subspace of H generated by
the vectors u, v, ... in H. But & (avb)=A4& (D)£AN (@) v AN (b)=[x, )]

3. REPRESENTATIONS OF QUANTUM LOGICS

In analogy with representations of C*-algebras, we shall call every (c-
) morphism from a (o-) logic into a Hilbert space logic L (H) a (o-
) representation of L in H. We shall say that a representation ® of L in
H is faithful if ® (¢)=0 implies a=0. If L is a lattice logic and @ is a
faithful lattice representation, then ® is one-to-one.

Let ®; be representations of L in H,, iel. Put H= ® H,, o=@ @,

iel iel
@ (a)=(D;(a)); ;- Then clearly, ® is a representation of L in H, which is
the direct sum of the representations ®@,, iel.

Let m be a measure on L. If there is a representation ® of L in a
Hilbert space H such that m(a)=||®(a)v||?, aeL, for a vector veH, we
shall call ® the representation associated with the measure m. Clearly, a
representation ®@ associated with a measure m is a c-representation iff m
is o-additive, and if m is faithful, then also @ is faithful.

LEMMA 3.1. — Let @ be a representation of a logic L in a Hilbert space
H. Then

() a,bel,acb=>0a@ A b)=0@)PB)=0B)P(@)=D(a) A ®(b). In
particular, if B is a Boolean subalgebra of L, then ®(B) is a Boolean
subalgebra of L (H),

(ii) for every state m on L (H) there is a state m“ on L such that
m* (a)=m (® (a)), acL.

If ® is a o-representation of a c-logic L, then

(iii) to every observable x on L there is a self-adjoint operator @ (x)
on H with the spectral measure E—®(x)(E)=®(x(E)), EeB (R).
If x is an observable and f:R—>R is a Borel function, then
O(x.f H=0(x).f '=f(®(x)). In particular, if x and y are compatible
observable on L, then ®(x) and ® (y) commute and ® (x+y)=® (x)+D(y),
®(x.y)=®(x).D(y), where the operations + and . are defined by the
functional calculus for compatible observables on L, resp. on L (H).

Proof of the lemma is standard and we omit it.

THEOREM 3.2. — Let L be a o-logic, & (L) be the set of all c-additive
states on L and let (L, & (L)) be a sum logic. Then there is a faithful lattice
o-representation of L in a (real) Hilbert space H iff Segal product on
bounded observables on L is distributive.

Annales de I'Institut Henri Poincaré - Physique théorique
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Proof. — Let (L, & (L)) be a sum logic with distributive Segal product.
Let me % (L) and put K, (a, b)=m(q,°q,), a, be L. Due to distributivity
of Segal product, K, (a, b) satisfies the conditions of Theorem 2. 1. Indeed,
let (o;);<, = R. We have

Z Q; aj Km (ai’ aj) = Z Q; (ij (qai ° qai) =m (( Z Q; qa;)z) g 0 (See [7])
i,j<n i, j<n iZn
Therefore, there is a (real) Hilbert space H,, and a o-additive H,-valued
state £,,: L — H,, such that K, (a,b)=(§, (@), £, (b)) for any a, beL. By
Theorem 2.4, there is a 6-morphism ®,,:L —» L(H?), H eL(H,,), and a
vector v, € HY, such that m(a)=||®(a)v,||* for every aeL. Without any
loss of generality we may assume that H,,= HS. Now construct the direct
sum ®=@ {®,|me ¥ (L)}. Since & (L) is strong, ® is a faithful represen-
tation of L in H=@® H,,. By Lemma 3.1, to every observable x on L,

there corresponds a s. a. operator ®(x) on H. Let x, y be bounded
observables on L. Then @ (x), ®(y) are bounded. Let veH, ||v||=1, and
let s, be the corresponding state on L (H). From

5,(@(x+y)(E)=s;((x+»)(E)), EeB(R),
we obtain
5, (@ (x+y)) =5, (x+p)=5; () +5;0) =5, (@ (x)) +5, (@),

as st e & (L). Therefore (® (x+y) v, v)=((® (x)+ @ (»)) v, v) for every ve H,
and hence ®(x+y)=®(x)+®(y). As ®(x.f H=D(x).f~, we have
® (x?)=® (x)%. This entails that ® preserves sums and Segal products of
bounded observables. Let a, beL, then (g,%¢){2}=anrb
implies ®((q,+¢,){2})=®(anb). On the other hand, g¢,=q?
and ®(g?)=®(q,)* imply that ®(q,) is a projection, and we have
®(q,){1}=®(g,{1})=>(a). Therefore

P((q.+9){2})=P (gt ) {2} =(@(9)+ (,)) {2} =D (a) A D (D).
Hence ®(a A b)=®(a) A ©(b), i. e. @ is a lattice morphism.

Now suppose that (L, (L)) is a sum logic which admits a faithful
o-representation in a Hilbert space H. Similarly as in the first part of this
proof, we show that ®(x+y)=®(x)+®(y) and ®(x?)=®(x)? for any
bounded observables x, y on L, so that @ preserves sums and Segal
products, and ® preserves lattice operations. Let x, y, z be bounded
observables on L. We have

O(x+y)ez—(x°z+y2)]=(@(x)+ P (1)@ (2)
—(@X)P(2)+P(y) P (2))=0,
and as @ is faithful, this entails that (x+y)cz=x°z+y°z.
CoROLLARY 3.3. — Let (L, ¥ (L)) be a sum logic. Then every c-represen-

tation of L in a Hilbert space H is a lattice representation. In addition, the

Vol. 53, n° 1-1990.



92 S. PULMANNOVA AND A. DVURECENSKIJ

extension of the representation to bounded observables on L preserves sums
and Segal products.

Proof. — It follows immediately from the proof of Theorem 3.2.

THEOREM 3.4. — Let (L, % (L)) be a sum logic and let H be a Hilbert
space. Let me & (L) and let there be an H-valued state § on L such that
m(a)=|&(a)||>, aeL. Then ReK,, (a,b)=m(q,°qs), a, beL.

Proof. — By Corollary 2.5 and Corollary 3.3, to any bounded observa-
bles x, y on L there correspond bounded self-adjoint operators @ (x), @ (»)
on H and ®(x°y)=®(x)°®(y), @(x+y)=0(x)+ @ (y). We have

K, (a,b)=(£(a), £ (0))=(® (a) v, @ (D) v) = (D (b) P (@) v, V)
= (D (gp) @ (9a) Ve, v2) = (P (4,) P (g) 05, v) =K (b, @)

On the other hand,
m(q,° qp) = (@ (q,) ° P (gy) vz, v)
1
= ( E(d) (9,) @ (9) + @ (q,) P (90)) vz vg> =ReK,,(a,b).

We note that the result obtained by Hambhalter in [12] that every
o-additive state on a projection logic L () of a W*-algebra U without
any type I, direct summand on a Hilbert space H with dimH=o00 can
be represented by an H-valued state (with values in the same Hilbert
space H), follows directly from our criterion in Theorem 2.1
for K,(P, Q=mPQ)=Tr(TPQ), me¥ (L), P, QeL(l), where
T=Y ¢/(.,e) e;. It suffices to put &(P)=EP c/? Pe;. Nevertheless, the

method of proof he used is very interesting.

TueOREM 3.5. — Let (L, & (L)) be a sum logic and let me & (L).

(i) There is an H-valued state & on L such that m(a)=|&(a)|]?, a€L,
iff m((x+y)ez—(x°z+y°2))*)=0 for any three bounded observables
x,y,zonL.

(i) If se & (L), s < m [in the sense that m(a)=0=>s(a)=0, aeL] and if
there is an H-valued state & such that m(a)=|&(a)|*, acL, then there is
an H-valued state n on L such that s(a)=||n(a)|*, acL.

Proof. — (i) Let m(a)=||&(a)||*>, a€L, and let & (a)=® (a) v. Then

m([(x+y)ez—(x°z+y-2)*)
= (@ (x)+ P (1)) @ (2) — (@ (x)° @ () + @ (3) * @ (] ||*=0.

On the other hand, if the above condition is satisfied, Schwarz inequality
implies that m[(x+y)°z—(x°z+y°2)]=0 for any x, y, z, and it is easy
to check that K, (a,b)=m(g,°q,) satisfies conditions (i)-(ii) of
Theorem 2.1, and hence m is representable by an H-valued state &.

(i) follows directly from (i).
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Our next remark concerns some relations between H-valued states and
representations of C*-algebras.

Let (L, # (L)) be a sum logic such that L is a projection logic of a
C*-algebra U (e.g. L is a projection logic of a W*-algebra of operators
acting on a complex separable Hilbert space H with no I,-factor as direct
summand, see [5], [18], [20], [22]). Then, by GNS-construction, to every
state se % (L), there is a cyclic representation m; of U on a Hilbert space
H,, and a unit cyclic vector v, for m, such that s(A)=(n(A)v,,v,) (Ael)
(see [15], p. 278, [4], p. 64). If aeL, n(a) is a projection on H and hence
s(a)=||m (@) vy|>. If we put n(a)=n(a)v, then it is easy to check that
a—-mn(a)v, ael, is an H -valued o-additive state on L.

We note that, using the results in [1], similar results may be obtained
for suitable types of JB-algebras.

On the other hand, let £:L — H be a o-additive H-valued state on L
such that s(a)=||&(a)||* for some state se ¥ (L). Then there is a lattice
o-morphism ®,: L — L (H) such that & (a)=®,(a) v, aeL, for some unit
vector v,eH and ®, can be extended to a linear and Segal product
preserving map from bounded observables on L (i. e. Hermitian elements
of ) into the algebra B (H) of bounded operators on H. This map @,
can be in a natural way extended to a linear Jordan morphism @, from
into B (H) (see also [16]). By [4], 3.2.2, p. 17), every Jordan morphism is
a combination of a morphism and antimorphism. In case that ®, is a
morphism, we put H,={®(A)v,|Ael}~ (where M~ means the closure
of M, M c H, in H). Then since H, is invariant, the map A — P, ®,(A),
A€elU, where P, is the projection in H onto H,, is a cyclic representation
of U in H, such that

s(A)= (Pg (_I_)g (A) Vs Ug) = (q)g (A) Vs vg),
£(a) =P, @ (a) v, =D, (a) v;.

By [15], Prop. 4.5.3, this cyclic representation (H;, P, ®,, v) is isomorphic
to the cyclic representation (H,, m,v,) produced from s by the GNS
construction, in the sense that there is an isomorphism from H; onto H,
such that v, =U v, P, ®,(A)=Umr,(A) U*(Ael).

Our next results concerns joint distributions of observables. Recall that
observables x;,x,, . ..,x, on a logic L have a joint distribution of type 1
in a state m if there is a probability measure p, on B (R") such that

P (EXEx ... xE)=m(x,(E)) A ... A x,(E,))

for any E,, ..., E,eB(R"), and bounded observables x,, . . ., x, on a sum
logic have a joint distribution of type 2 in a state m if there is a measure
u, on B(R") such that

Ro{(tys ..., 1)eR" Y at,€eE=m(( Y o x)(E)

i<n i<n
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for any o, .. .,a,eR and EeB (R) (see [8]).

Tueorem 3.7. — Let (L, ¥ (L)) be a sum logic. Let me ¥ (L) and let
there be an H-valued state §: L — H such that m(a)=||&(a) ||*, aeL. If for
a given set xy, . . ., x, of bounded observables joint distribution of type 1 in
the state m exists, then there exists also joint distribution of type 2, and the
two joint distributions are identical.

Proof. — Let us define so-called commutator ¢ of x,, . . ., x, by

1 n
c= A % A x;(Epi
E{ ...Ep iy ...ip=0 j=0
where a'=a, a®=a’, acL. It is known that ¢ exists and that Xiy oo oy Xy

have a type 1 joint distribution in m iff m(c)=1 (see [8]). But m(c)=1
implies ||&(c)||*=||®(c) v ||*=1, hence ®(c)v;=v,. Since ®:L » L (H) is
a lattice o-morphism, we obtain that ®(c) is the commutator of
®(x,),...,P(x,), and hence the latter observables have a type 1 joint
distribution in the vector state m,, on L (H) corresponding to v,. Now by
[8], type 2 joint distribution of @ (x,), . . ., ®(x,) in m,, exists and is equal
to the type 1 joint distribution. Let aj, . . .,a e R, Ee B (R). Then

mx(E) Ao Ax (E)N=(@(x (B A ..o A X, (E)) v, v)
=(@x)E) A ... AB(x,) (E,) v, v)
=m, (®(x)(E)) A ... A D(x,)(E)),
m((z o X;) (E))=((I)(Z o; x;) (E) vg, vp)

: T (w0 B 1) = (T 4@ () B,

isn isn

The latter equalities show that there is a type 2 joint distribution of
Xy, . . ., X, in m, which equals to the type 1 joint distribution.
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