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Quantum logics, vector-valued measures
and representations
Annales de l’I. H. P., section A, tome 53, no 1 (1990), p. 83-95
<http://www.numdam.org/item?id=AIHPA_1990__53_1_83_0>

© Gauthier-Villars, 1990, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1990__53_1_83_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


83

Quantum logics, vector-valued measures and

representations

Sylvia PULMANNOVÁ Anatolij DVURE010CENSKIJ (1)
Mathematics Institute, Slovak Academy of Sciences,

CS-81473 Bratislava, Czechoslovakia

Ann. Inst. Henri Poincaré,

Vol. 53, n° 1, 1990, Physique théorique

ABSTRACT. - Relations between vector-valued measures and Hilbert

space representations of quantum logics are studied. It is shown that a
sum logic admits a faithful Hilbert space representation if and only if

Segal product defined on bounded observables of the,logic is distributive.

Les relations entre les mesures aux valeurs dans un espace
d’Hilbert et les representations des logiques quantiques dans un espace
d’Hilbert sont étudié. Il est montré, qu’une logique ou pour tous les deux
observables bornees leur somme existe, prend une representation fidèle
dans l’espace d’Hilbert si et seulement si le produit de Segal sur les
observables bornees de la logique est distributif.

INTRODUCTION

Vector-valued measures on quantum logics have been studied by several
authors, e. g. [7], [14], [16], [19], [12], [13]. In [16], there has been proved
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84 S. PULMANNOVA AND A. DVURECENSKIJ

that if there exists a vector-valued measure ~ on a quantum logic L with
values in a Hilbert space H, then there is a logic morphism C from L into
the logic L (H) of all orthogonal projections on H and a vector ~ E H
such that ~ (~)=0 (a) vI; for all a E L. In [7], there has been proved that a
sum logic with distributive Segal product admits a rich family of vector-
valued measures. These two facts are used in the present paper to prove
that a sum logic admits a faithful lattice a-morphism into a Hilbert space
logic L (H) if and only if Segal product defined on bounded observables
of the logic is distributive. In analogy with representations of C*-algebras
we call a morphisms from a quantum logic L into a Hilbert space logic
L (H) a representation of L in H. We show that any representation of a
sum logic can be extended to a representation of observables by self-
adjoint operators which preserves sums and Segal products of bounded
observables. We also show that the existence of joint distribution of type 1
for a finite set of bounded observables on a sum logic with distributive
Segal product implies the existence of joint distribution of type 2 for these
observables in a given state m on L, and the latter joint distribution is
identical with the joint distribution of type 1.

1. BASIC FACTS ABOUT LOGICS

A (quantum) logic L is a partially ordered set with 0 and 1 and with

orthocomplementation ’ : L -~ L such that
(i) (a’)’ = a,

(ii) a  b ~ b’ _ a’,
(iii) a v a’ = 1, ~ A a’ = 0,
(iv) a _ b’ =;. a v b exists in L,

A b) (orthomodularity).
Elements a, b e L are orthogonal (written a-Lb) if a _ b’. A logic L is a

a-logic if v ai exists in L for every sequence (aJi e N of pairwise orthog-
t ~ N

onal elements of L.
A measure on L is a map m : L - 0, CfJ) such that m (0)=0 and

m (a v b) = m (a) + m (b) for any a, b e L, aLb. A measure m on L is a-
additive (or a a-measure) if m ( v (ai) for any sequence 

i e N i e N

of pairwise orthogonal elements of L such that v ai exists in L.
i e N

A measure m on L is faithful if m (a) = 0 implies a = 0, and a measure
m is a state if m (1) =1.

Let L1, L2 be logics. A L1  L2 is a morphism if
(i) 4Y (1) =1,

Annales de l’lnstitut Henri Poincaré - Physique théorique



85QUANTUM LOGICS. VECTOR-VALUED MEASURES

(ii) a, (b) and 03A6 (a v b) = 03A6 (a) v I&#x3E; (b). A morph-
L2 is a a-morphism if I&#x3E; ( v ai) = (ai) for any sequence

i e N i e N

(ai)i e N of mutually orthogonal elements of Ll such that v ai exists. A
i e N

morphism 03A6:L1~L2 is a lattice morphism if 

(D (a n b) _ ~ (b)) for every a, bELl 1 such that a v b exists
in L1.
A subset A of a logic L is a compatible subset if there is a Boolean

subalgebra B of L such that A c B. A two-element set { a, b ~ is compatible
(or a and b are compatible, written iff there are al, bl, C E L pairwise
orthogonal and such that a = al v c, b = bi v c. (We note that 

If L is a lattice then a subset A of L is compatible
for every a, b E A.

Let L be a a-logic. An observable on L is a a-morphism x : B (R) - L,
where B (R) is the 6-algebra of Borel subsets of the real line R. If x is an
observable and f : R -~ R is a Borel function, then x .. f ‘ 1 is also an observa-
ble. If x is an observable and m is a a-additive state on L, then
mx : B (R) ~  0, 1’), mx (E) = m (x (E)) is a probability measure on B (R),
which is called the probability distribution of the observable x in the
state m. The expectation of x in m is then given by

if the integral exists. An observable x is bounded if there is a compact
subset E c R such that x (E) =1. If x is bounded then m (x) is finite for
every state m on L.
A of observables on L is compatible if u xi (B (R)) is a

i E I

compatible set. We note that the range x (B (R)) of an observable x is a
Boolean sub-a-algebra of L. If xl, x2, ..., Xn are compatible observables
on L, then there is an observable u and Borel functions fl, ... , f’n such

Let L be a a-logic and let S be a set of a-additive states on L. We
shall say that S is strongly ordering if for any a, b E L, there is m E S
such that m (a) =1, m (b) ~ 1.

Let L be a a-logic and let the set i7 (L) of all a-additive states on L
be strongly ordering. We shall say that L is a sum logic if for any two
bounded observables x, y on L there is a unique bounded observable z
such that m (x) + m (y) = m (z) for every (L). The observable z is
called the sum of x and y and we write z = x + y. If x and y are bounded
observables on a sum logic, then

Vol. 53, n° 1-1990.



86 S. PULMANNOVÁ AND A. DVURECENSKIJ

defines Segal product of x and y. Segal product is distributive if for any
bounded observables x, y, z we have 
We note that a sum logic is always a lattice and (~~~) {2}=~A&#x26;

for any a, beL, where qd denotes the (unique) observable such that
~{1}=~{0}=~.
For more details about quantum logics see ([2], [11], [21]). Sum logics

have been introduced and studied in [1 1], where they are called logics
with Uniqueness and Existence properties. Due to Christensen-Yeadon-
Paszkiewicz-Matveichuk theorem ([5], [22], [20], [18]), there is a rich class
of W*-algebras whose projection logics are sum logics with distributive
Segal product.

2. VECTOR-VALUED MEASURES ON QUANTUM LOGICS

Let H be a Hilbert space (real or complex). An H-valued measure on a
logic L is a map ~: L -~ H such that a, b E L, ~L~ =&#x3E; (~ (~), ~ {b)) = 0 and
ç (xv~)=~ (a) + ~ (b). An H-valued measure on L is a-additive if for
any sequence pairwise orthogonal elements of L such that

v ai exists in L we have ç ( v a~) _ ~ ~ (a;), where the series on the
ieN t~N teN

right converges in norm in H. If ~ : L ~ H is an H-valued measure, then
the map a -&#x3E; ~ ~ ~ (a), ~ ~ is a measure on L which is a-additive iff ç is a-

additive. We shall say that ç is an H-valued state if a --~ ~ ~ ~ (a) ~ ~ 2 is a

state. The problem of existence of H-valued (a-) states on a logic is not
trivial in general, since the existence of such state entails the existence of
a state on L. It is well-known that there are logics with no states, and
hence no H-valued states [10]. The quotient algebra B (R)/I of the Borel
algebra B (R) with respect to the a-ideal I of all subsets of the first

category is an example of a logic with no a-states [3], hence no H-valued
~-states. But there exist finitely additive states on B (R)/I, and to every
finitely additive state m, the function Km (a, b) = m (a n b), a, bE B (R)/I
is positive definite, which implies the existence of an H-valued state ç such
that m (a) _ ~ j ~ (a) 112, a E B (R)/I (see [ 17], [7]).

Another example of a logic possessing no a-additive H-valued state, is
the logic E (V) of all splitting subspaces of an incomplete inner-product
space V of A0-orthogonal dimension (we recall that a subspace M~V is
splitting if M + 1VI’ = V), since V is complete iff E (V) possesses at least
one a-state (see [9]). On the other hand, there exist many finitely additive
H-valued states. Indeed, let H=V, where V is the completion of V and
for any define an H-valued mapping ~:E(V)-~H via
03BEx(M)=xM, MeE (V), where xM E M, xM| E M 1.. Then 03BEx is

an H-valued state on L.

Annales de l’Institut Henri Poincaré - Physique théorique



87QUANTUM LOGICS, VECTOR-VALUED MEASURES

In [13], an example of a finite logic is constructed, which possesses
ordinary states, but does not have any H-valued state in any Hilbert

space H.

The following principal criterion has been proved in [7]. Here we present
its more compact form.

THEOREM 2. 1. - Let L be a (a-) logic and m be a (7-) measure on L.
Then there is a Hilbert space H and an H-valued (0"-) measure ~ on L such

(a) I I2 = m (a), a E L, if and anly if there is a map Km : L x L -~ C
(or R) such that

(i) Km (a, b) = m 
(ii) L ai a J K~ (a;, ~) ~ 0 for all a; E C (or a; E R), aI E L, i - n,

i, jn

Km (a, b) = Krn (b, a) in the real case.

Proof. - If ç exists, we put K~(~)=(~), ~(~)). If K with

properties (i) and (ii) is given, the proof follows by a well-known theorem
(see e. g. [17], p. 489) using the same ideas as in [7].
We note that if an H-valued state on a logic L exists, then there exists

an H-valued state in an infinite dimensional, real Hilbert space. Indeed,
due to (i), (ii) in the above theorem, there is a probability space (Q, ~, P)
and a Gaussian process ( § P) such that
K (a, b) _ (~ (~), ~ (b)) is the covariance function, and (n, !/, P)
is that. Moreover, if K is a covariance function, then the real part of K is
also a covariance function (see [17]), hence we may choose a real H.
Two H-valued measures ç, 11 on L are said to be biorthogonal if for

every a, bEL, alb we have (~ (a), ~ (b))=0. Following statement is
straightforward.

LEMMA 2 . 2. - Let !;, 11 be H-valued measures on L. Following conditions
are equivalent:

(i) ç, 11 are biorthogonal,
(ii) for every a, J3 E C (or E R i, f’H is real) the map a ~ r1Ç (a) + 03B2~ (a)

from L into H is an H-valued measure.
A family J~ of H-valued measures on L is said to be biorthogonal if

every two measures ç, 11 E J~ are biorthogonal. A biorthogonal family J~
is a maximal biorthogonal family if every H-valued measure on L, which
is biorthogonal to every member of J~, necessarily belongs to ~T. By
Lemma 2.4, every maximal biorthogonal family is a linear space over C
(or over R). Clearly, every biorthogonal family is contained in a maximal
one.

Following theorem shows that the family of all H-valued measures on
L (and also every maximal biorthogonal family) is sequentially closed.

Vol. 53, n° 1-1990.



88 S. PULMANNOVA AND A. DVUREENSKIJ

THEOREM 2.3 (Nikodym theorem). - Let L be a a-logic and let Çn’
n E N be H-valued a-measures on L. If for any a E L there is ~ (a) = lim Çn (a)
(i. e. I (a) - ~ ~ 0), then ~ is an H-valued measure on L.

Proof. - Let § (a) = lim Çn (a). If alb, then

and

functions m (b) = I ~ ç (b) ~ ~ 2, mn (b) = ) ) Çn (b) I I 2, b E L, are additive and a-
additive measures on L. Moreover, for any b E L,

where

Hence, by [6], m (~)= ~ ~ (ai). Therefore,
i E N

hence

We note that if ~n, n E N belong to a maximal orthogonal family ~,
then 03BE also belongs to .H. Indeed, if alb, then for any ~~N, (ç (a),
11 (b)) = lim (~n (a), 11 {b)) = 0.

Following theorem has been proved in [ 16] for lattice logics and complex
Hilbert spaces, but the method of the proof can be applied to logics which
are not necessarily lattices and real Hilbert spaces as well.

THEOREM 2.4. - Let L be a logic and let H be a Hilbert space (real or
complex). Let ~V’ be a maximal biorthogonal family of H-valed measures on
L. For every a E L put / (a) _ ~ ~ (a) ~ ~ E.AI’ }. Then following statements
hold.

(i) For every a E L, / (a) is a closed linear subs pace of H.
(ii) For every a, b E L, a 1 b, we have (b) and

/ (a v b) _ ~V’ (a) v / (b), i. e. I&#x3E; (a v b) _ ~ (a) + I&#x3E; (b), where ~ (a)
denotes the projection on ~V’ (a). If, in addition, all the measures in / are
03C3-additive, then for every sequence of mutually orthogonal elements
of L such that v ai exists in L we have ~ ( v ai)= ~ ~ (ai), where the

iEN i e N i e N

sum converges in the strong operator topology on H.

Annales de l’Institut Henri Poincaré - Physique théorique



89QUANTUM LOGICS, VECTOR-VALUED MEASURES

(iv) For every ~ E /there is a vector v~ E H such that ~ (a) _ ~ (a) v~,
aEL.

COROLLARY 2. 5. - Let ç be an H-valued measure on L. Then there is a
closed subs pace Ho of H, a morphism 03A6 from L into L (Ho) and a vector
v E Ho such that ~ (~)=0 (a) v~ for every a E L. If, in addition, L is a

a-logic and ~ is a-additive, then ~ is a a-morphism.
Proof - The measure; is contained in at least one maximal biortho-

gonal family of H-valued measures on L, so that we can apply
Theorem 2 . 4. We put Ho=JV (1). Then Ho is a closed subspace of H.
From C (a) ~r ( 1 ) = I&#x3E; (a) (a) v ~ (a’)) = O (a) % (a) we get
JV(a)cJV (1)=Ro for every aEL, and C {a) + d~ {a’) _ ~ (1), I&#x3E; (a’)
imply Hence ~ is a morphism from L into
L (Ho). For every {a) ~ (1)=~ (a) (; (a) + ~ (~))=~ (~)=0 (a) v~,
hence we may put ~=~ ( 1 ) E Ho .

Following example shows that the morphism 0 need not be a lattice
morphism. Let L = MO (3) be "Chinese lanterne" ( Fig.). Let H = R3 and

be an orthogonal base in H. For every 
define çt 
çt (0)=0, ~ It is easy to check that
ae = { çt t e R 3 } is a biothogonal family of H-valued measures on L. Now
let ç be an H-valued measure on L which is biorthogonal to all members
of Then ç (a’) for all t E R 3 implies that ç for some
a 1 E R. some Y 1 E R. Further,
ç (a’) 1 ~t (a) for every t implies that ç (~)=P~+Y2~ and analogically
~(~=0~+73~ ~(~)=~~+P~ for some a2, ?2~ Y2, lL3, Ps. Y3 E R.
From

we obtain

and independence of x, y, z entails al = a2 = lL3, J31 = J32 = Ps. Y 1 = Y2 - 73.
i. e. is a maximal biorthogonal family. Now JV (a) = [x],

Vol. 53, n° 1-1990.



90 S. PULMANNOVA AND A. DVURECENSKIJ

~ (b) = C3’) ~ ~(c)=[z], ~(~)=[y,z], ~(~)=[~zL .K (c’) = Lx~ y] ,
~V’ (1)=H, where [u, v, ... denotes the linear subspace of H generated by
the vectors u, v, ... in H. But JV (~v~)=J~ (1) #.K (a) v N {b) _ ~x, y].

3. REPRESENTATIONS OF QUANTUM LOGICS

In analogy with representations of C*-algebras, we shall call every (a-
) morphism from a (a-) logic into a Hilbert space logic L (H) a (a-
) representation of L in H. We shall say that a representation 0 of L in
H is faithful if D (a) = 0 implies a= 0. If L is a lattice logic and 0 is a
faithful lattice representation, then C is one-to-one.

Let be representations of L in Hz, i E I. Put H = 
t 6 I i ~ i

I&#x3E; (a) = (4Y; (a))L E I. Then clearly, 03A6 is a representation of L in H, which is
the direct sum of the representations ~~, i E I.
Let m be a measure on L. If there is a representation C of L in a

Hilbert space H such that aEL, for a vector v E H, we
shall call 0 the representation associated with the measure m. Clearly, a
representation ~ associated with a measure m is a a-representation iff m
is c-additive, and if m is faithful, then also C is faithful.

LEMMA 3.1.2014 Let 03A6 be a representation of a logic L in a Hilbert space
H. Then

(i) A ~)=~(~)~(&#x26;)=C(&#x26;)~(~)=0(~) 
particular, if B is a Boolean sub algebra of L, then ~ (B) is a Boolean

subalgebra of L (H),
(ii) for every state m on L (H) there is a state mL on L such that

mL (a) = m (4Y (~)), ~ e L.
a-representation of a a-logic L, then

(iii) to every observable x on L there is a self-adjoint operator ~ (x)
on H with the spectral measure E~I&#x3E;(x)(E)=I&#x3E;(x(E)), E E B (R).
If x is an observable and f:R-R is a Borel function, then

~ {x . f 1) _ ~ (x) ._ f ‘ 1=, f (~ (x)). In particular, f x and y are compatible
observable on L, then 03A6 (x) and 03A6 (y) commute and 03A6 (x + y) = 03A6 (x) + W (y),
~(~.~)=D(~).~(~), where the operations + and. are defined by the

functional calculus for compatible observables on L, resp. on L (H).
Proof of the lemma is standard and we omit it.

THEOREM 3 . 2. - Let L be a a-logic, i7 (L) be the set of all a-additive
states on L and let (L, i7 (L)) be a sum logic. Then there is a faithful lattice
a-representation of L in a (real) Hilbert space H iff Segal product on
bounded observables on L is distributive.

Annales de l’lnstitut Henri Poincaré - Physique théorique



91QUANTUM LOGICS, VECTOR-VALUED MEASURES

Proof - Let (L, ~ (L)) be a sum logic with distributive Segal product.
Let and put Km(a, b e L. Due to distributivity
of Segal product, Km (a, b) satisfies the conditions of Theorem 2 .1. Indeed,
let c R. We have

Therefore, there is a (real) Hilbert space Hm and a a-additive H~-valued
state such that Km (a, b) = (~m (a), ~m (b)) for any a, b E L. By
Theorem 2 . 4, there is a a-morphism ~m : L -~ L {H° ), Hm E L and a
vector Hfl such that m (a) _ ~ ~ I&#x3E; (a) v,~ ~ ~ 2 for every a E L. Without any
loss of generality we may assume that Hm = Now construct the direct

(L)}. Since ~ (L) is strong, C is a faithful represen-
tation of L in By Lemma 3.1, to every observable x on L,

m

there corresponds a s. a. operator 0(x) on H. Let x, y be bounded
observables on L. are bounded. Let and
let Sv be the corresponding state on L (H). From

we obtain

as s~ E ~ (L). Therefore (0 (x + y) v, v) = ((D (x) + 0 (y)) v, v) for every v E H,
and hence @ (x + y) = O (x) + 4Y @) . As 0(~./"~)=C(jc)./’~ we have
I&#x3E; (x2)=03A6 (x)2. This entails that 03A6 preserves sums and Segal products of
bounded observables. Let a, b E L, then (q~ + q~) ( 2 ) = a A b
implies ~((~+~,){2})==0(~A~). On the other hand, qa = q~

imply is a projection, and we have
I&#x3E; (qQ) ~ 1 } = I&#x3E; (q~ ~ 1 } ) = I&#x3E; (a) . Therefore

~ ((~’a + R’b) ~ ~ ~ ) _ ~ (qa + qb) ~ ~ ~ _ (~ (~I~) ~ ~ (~’b)) ~ 2 ~ _ ~ (a) n ~ (b).
Hence O (a A ~)==~(x) A 0(&#x26;), i. e. 4Y is a lattice morphism.
Now suppose that (L, i7 (L)) is a sum logic which admits a faithful

a-representation in a Hilbert space H. Similarly as in the first part of this
proof, we show that 03A6(x+y)=03A6(x)+03A6(y) and 03A6 (x2)=03A6 (x)2 for any
bounded observables x, y on L, so that 0 preserves sums and Segal
products, and 03A6 preserves lattice operations. Let x, y, z be bounded
observables on L. We have

and as C is faithful, this entails that 

COROLLARY 3 . 3. - Let (L, G (L)) be a sum logic. Then every 03C3-represen-
tation of L in a Hilbert space H is a lattice representation. In addition, the

Vol. 53, n° 1-1990.



92 S. PULMANNOVA AND A. DVURECENSKIJ

extension of the representation to bounded observables on L preserves sums
and Segal products.

Proof. - It follows immediately from the proof of Theorem 3. 2.

THEOREM 3 . 4. - Let (L, i7 (L)) be a sum logic and let H be a Hilbert
space. Let m~G (L) and let there be an H-valued state 03BE on L such that

m (a) = ( I ~ (a) ~ ~ 2, aEL. Then a, b E L.

Proof - By Corollary 2 . 5 and Corollary 3 . 3, to any bounded observa-
bles x, y on L there correspond bounded self-adjoint operators 03A6 (x), 03A6 (y)
on H and 03A6 (x ° y)=03A6 (x) ° I&#x3E; (y), 4Y (x + y)=03A6 (x) + I&#x3E; (y). We have

On the other hand,

We note that the result obtained by Hamhalter in [12] that every
a-additive state on a projection logic L (U) of a W*-algebra U without
any type I2 direct summand on a Hilbert space H with dim H = 00 can
be represented by an H-valued state (with values in the same Hilbert

space H), follows directly from our criterion in Theorem 2 .1

for Q) = m (PQ) = Tr (TPQ), m E ~ {L), P, where

T = ~ c~ ( . , ei) ei. It suffices to put ~ (P) = EB P Nevertheless, the
i i

method of proof he used is very interesting.

THEOREM 3 . 5. - Let (L, i7 (L)) be a sum logic and let (L).
(i) There is an H-valued state ~ on L such that m (a) = BI ç (a) 112, a E L,

i, f’f for any three bounded observables

x,y,zonL.
(ii) If s (L), s « m [in the sense that m (a) = 0 =&#x3E; s (a) = 0, a E L] and if

there is an H-valued state ~ such that m (a) = II ç (a) ~ ~ 2, a E L, then there is

an H-valued state ~ on L such that s (a) = (a) ~ ~ 2, a E L.

Proof. - (i) Let m (a) = II ç (a) I I2, a E L, and let § (a) _ ~ (a) v~. Then

m~«.x+Y)°z-(x°z+.Y°z)]2)

On the other hand, if the above condition is satisfied, Schwarz inequality
implies that for any x, y, z, and it is easy

to check that satisfies conditions (i)-(ii) of

Theorem 2.1, and hence m is representable by an H-valued state ç.
(ii) follows directly from (i).

Annales de l’lnstitut Henri Poincaré - Physique théorique



93QUANTUM LOGICS, VECTOR-VALUED MEASURES

Our next remark concerns some relations between H-valued states and

representations of C*-algebras.
Let (L, f/ (L)) be a sum logic such that L is a projection logic of a

C*-algebra U (e. g. L is a projection logic of a W*-algebra of operators
acting on a complex separable Hilbert space H with no I2-factor as direct
summand, see [5], [18], [20], [22]). Then, by GNS-construction, to every
state s (L), there is a cyclic representation Tts of U on a Hilbert space
HS, and a unit cyclic vector Vs for 71~ such that s (A) = (x (A) vs, vS) (A E U)
(see [15], p. 278, [4], p. 64). If is a projection on HS and hence

If we put ~(~)=7r(~)~, then it is easy to check that

(a) vs, a E L, is an HS-valued a-additive state on L.
We note that, using the results in [ 1 ], similar results may be obtained

for suitable types of JB-algebras.
On the other hand, let ~ : L - H be a a-additive H-valued state on L

such that s (a) _ ( ~ ~ (a) ~ ~ 2 for some state s (L). Then there is a lattice
a-morphism D~: L -~ L (H) such that ç (a) = 0~ (a) v~, a E L, for some unit
vector 03BD03BE~H and l&#x3E;ç can be extended to a linear and Segal product
preserving map from bounded observables on L (i. e. Hermitian elements
of U) into the algebra ? (H) of bounded operators on H. This map 0~
can be in a natural way extended to a linear Jordan morphism Dç from U
into 93 (H) (see also [16]). By [4], 3 . 2 . 2, p. 17), every Jordan morphism is
a combination of a morphism and antimorphism. In case that Dç is a

morphism, we put H~ = {0 (A) vç A e U}’ (where M - means the closure
of M, M c H, in H). Then since H~ is invariant, the map A -~ P~ vi (A),
A E U, where P~ is the projection in H onto H~, is a cyclic representation
of U in H~ such that

By [ 15], Prop. 4. 5. 3, this cyclic representation (H~, P~ 1&#x3E;1;’ is isomorphic
to the cyclic representation produced from s by the GNS
construction, in the sense that there is an isomorphism from HS onto H~
such that 03BD03BE = U VS, P03BE 1&#x3E;1; (A) = U 1ts (A) U* (A E U).
Our next results concerns joint distributions of observables. Recall that

observables xi, x2, ... , xn on a logic L have a joint distribution of type 1
in a state m if there is a probability measure ~.1 on B (Rn) such that

for any Ei, ..., En E B (Rn), and bounded observables xl, ..., xn on a sum
logic have a joint distribution of type 2 in a state m if there is a measure
~.2 on B (Rn) such that
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for any ocl, ..., 03B1n E R and E E B (R) (see [8]).

THEOREM 3 . 7. - Let (L, i7 (L)) be a sum logic. Let and let
there be an H-valued state ~ : L ~ H such that m (a) _ ~ ~ ~ (a) ~ ~ 2, a E L. If for
a given set x~, ..., xn of bounded observables joint distribution of type 1 in
the state m exists, then there exists also joint distribution of type 2, and the
two joint distributions are identical.

Proof. - Let us define so-called commutator c of x 1, ..., xn by

where al = a, aO = ai, a E L. It is known that c exists and that Xl’ ..., x,~
have a type 1 joint distribution in miff m (c) = I (see [8]). But m (c) = I
implies ~03BE(c)~2=~03A6(c)03BD03BE~2=1, hence 03A6(c)03BD03BE=03BD03BE. Since 03A6:L~L (H) is
a lattice a-morphism, we obtain is the commutator of
c~ (xl), ..., CI&#x3E; (xn), and hence the latter observables have a type 1 joint
distribution in the vector state m03BD03BE on L (H) corresponding to 03BD03BE. Now by
[8], type 2 joint distribution of 03A6 (xi), ..., O (xn) in mv exists and is equal
to the type 1 joint distribution. Let ai, ..., an E R, E E H (R). Then

The latter equalities show that there is a type 2 joint distribution of
xl, ..., xn in m, which equals to the type 1 joint distribution.
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