
ANNALES DE L’I. H. P., SECTION A

GREGORY B. WHITE
Splitting of the Dirac operator in the nonrelativistic limit
Annales de l’I. H. P., section A, tome 53, no 1 (1990), p. 109-121
<http://www.numdam.org/item?id=AIHPA_1990__53_1_109_0>

© Gauthier-Villars, 1990, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1990__53_1_109_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


109

Splitting of the Dirac operator in the nonrelativistic
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ABSTRACT. - Under the assumption of relative boundedness conditions
on the potentials, we show that for c large enough, the Dirac operator
H(c) may be expressed as (c) EÐ H2 (c) (ala Foldy and Wouthuysen)
where 1-~ (c) and H~ (c)(±~c~) converge in a rigorous sense (pseudoresol-
vent convergence) to the corresponding Pauli-Schrodinger operators, H +
and H’. We also show that the Dirac operator has a spectral gap of the

for c large enough, where k and I are any con-
stants greater than the lower bounds of H ~ and H ~ , respectively. From
this proof we find a new formula for estimating the lower bounds of the
Pauli-Schrödinger operators and we find a sufficient condition for com-
plete separation of the electron and positron energy levels in the Dirac
spectrum.

RESUME. 2014 Sous l’hypothèse que les potentiels sont relativement bornes,
nous montrons que pour c assez grand, l’opérateur de Dirac H (c) peut
s’exprimer comme Hi ~~~ ~ H~ (e~ (à la Foldy et Wouthuysen) of

HI (c) (B H2 (c)(:f:mc2) convergent (au sens de la convergence des pseudo
résolvantes) vers les operateurs de Pauli-Schrödinger correspondants, H+
et H’. Nous montrons aussi que l’opérateur de Dirac a un gap spectral
de la forme ( - mc2 + k, mc2 -l) pour c assez grand, où k et I sont n’im-
porte queUes constantes plus grandes que la borne inferieure de H- et H +
respectivement. Nous obtenons aussi une nouvelle estimation des bornes
inférieures des operateurs de Pauli-Schrodinger et nous donnons une
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110 G. B. WHITE

condition suffisante pour la separation complete des niveaux d’energie des
electrons et des positrons dans le spectre de Dirac.

This paper reports results achieved in [ 17], the author’s doctoral disserta-
tion at U.C.L.A.
The author wishes to thank his dissertation advisor, Donald Babbitt,

for suggesting the topic of this research and for his many helpful comments
along the way. The author is also indebted to a number of other people
who heard early presentations of this work and raised important questions
and/or made valuable suggestions which shaped the final form of
this paper. These include V. S. Varadarajan, R, Arens, M. Takesaki,
S. Busenberg, and the referee.

1. INTRODUCTION

In their 1950 paper, Foldy and Wouthuysen [4] devised a transformation
which splits the standard Dirac operator H (c) into a direct sum

H (c) EÐ H2 (c), where H 1 (c) and H2 (c) are each expressed as a formal
power series in l/c. While and H 2 (c) may not be well defined in
the sense that the power series do not converge in a rigorous operator
sense, they enjoy the property that the formal nonrelativistic limit (c - oo)
of H (c)-mc2 yields the Pauli-Schrodinger operator for the electron (H + )
and the limit of H2 (c) + mc2 yields the Pauli-Schrodinger operator for the
positron (-H’). Further, in their paper they suggest that this method
should be expected to be of use in the case of "weak" potentials, i.e. those
for which there is a separation of the electron and positron energy levels
in the Dirac spectrum. Unfortunately, although the method of Foldy and
Wouthuysen is both beautiful and successful (e. g. it yields reasonable
relativistic corrections to the Pauli-Schrodinger operators), there is no

apparent way to make it rigourous.
The first goal of this paper (Section 4) is to show that by restricting

the Dirac operator to the subspaces associated with the positive and
negative spectrum, it can indeed be split into the direct sum of two

operators which now converge in a rigorous sense (pseudoresolvent conver-
gence - see Section 3) to the appropriate limits. Convergence of the Dirac
resolvent has been studied in [5], [8] and [16], but restricting it to these

subspaces appears to be new.
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111SPLITING OF THE DIRAC OPERATOR

While the question of how to approach the nonrelativistic limit in a
rigorous way seems to have been settled, the question of when the electron
and positron energy levels are separated has not. The rest of the paper is
devoted to determining where spectra may occur in the interval

{ - mc2, mc2) and to the implications of such results for the limiting
operators and for the question of separation of the spectrum.
Our second goal is then to show that the Dirac operator has a spectral

gap of the form ( - mc2 + k, ~c~2014/), for c large enough, where k and I
are constants greater than the lower bounds of the corresponding Pauli-
Schrodinger operators (Section 5). It has been noted by Cirincione and
Chernoff [ 1 ] that under the assumption of relatively bounded potentials,
the Dirac operator has a spectral gap at zero for c large enough. It is not
difficult to see that their method implies that the spectral gap includes
an interval of the form ( - a (c), a (c)), where a (c) - 00 as c - ~. Also,
convergence of the Dirac resolvent (± mc2) to the Pauli-Schrodinger resol-
vent together with the lower semiboundedness of the Pauli-Schrodinger
operators implies that the Dirac operator has no spectrum in the intervals
( - mc2 + k, - mc2 + b (c)) and (mc2 - b (c), mc2 - l). Notice that this leaves
the two intervals ( - mc2 + b (c), - a (c)) and (a (c), mc2 - b (c)) unaccounted
for. Our method deals with the entire interval ( - mc2 + k, 
uniformly. We also develop from this a new formula for estimating the
lower bounds of Pauli-Schrodinger operators.

Finally, in Section 6 we give a sufficient condition for complete separ-
ation of the electron and positron energy levels.

2. THE DIRAC OPERATOR IN AN ABSTRACT SETTING

In discussing the Dirac operator, we shall use essentially the same set-
up as Cirincione and Chernoff [1] and Gesztesy, Grosse, and Thaller [5].
Much of this section duplicates the analogous section in [ 1 ], although
some material has been added and some omitted. As noted in [ 1 ], the
abstract setting for the Dirac equation which we consider is general enough
to include the case of curved space as well as the usual Dirac equation
over or !R" (see [I], section 3 for a discussion of how these operators
are defined). The reader should also note that A and A* are switched
from the usage of [1] (this is in line with the convention of [5]).

Let ~f be a Hilbert space and let A and (3 be two self-adjoint operators
with the following properties:

The first relation implies that (3 is bounded and in fact unitary. The
operator A may be unbounded and we assume it is defined and self-

adjoint on some dense domain D (A).
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112 G. B. WHITE

Since the operator B has two spectral projections P+ and P-
corresponding to the eigenvalues +1 and -1. We may write Jf as the
orthogonal direct sum ~ + +~ ~’ _ , where is the range of P* , With
respect to this decomposition, we can represent A and p by operator
matrices. We have

The self-adjointness of A implies that A11 and A22 are self-adjoint,
while A12 and A21 are closed and densely defined on X - and respec-
tively, with The condition tells us that

== A~2 == 0, so A is of the form

where A:~f+~~f_ is a dosed densely defined operator with adjoint
A* : ~L ~~f+. If, for example, ~’ ~. -~ ~° _ -= ~~, a given Hilbert space,
so that ([2 8&#x3E; and if A = A*, then we have A = a 0 A, where a is

the two-by-two This is the case which Hunziker [8]

discusses.

To define our abstract Dirac operator H (c), we introduce an operator V
representing a potential and set

Here m and c are positive constants which we call the "rest mass" and
the "velocity of light". We require that V be self-adjoint, bounded relative
to A, The latter condition means thatV is of the form

[V + 
0 , where V+ and V_ are self-adjoint operators on Yf + and 

respectively. (Usually X+=X- and V+=V_.) The boundedness condi-
tion on V is equivalent to saying that V + is bounded relative to A and V-
is bounded relative to A*. Since V is bounded relative to A, V will be
bounded relative with relative boundless than 1, for c suffi-

ciently large. Then H (c) will be self-adjoint on D (A) by the Kato-Rellich
theorem. Henceforth, we will assume that c is large enough so that this is
the case.

Note also that2014 A 2 + V is a self-adjoint operator on D (A 2), for our
2m

hypotheses on V guarantee that V is infinitesimally bounded with respect
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113SPLITING OF THE DIRAC OPERATOR

to A2. Hence the operators

are self-adjoint on the spaces ff +, where (A2) + = A* A and = AA*,
are the restrictions of A 2 to the invariant subspaces ~f+ and respec-

tively. We also introduce the notation

Note that in this setting we can deal with "magnetic fields" as well as
"electrostatic fields" with no additional effort. The magnetic (or "vector")
potential is simply a perturbation B which anticommutes with P, so we
may regard B as a perturbation of A. To be precise, assume that B is a
self-adjoint operator on ye which anticommutes with P and which is

bounded relative to A with relative bound less than 1. Then V is bounded

relative to the self-adjoint operator A + B, so that

is self-adjoint for sufficiently large c, and all results discussed here will

apply verbatim with A + B replacing A. Further, the Schrodinger
Hamiltonian H~ introduced above is replaced by the "Pauli" Hamiltonian

We call H + and H - [as defined by (2 . 5) or (2 . 8)] the Pauli-Schrodinger
operators associated with the Dirac operator [as defined by (2.4)].

3. PSEUDORESOLVENT CONVERGENCE

To quickly put into context the notion of convergence which will be
discussed in this section, we remark that pseudoresolvent convergence is
to analytic families of pseudoresolvents as resolvent convergence is to

analytic families of resolvents. That is, pseudoresolvent convergence is of
use when analytic results are either not expected or not needed. As we
shall see, this the case for the Dirac operators applications discussed in
this paper.
We present here a few theorems which we which we will need later. A

full development of theorems (with proofs) which generalize the standard
theorems for resolvent convergence (see e. g. Reed and Simon [12]) may
be found in White [17].

DEFINITION. - Let An, n =1, 2, ... and A be self-adjoint operators on
a Hilbert space Jt. Let Pn, n =1, 2, ... and P be self-adjoint projections

Vol. 53, n° 1-1990.



114 G. B. WHITE

on Jf such that Pn commutes with An for n =1, 2, ... and P commutes
with A. Then An Pn is said to converge to AP in the norm (strong) pseudore-
solvent sense if R~ Pn --~ R~ (A) P uniformly (strongly) for all X with
Im ~0.

NOTATION. - In analogy with the convention for resolvent convergence,

we will write An Pn  AP and An AP to indicate norm and strong
pseudoresolvent convergence respectively.

Remarks. - (1) Families of operators of the form R~ (A) P satisfy the
first resolvent equation and so by definition are pseudoresolvents. Further,
as noted by Veselic [16], any symmetric pseudoresolvent on a Hilbert space
is of the form R~ (A) P.

(2) There is no explicit requirement on the convergence of the

projections Pn. In general, it is not necessary for the Pn to converge to P
in any sense in order to have norm pseudoresolvent convergence. For
certain theorems on strong pseudoresolvent convergence, strong conver-
gence of the Pn to P is required.

THEOREM 3 .1. - Let An, A, P, be as in the definition. Let Ào
be a point in C . If Im Xo # 0 and ~R03BB0(An) Pn - (A) P 11 ~ 0, then

THEOREM 3 . 2 (Trotter) . - If AnPnAP and PnP, then

ei~ An eit A P for each t, and ett An pn cp --~ eit A P cp for each cp uniformly
in t in any bounded interval.

THEOREM 3 . 3. - Suppose that AP. Let a, b~ R, a  b and

suppose that a, b E p (A I Ran p) . Then

This last result is of use when we do not know whether the projections Pn
converge strongly to P. In fact, as we will see (cf. Thm. 4. 3), it can be

useful in showing that the projections Pn converge. , 

.
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115SPLITING OF THE DIRAC OPERATOR

4. SPLITTING OF THE OPERATOR

As shown by Gesztesy, Grosse, and Thaller [5], the Dirac resolvent

(H (c) - mc2 - z) -1 is holomorphic about the Pauli-Schrodinger pseudore-
solvent at c = oo . Thus, we may consider these together as
an analytic family of pseudoresolvents in a neighborhood of c = oo . Simi-
larly, (H (c) + mc2 - z) -1 is holomorphic about ( - H - - z) -1 P - at c=oo.
This holomorphy implies the following weaker statement:

THEOREM 4 . 1. - As c goes to infinity, H (c) ~ H:t p ± . 
_

Note. - Relating the statement of the theorem to the definition of
pseudoresolvent convergence, we have Pn = I, A= ±H~
and P=P~. _

As shown in [1] (or see Section 5), the Dirac operator has a spectral
gap at zero for c large enough. Thus, for some E &#x3E; 0 if we define

Q + (c) = (H (c)) and Q - (c) = p[- 00, -E] (H (C)) , (4 , 1 )
then we are assured that Q + (c) + Q - (c) = I for c large.

Since it is the positive half of the spectrum of H (c) which converges to
the spectrum of H+, we expect that (H (c) - mc2) Q+ (c) will converge to
H + P + . Similarly, we expect convergence of (H (c) + mc2) Q - (c) to

2014H"P’. This is the content of the next theorem.
One should note however, that in restricting H (c) to the subspaces

corresponding to the positive and negative halves of the spectrum, holo-
morphy is lost. This can be seen by following the behavior of the essential
spectrum of H (c) as c rotates through a circle in the complex plane which
encompasses the origin. It becomes clear that Q + (c) and Q’(c) cannot
be continued analytically as c passes through the imaginary axis. Thus,
we should not expect an analytic result. Rather, the best sense of conver-
gence we can hope for is: ,

where we have used the fact Q + (c) + Q - (c) = I. The norm of the
first term on the right goes to zero since by, Theorem 4.1,

H (c) - mc - H P . The norm of the second term on the right goes to
zero since for c large enough, the distance from the spectrum of

(H(c)-mc2)Q- (c) to i is &#x3E;mc2 (in fact, &#x3E; 2 mc2 - l as we shall see in
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Section 5). Hence, the norm of the second term goes to zero as c ~ oo,

and by Theorem 3.1 we now have (H (c) - mc2) Q+ (c)  H+ P .

Remarks. - ( 1 ) Note that if we set and

H2 (c) = H (c) Q- (c), then for c large, where

and H2 (c) + mc2 have the appropriate nonrelativistic limits,
ala Foldy and Wouthuysen.

(2) We may also view this as splitting into an "electron" term, a

"positron" term and a "rest mass" term by writing

Convergence of the first two terms has been discussed. The next theorem

implies that Q~ (c)-Q’ (c) ~ P~ -P" = P, so the third term is much like
rest mass term in the Dirac equation.

Proof Rearranging the signs in Theorem 4.1, we have

~ H ~c) - mc2 ~ H ± P ± . Let I be less than the lower bounds of H +
and H’. With Pn = I in theorem 3 . 4, we have

But, P(-l, (0) (HI) = I and P(-l, (0) (::l: H (c) - mc2) = QI (c) for c large

enough (see Theorem 5 . 3), so QI (c) PI. Similarly, considering the

interval ( - oo , - l) we find ~ 0. The result follows by adding
the previous two equations appropriately and using P + + P - = I. 0

Note. - The above result appears in [1] with a rather different proof.
We close this section by stating a related result (also in [1]) which now

follows easily from Theorems 4. 2, 4. 3 and 3 . 2.

THEOREM 4 . 4. - For each t e R, (c) - mc2) QI (c) --~ pI and for
each cp E 

(c) - mc2) Q I (c) cp ~ 
I 
pI cp uniformly on bounded

t-intervals as c --~ 00.

5. THE SPECTRAL GAP

We will prove in this section that given a relative boundness condition
on the potential V, the Dirac operator has a spectral gap of the form

Annales de l’Institut Henri Poincaré - Physique théorique



117SPLITING OF THE DIRAC OPERATOR

[ - mc2 + k, for c large enough, where k and I are related to the
lower bounds of the operators H - and H +, respectively.
To make precise what we mean by "spectral gap", we make the

following

DEFINITION. - Let I be an interval in R and let H (c) be a family of
self-adjoint operators depending on a real parameter c. We say I is a

spectral gap for H (co) if I ~ p (H (c)) for all c &#x3E;__ co.

Remarks. - The condition "for all c &#x3E;_ co" is to insure that the spectrum
remains separated as we go the nonrelativistic limit..

NOTATION. - In order to write much of what follows in a more concise

form, we introduce the following operators:

and

We note that if l &#x3E; 0 and then H~(c) and H~(c) are
invertible.

In the following theorem we will make use of two commutation relations
proved by Deift [3]:

THEOREM 5 . 1. - Let be a Dirac operator and
assume that there exist constants a, b &#x3E; 0 such that I I V (  a II A cp II + b II II I
for all Let let E&#x3E;0, let 
and Il (c) _ [ - mc2 + l, Then for c large enough, I1(c)cp(H(c)).
Furthermore, for ~, E Ii (c) and for c large enough, we have

Proof. - In matrix form we may write

Vol. 53, n° 1-1990.
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Since H~ (c) and H~ (c) are invertible, we have

where the commutation relations (5 . 2) are required to show that this is a
left-inverse. Then 

.

In estimating the norms of the matrix elements above, we note that in
fact we are estimating the norm of the closures of the operators.
For  e I, (c) we may decompose H° (c) as

Then,

Similarly,

Note that these norm estimates are maximized at the right and left

endpoints of respectively. Each has a maximum value of

c l l
Similar calculations show that I and

II c A * (Hg c -1 V _ are both less than a + 
b 

for X E I, (c).)) ~ II 
c )2 mc2 l-l 1 

Z‘ )
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’

From the above estimates it is easily seen that for 1, (c),

where II (5 . 5) II is the norm of the matrix in equation (5 . 5). Now the third
and fourth terms on the right go to zero as c - oo and the first term is
less than ~ /2/~// for all c, so we will have ~(5.5)~1 for c sufficiently
large if

Elementary algebra shows that this inequality holds if I &#x3E; lo.
Thus, H(c)2014~I is invertible for and c large. Finally, taking the

inverse of equation (5.4) gives us equation (5 . 3). D

The pseudoresolvent convergence of H (c) ib mc2 to ± HI p±
(Theorem 4.1 and 3 . 3) together with the above imply the following:

COROLLARY 5 . 2. - - Let lo be as in Theorem (5 . 1 ), then - lo is a lower
bound for H+ and H-.

Remarks. - ( 1 ) Using the Kato-Rellich theorem (see e. g. Reed and
Simon [13], p. 162) and the relative boundness condition, one can predict
that - IKR is a lower bound for H + and H’, where -

We see that the bound developed above is better than this by almost a
factor of 2.

(2) In the case of the Coulomb potential, V = - z/r, A = grad, we may
take our relative boundedness condition to ] (cf
Kato [9], p. 307). In c.g.s. units this yields a lower bound estimate of
lo = 1 6 z2 j2 h2), or 16 times the actual ground state energy. We note
that any estimate of a in ~V03C6~~a~A03C6~ must be at least z/2, since

a = z/2 yields the actual ground state energy as a lower bound estimate.
We can now sharpen the result of Theorem 5 . 1.

THEOREM 5. 3. - Let - K be the greatest lower bound for H -, let - L
be the g.l.b. for H +, and Then for c large enough, [ - mc2 + K + E,

Proof. - Let lo be defined as in Theorem 5.1. Note that

[-/0 - E, -L-8]c:p(H~ so P~ _L-s](H~)==0. By Theorem 3 . 3,
we have as c - 00. But the norm of a

spectral projection is either 1 or 0, so, for c large enough, the projection
must be zero. That is, [mc2 - lo - E, mc2 - L - E] m p (H (c)) for c large

Vol. 53, n° 1-1990. 
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enough. Similarly, [ - mc2 + K + E, -~c~+/o+8]c:p(H(c)) for c large
enough.

Since, by Theorem 5.1, [ - mc2 + lo + E, mc2 - lo - E] m p (H (c)) for c large
enough, the theorem is proved. D

6. CLASSIFICATION OF THE SPECTRUM

It is natural to ask under what conditions we will have a spectral gap.
The next theorem gives a sufficient condition.

THEOREM 6 . 1. - Let B + V be a Dirac operator. Let a
and b be positive constants with

all then H (c) has a spectral gap
at zero.

Proof - First we note that these conditions are sufficient to give self-
adjointness of H (c) on D (A) by the Kato-Rellich Theorem, since a/c  1 /2
and for all p e D (A)

From equation (5 . 6) of the proof of Theorem 5.1, H(c)2014~I will be
invertible for all À E [ - mc2 + I, if

By differentiating the sum of the first and the third term with respect to c
and noting that the other two terms are non-increasing, it is easy to see

that the left-hand side of (6.2) is decreasing in c. Hence, if (6.2) holds
for some C=Co, it holds for all c &#x3E; co and H (co) will have a gap a zero.

Thus, we will have a spectral gap if equation (6.2) holds for some I
with Since the left-hand side of (6.2) is continuous, in I, we will
be able to find such an I if there is strict inequality for Setting
1= mc2 in equation (6.2) yields equation (6.1). Hence, there will be a

spectral gap if equation (6.1) holds. D

Remarks. - For the purpose of classifying the spectrum, the importance
of a spectral gap is that the spectrum cannot cross the gap as c increases
[since H (c) is a holomorphic family in c, the spectrum moves analytically].
Hence, existence of a spectral gap insures that the spectrum is clearly
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121SPLITING OF THE DI RAC OPERATOR

separated into "electron" spectrum on the right and "positron" spectrum
on the left.
One may thus take equation (6.1) as a working definition of a "weak"

potential ala Foldy and Wouthuysen.
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