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ABSTRACT. - Let

closure of the operator (- A + V + C) f C~0 (Rl) is generator of the contrac-
tion Co-semigroup in For p = ~ we obtain a new theorem concern-
ing the essential self-adjointness of the Schrödinger operator. The sharp
ness of the results is illustrated by the examples.

ture de est un generateur de semi-
groupe Co de contraction dans Pour p = 2 nous obtenons un
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nouveau théorème concernant l’auto-adjonction essentielle de l’opérateur
de Schrodinger. Ces resultats sont illustres sur des exemples.

~ 

INTRODUCTION

This article deals with the Schrodinger operators -A+V acting in
Lp - LP (IR’, cf x). We want to investigate the first spectral problem, i. e.

the problem of m-accretivity. Most of the results concerning this problem
contain the condition of - 0394-boundedness of the operator
V _ ==max{-V,0}. Our goal is to investigate the conditions of the
following type:

where F is some function space.
The first result in this direction is due to Povzner [1] ] [p=2, P=l,

F=C(!R~)]. Recently some results were also obtained. In particular
the essential self-adjointness was proved provided that F = Lk,

My purpose here is to extend the abovementioned results to the case of
LP-spaces and to choose the broader space F. Even for p = 2 we obtain a
new result which is very close to optimal.

It should be noted that our method is an extension of the Semenov’s
one [3].
Note that LP-A-boundedness implies the condition (1) (see [4]) and in

my opinion the condition ( 1 ) corresponds to the point of our problem.
We want also to emphasize that the exact eigenfunction estimates for the
operator - A + V and the exact results concerning the accretivity of the
Schrodinger operators have been proved under the same condition ( 1 )
(see [5], [6]).

Annales de l’lnstitut Henri Poincaré - Physique théorique



153SCHRODINGER OPERATORS

Some common symbols are:

== x) = the complex functions f’ on fR’ such that

f p E LP, V (p e meas (B) = Lebesgue measure of B c R’ ;
Lp° ~° _--_ LP’ 00 d x) = the complex functions f on ~~ such that

(note that LP c LP’ 00 and E LP’ 00) Lp,~comp = the set of functions in

Lp,~ with compact support. A= Y 2014_ the Laplacian acting on D’ (1R1).
j= 1 lx )

MAIN RESULTS

LEMMA 1. - If V E then ( ~ V ~p - £ = O 0.

Proof. - &#x3E;t}. The function (t) is nonin-
creasing and (0) = meas {supp V}  CIJ. The definition of the space 
implies that ~. ( t) _ C t - p, V t &#x3E; 0, so

DEFINITION. - Let 0 ~ V, W E L1loc. Then V ~ PK03B2(-0394 + W) if and only
if

Vol. 52, n° 2-1990.
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THEOREM 2. - tet V be a real valued measurable function such that

Then the range of tk operator (-0394+V+03BB) C~0 M dense M! LP for any
X&#x3E;C(P).

Suppose that the range is not dense, then by the Hahn-Banach theorem~
there exists a function 0 ~ u ~ Lp such that

Whithout loss we can assume u= Reu. r~ _ ~’ j~’. Let
~&#x3E;0 be a small parameter and Iet us 

and It follows that n L’.
The equality (3) gives

in the distributional sense; hence

(C£ 17l).
Moreover, implies

Let us consider the operator 1~Z with the domain

where (-A+V+) is taken in the distributional sense and
== (-A+V+)~ 

H: is the generator of the strongly continuous contraction semigroup
== V~&#x3E;0 in LZ which has properties such as follows

below

l’Institut Hener Poincaré - Physique théorique
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Let 03C6r=Ts(l r)u. h follows from (5), (8), (4) and C0-property that

According to (I) we can choose subsequence (which we shall denote by
the same symbol { ~ } ) such that

Then

Indeed,

because ~(jc)-~(j~) a. c. Hence in order to conclude the proof of (3) it
is sufficient to prove the convergence of the norms (a nice proof of this
fact may be found in (8]) but

and the convergence U cp, - it u is the consequence of (~).
ln the same way we obtain

Let ~~=7~ ~ ~ By weR known properties of the operation ~ ~ (see,
e. g.~ [9D~ we have (1), (3), (4) for the subsequence of { fP,. } ~ (7) implies

i,2,...) so that V+ p~~V+ qJ,.. This fact and the equality
L"

A (/~ ~ p~)=~ ~ show that

Let us choose any 03C9~C~0 having and let and

It is easy to see that properties (!), (3), (4) hoid for 

Vol. 52, n* 2-1990.
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Using the standard diagonal process we can choose the subsequence
th. = s uch that t

Observe that so that M,JM,)~’~ M,~’~e~(V)(~~e. g., [ 1 0],
Chapter 2), and the direct calculation yields the identity

(4)-(6) imply the finiteness of the quantities

so that the simple approximation arguments show that (3) is valid provided
that and (9)-( 1 2 ) imply

Using (13), (14) and the condition V _ E + V + ) we have

:ic° l’Institut Henri Physique theorique
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Note Therefore,

According to (!5), (!6).

~ ‘1 1 ........

From (14) we have that the right side of the last inequality equals

So, using Holder inequality we obtain

According to the lemma I IIV - !1z h:) = f~’ (E - ~k~. On the other hand

Now: assuming that E! 0 in ( 1 7) and. using k ~ ~ I we obtain

Then u - o as 03BB &#x3E; C (03B2). []
~~marks. - l . The condition V _ E F’I~~~( - ~ + V +~ ~1 is necessary

iw the theorem 2 but it i.s not sufficient as it may be seen in the example
- 0394 - 03BA 1 - 2 (see [ 11], C’hapter X). The same example shows the sharpness~x~2
of the theorem 2. Inded, let 2 p  m  l,

where )((.) is the indicator of the unit ban in Then the range of the
operator (-A-V-~.) is dense in LP if and only if

v 01. 5 =. 11 ?-~.11c1.
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3. The analysis of the proof shows that the restriction V- may
be replaced by the weaker condition 1] V_ ]~_~= ~(s).

4.. The main device in the proof of the theorem 2 is the inequality

N. Th. Varopoulos [12] has proved the abstract version of this inequality
for the generators of submarkovian semigroups. Thus our result may be
generalized for these operators.

COROLLARY 3. - L~

Then ( - A + V) C~0 is essentially self-adjoint operator in L 2.
Corollary 3 is proved under the restriction Ve but using the

results of C. Simader [13] or H. Brezis [14], we have

THEOREM 4. - Let

+ V) C~0 is essentially self-adjoint.

Remark. - In the case 1&#x3E; 5 theorem 4 is a generalization of the Kalf-
Walter-Schmincke-Simon theorem (see [ 11 ], § X. 4).

Example. - We consider the N-particle Hamiltonian

Annales de l’Institut Henri Poincaré - Physique théorique
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Hardy inequality jJ= 2 N 03B1 (l - 2)2. one sees easily that
V. ". If 03B1 ~ (l-4) 2N it follows from drorem 4 that H is essen-

tially self-adjoint 9cf. {15]. [16]. Note. that for thc fehtivisdc Hamiltonian

Lieb and Thimng haw proved that with 03B2 = O (N ex)
and is unbounded from below tor This correla-
tion between 03B2 and N appears to be true for our nonrdativistic Hamil-
tonian .as well so that the dependence 03B1 = o(1/N) is optimaL
To prove m-accretivity we need.

THEOREM 5 1’1- - Let

is accretive operator in Le.

We will show that

where ~v, w] is semi-inner product ~(~~ ~ ~ ~ ~, ~ X.8). In the case of LP
spaces

so that (18) may be written in the following way

Vol. 52, n° 2-1990.
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1. The sharpness of the result is shown in [6] by the example

2. T. Kato ~7~ raised the problem of quasi-accretivity of the operator
-A+V in the limiting case p= 1 for the potentials such that

We will. show that the answer is negative, i. e., and if -A-V
is quasi-accretive in L 1, then V E LOO. Indeed, the semi-inner product in L 1

is [~ u~~ = / 1" ~~;-) IJ will. The quasi-accretivity implies thatB 117 I

Note = 0, Therefore, (V, i. 

3. If V E Lp, ,~ &#x3E; l/2, l &#x3E;_ 3, then - A - V is the generator of
the positivity preserving Co-semigroup in L which is not quasi-contractive
(other examples may be found in [18], [6]).
Theorems 2, 5 and Lumer-Phillips theorem (see [ 11 ]., § X.8) imply

THEOREM 6. - Let

~.~here k = ( -~- a) ~ -1 + .~/ 1- . ~ Then the closure of the o p era-

tor ( - A + V + C (~)) r C~ is the generator of Co-semigroup of contractions
in LP.

Remarks. - 1. Theorem 6 is generalization (when supp V is compact)
of the result stated in [4]. It is of interest to prove the LP-version of the
result of C. Simader [13] and H. Brezis [14].

2. Having completed this paper the author was informed by Yu. A.
Semenov about the proof of the theorem 6 provided 
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