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ABSTRACT. - We continue the analysis of relativistic phase space,
identified with the quotient of the Poincaré group in 1 + 1 dimensions
by the time translation subgroup. Proceeding by contraction from the
corresponding (Anti) de Sitter group SOo (2, 1), we obtain a realisation
of the Poincaré représentation (m) of mass m in a space of functions
defined on phase space. The contraction singles out a privileged section
in the Poincaré group, with a unique left and right invariant measure.
Using that section, we show that the representation P(m) is square
integrable over the coset space, i. e. phase space. From this we build a
new set of Poincaré coherent states, and more generally weighted coherent
states, which have all the usual properties, resolution of the identity,
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overcompleteness, reproducing kernel, orthogonality relations. Finally we
derive the corresponding Wigner transform.

RÉSUMÉ. - On poursuit l’analyse de l’espace de phase relativiste, identi-
fié au quotient du groupe de Poincaré en dimension 1 + 1 par le sous-

groupe des translations temporelles. Par contraction à partir du groupe
Anti-de Sitter correspondant SOo (2, 1), on obtient une réalisation de la
représentation ~(/~) de masse m du groupe de Poincaré dans un espace
de fonctions définies sur l’espace de phase. La contraction sélectionne une
section privilégiée dans le groupe de Poincaré, possédant une unique
mesure invariante à la fois à gauche et à droite. Avec ce choix de section,
on montre que la représentation ~ (m) est de carré sommable sur l’espace
quotient, c’est-à-dire l’espace de phase. A partir de là, on construit une
nouvelle famille d’états cohérents de Poincaré et, plus généralement, d’états
cohérents avec poids, qui ont toutes les propriétés usuelles : résolution de
l’identité, surcomplétude, noyau reproduisant, relations d’orthogonalité.
Enfin, on dérive la transformation de Wigner correspondante.

1. INTRODUCTION

This paper is a sequel to a previous work [1], henceforth referred to as
I, in which some questions concerning the square integrability and the
existence of coherent states, for a certain representation of the Poincaré
group, ~ (1, 1), in one space and one time dimensions, were considered.
The coherent states were constructed by considering a certain section
mapping the physical phase space - realized as a homogeneous space of

(1, 1) - into the group. While the particular choice of a section in I

was physically motivated, and enabled coherent states to be constructed,
the mathematical, as well as physical, question of what would happen to
the ensuing construction if a different section were chosen, was left unask-
ed. In the present paper we adopt the point of view that studying higher
space-time symmetries, which include the Poincaré group in a local approx-
imation, would shed further light on what other possibilities might exist
for the identification of the physical phase space with sections of the

group. The homogeneous space of ~(1,1) in question here is

l)jT (T= time translation subgroup), which can be parametrized
by points (q, p)e 1R2. One then looks for sections P : 1R2 -+ &#x26;’~ (1, 1).

Annales de l’Institut Henri Poincaré - Physique théorique



85DE SITTER TO POINCARÉ

The search for higher space-time symmetry groups, in our case, is guided
by the fact that for two-dimensional space-times there are the following
six different relativities possible [2], along with their respective kinematical
groups: .

( 1 ) the two de Sitterian relativities, with kinematical groups SOo (2, 1)~ ;
(2) the two Newtonian relativities, with groups % 1:1: ;
(3) the Einstein-Poincaré relativity, having the kinematical group

~(1,1);
(4) the Galilean relativity, having the group %1 .

FIG. 1. - Contraction-deformation relationships between two-dimensional space-time relati-
vities. The horizontal lines denote a K - 0 contraction, whereas the vertical ones correspond
to the limit c - 00.

As schematized in Figure 1, these six groups can be related by contrac-
tion-deformation procedures, corresponding to letting either the curvature
of space-time 1(2 tend to 0 or the velocity of light c to 00 .

The différence between the two maximal symmetry relativities - the anti-
de Sitterian, with group SOo (2, 1)+, and the de Sitterian, with group
SOo (2, 1) _ - is merely one of identification of the subgroup appropriate
to space or time translations. In both cases the group is SOo (2, 1). It is
denoted SOo (2, 1)+ when the maximal compact subgroup SO (2) is identi-
fied with time translations (compactified time), and SOo (2, 1 ) _ when this
subgroup is identified with spatial translations (compactified space). The
four dimensional analogue of SOo (2, 1)+ is SOo (2, 3) while that of

SOO (2, 1)_ is 800 (4, 1 ) [3].
In a quantum theory, elementary systems are associated to (projective)

unitary, irreducible representations (UIR) of the (possibly extended) kine-
matical group (or its universal covering group) [4]. If we denote by P (m)
the UIR of the Poincaré group, ~(1, 1), which describes a system of

Vol. 52, n° 1-1990.



86 S. T. ALI, J.-P. ANTOINE AND J.-P. GAZEAU

mass m, the corresponding representations of SOo (2, 1 ) + or SOo (2, 1 ) _ ,
of which ~ (m) is the contracted version, differ radically. Indeed, ~ (m)
arises from the contraction of a representation D + (Eo) belonging to the
discrete series ([5]-[7]) of SOo (2, 1)+, while it is a contraction of a principal
series representation D _ (Eo) of SOo (2, 1 ) _ which Ieads [8] to the direct

FIG. 2. - (a) Spectrum of the compact generator Ko of S0o(2, 1) in a discrete series
representation D+ (E~). (b) Spectrum of the noncompact generator To of S0o(2, 1) in a
principal series representation D _ (E~).

sum {!/J (m) 0 ~(-~). Here Eo is the positive lower bound (see Fig. 2 a) of
the discrete spectrum of the compact generator Ko, for the representation
D + (Eo), and as such, is reminiscent of a "minimal energy". In the case
of D _ (Eo), the parameter Eo is associated (see Fig. 2 b) to the continuous
spectrum of the non-compact time translation operator To.

In both cases a contraction of the representation is carried out by letting
Eo - + oo and K - 0, while holding the product K Eo constant and equal
to m, the mass of the system:

The uniqueness of the limit in the first case, together with the nice
properties of a discrete series representation, has motivated the present
work. The group SOo (2, 1), or its SU(1, 1) or SL (2, R) versions, has
relatively well-known properties and the contraction procedure should
keep trace of some of them. In particular coherent states associated to
the discrete series have become classical since the work of Perelomov [7]
and some aspects of their existence should subsist in a coherent state
theory for the Poincaré group 9~ (1, 1), such as the one developed in I.

Annales de l’Institut Henri Poincaré - Physique théorique



87DE SITTER TO POINCARÉ

The original square integrability of the discrete series representations on
the entire group manifold has to be replaced by the notion of square
integrability modulo some subgroup, namely the time-translation subgroup
which, before contraction, was SO (2). Hence a phase space for ~ + (1, 1)
is used in I, and on it the square integrability of the unitary representation
[!jJ (m) is studied. This notion was subsequently cast into a more general
form by De Bièvre [9], using the geometric language of the Kirillov-
Kostant-Souriau quantization procedure [10].
What is really new in our present approach is that contraction from

SOo (2, 1 ) + brings out a natural section in the Poincaré phase space
besides revealing other striking features, such as an unusual realisation of
[!jJ (m) on functions defined on the phase space itself (4). The familiar
Wigner realisation of ~ (m) is next recovered through a constraint imposed
on such functions, reminiscent of the choice of a polarization in the

geometric quantization method [10]. The choice of polarization which has
to be made here follows from the contraction itself, if we wish to protect
the latter against infinities.
The organisation of this paper is as follows. In Section 2 we fix the

notation and parameters for SOo (2, 1), its SU ( 1, 1) version, their respec-
tive homogeneous spaces, and the discrete series representations D + (Eo).
Next we give a brief review of the main features of D + (Eo).

In Section 3 the contraction procédure K - 0 is described in the

SOo (2, 1) language and in the SU ( 1, 1) language at the level of the

generators of the representations. A privileged section in the Poincaré
phase space and a representation of &#x26;~ (1, 1) on functions f (p, q) appear
in a rather unexpected way. A brief account of the ensuing properties is
then given.

In Section 4 the link with 1 is made. We resolve certain questions raised
in the conclusion to that paper and finally present some ideas for possible
extensions or applications of our work.

Remark. - Throughout the paper, as in I, we use boldface letters a, q,
p, ... to denote the (l-dimensional) space component of vectors. The
point is to remind the reader that a substantial part of the formulas are
actually valid in the usual (1 + 3)-dimensional Minkowski space-time.

(4) The identification of phase space with a suitable homogeneous space of the relativity
group (Galilei or Poincaré) has a long history; the idea can be traced back, at least,
to H. Bacry and A. Kihlberg [11] and R. Arens [12]. It led ultimately to the methods of
geometric quantization [ 10]. For a review of those questions we refer to the recent monograph
of H. Bacry [13].

Vol. 52, n° 1-1990.
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2. TWO DIMENSIONAL DE SITTER SPACE AND ITS
KINEMATICAL GROUP SOo (2, 1)

The de Sitter space with curvature K2 can be described by the one-
sheeted hyperboloid in 1R3 (see Fig. 3):

FIG. 3. - (Anti) de Sitter two dimensional space time visualised
as the one-sheeted hyperboloid uî + u2 - u3 = x- 2, in 1R3.

Global coordinates (xo, x) exist for such a manifold, namely:

SOo (2, 1 ) acts transitively on the
hyperboloid:

Annales de l’Institut Henri Poincaré - Physique théorique
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Infinitesimal generators for (pseudo-) rotations in the (i, j)-plane are

denoted by L12 for true rotations, L23 and L31 for hyperbolic rota-
tions.

They satisfy the commutation rules:

The homomorphism between SOo (2, 1) and the group SU ( 1, 1) of the
2x2 comDlex unimodular matrices

is easily displayed through the action of the latter on hermitian matrices
~ associated to the triplets (U1’ u2, U3)

Here g+ is the hermitian adjoint of g. The 3x3 matrix (aij) which
corresponds to (2.6) through (2. 7) is given by

The three basic one-parameter subgroups of SOo (2, 1)

correspond, respectively, to the SU ( 1, 1) matrices (modulo a factor of
- 1):

In other words, in this parametrization, the generators of SU ( 1, 1) read:

Vol. 52, n° 1-1990.
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The Cartan decomposition G = PK of SU ( 1, 1 ) is easily performed :
/ W ~ ~ , i ~ , i i , , . , , .

K is the maximal compact subgroup and P can be put in one-to-one
correspondence with the symmetric homogeneous space G/K. The latter
is homeomorphic to the open unit disk

The above identification is achieved through the choice of the section:

Let us introduce the coordinates T and 00 for ~:

These are also the (pseudo-) angular coordinates for the upper sheet ~ +
of the unit hyperboloid in ~3:

This simply illustrates the well-known correspondence between IR + and
~, the latter being the stereographic projection of the former (Fig. 4).
We note the formulas:

At the level of the relationship between the groups SU ( 1, 1 ) and SOo (2, 1 )
given by equation (2.8), the following SOo (2, 1 ) hermitian matrix corres-
ponds to the section (2. 14) :

This achieves the description of the homogeneous space SOo (2, 1 )/SO (2)
in terms of points n = (n0, n1, n2) lying on L +.

Annales de l’Institut Henri Poincaré - Physique théorique
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FIG. 4. - 03B6 ~ D as the stereographic projection of a point n = (no, nl, n2)
lying on the upper sheet J~+ of the unit hyperboloid nô - ni - n2 = 1, in 1R3.

From now on, we shall denote the sections (2 . 14) and (2.18) by p (~)
and p (n) respectively. The action of SU ( 1, 1) on D can be found from
the usual multiplication of p (~) from the left:

where

In a similar manner,

The spaces D and L+ are endowed with beautiful analytic properties,
which make them Kâhlerian ([7], [ 14]). They have G-invariant metrics and
G-invariant 2-forms [G = SU ( 1, 1) or SOo (2, 1)], both arising from the

Kâhlerian potential - ln (1 - |03B6 2 = :

Vol. 52, n° 1-1990.
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In view of their symplectic structure, and ~ may be called phase spaces
for the kinematical group SOo (2, 1) and its double covering SU ( 1, 1),
respectively [15]. Finally we recall that these manifolds are the simplest
examples (besides S2) of Lobachevsky spaces, endowed with a distance p
between any two points n and n’ (resp. ~ and Ç’): _

where

We come now to the description of the discrete series representation of
SU ( 1, 1) [or its universal covering SU(1, 1)]. We denote 
the space of functions analytic inside the unit circle, satisfying the condi-

where

with Eo = 1, 3/2, 2, 5/2, ... (or Eo &#x3E; 1/2, for the universal covering).
The positive number Eo will be considered as a minimal weight or

minimal energy for reasons which will soon appear. Let us define the

representation operators TEo (g) by

for ~== ( BP ~/ ’ and tg = transpose of g.
The représentatives of the Lie algebra éléments (2 . 11 ) are given (after
adjoining the usual factor of i) by:

with the commutation rules,

It can directly be checked that the Casimir operator

Annales de l’Institut Henri Poincaré - Physique théorique
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takes the value

identically on ff 0: no second-order wave equation hère !

Ko is the ladder or "energy" operator whose eigenvalues in the represen-
tation space are Eo, Eo + 1, Eo + 2, ..., Eo + n, ... The correspond-
ing eigenvectors are the normalized monomials:

These are orthogonal with respect to the form

Sometimes the (bra) ket notation is used:

Let us introduce the energy raising and lowering operators

They allow us to build up the entire space fFEo, starting from the "funda-
mental state" 1 Eo, Eo ) = uo (Ç) = 1 : 

-

All the above is well-known, and can be traced back to the works of
Fock, Bargmann is a Fock-Bargmann space), Gelfand, Vilenkin ([5],
[6], [7] et al.). It provides us with the ingredients for a theory of coherent
states on the Lobachevskian plane, as developed by Perelomov. We shall
re-examine this important point in the last part of this paper. Let us end
the present review by listing some global features of the representation
TEo [équation (2.26)]. Its matrix elements with respect to the orthonormal
basis (2. 33) are given by:

Vol. 52, n° 1-1990.
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In the range 1/2  Eo  +00, they are square integrable with respect to
the Haar measure of SU (1, 1). The latter reads

in the Cartan parametrization (2.12):

More generally, they satisfy the orthogonality relations:

which occur as a particular case of orthogonality relations holding for
any representation of the so called discrete series [16]. It is precisely the
discrete series which occurs here, for any real Eo &#x3E; 1 /2, with the holo-
morphic discrete series occurring for the particular values: Eo =1, 3/2, 2,
5/2, ...

3. CONTRACTION PROCEDURE TOWARD POINCARÉ

Doing physics in de Sitter space means that we have at our disposai a
universal length Any contraction process toward a flat space-time
implies a rescaling of what we consider as lengths before contraction
because they tend to lengths in our own "flatland". This applies to the
global coordinates x and xo introduced in equation (2. 2) and this will be
the case for the SOo (2, 1) parameters a and ao, that we are going to use
instead of the W and e appearing in equations (2. 9) :

Now, following Inônü [17], we take the limit K -~ 0 of the product of
matrices:

A (K) being the similitude (or "rescaling") matrix:

Annales de l’Institut Henri Poincaré - Physique théorique
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the form of which is imposed by the asymptotic behavior of the coordinates

ui [equation (2 . 2)]: u3 = x. The results is the three-

dimensional matrix representation of the Poincaré group P~+ (1, 1 ) :

which acts on the column vectors x --_ xo, x). The contraction is said
to be performed with respect to the Lorentz subgroup of SOo (2, 1 ) whose

parameter is the unmodified de Sitterian "rapidity" p.
What does the de Sitter phase space SOo (2, 1)/SO(2), or the set of

sections (2.18), become under the contraction? Because we have in mind
a Poincaré phase-space parametrized by (q, p), let us adopt a different
notation in equation (3 . 4). First, replace a = (ao, a) by q = (qo, q). Secondly
reparametrize A -_- Ap by a vector p = (po, p) belonging to the forward
mass hyperbola V£ = ~ (po, p) E pô - p~ = m2 ~ (as in 1) :

Now the matrix

should be the contracted version of a certain rescaled SOo (2, 1) matrix
Hence, for small K, its matrix elements behave as follows (see also

the Appendix):

For the matrix p (n), given by (2.18), it follows that

and

Vol. 52, n° 1-1990.
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The relation (3.8’) imposes a very specific value on the time-translation
parameter qo:

Therefore, the contraction procédure has provided the left coset space

(1, 1 )/T, where T is the subgroup of time translations (notation
borrowed from I), with the following Borel section P : (1, 1 ):

The space-like vector

enjoys remarkable properties (see Fig. 5). First,

where e denotes time inversion. Property (3 . 12) is characteristic of the

section P and can actually be taken to be its definition. Thus an equivalent
formulation would be to assert that P be the (unique) section which obeys
the equation

It follows that P (q, p) admits an almost symmetrical factorization, on the
left and on the right:

Next an arbitrary element (q, ( 1, 1 ) may be factorized either as

according to the left coset (1, 1 )/T, or as

Annales de l’Institut Henri Poincaré - Physique théorique
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FIG. 5. - Space-time diagram for the section 1). Two Lorentz
frames K and K’ are shown, K’ being the transform of K under the Lorentz transformation

For any such pair of frames, there exists one and only one "bisector" frame KS
which moves with opposite velocities with respect to K and K’:

= 201420142014- The coordinates, with respect to K and K’, of any event Ei
8 8 

Po + m
located on the time-axis of Ks are related by qô = qo, q’ _ - q, i. e. Ei occurs simultaneously,
but is oppositely located in K and K’. On the other hand, for any event Es located on
the space-axis of Ks, we have q~ _ - qo whereas q’ = q. Since the space-axis of K~ is defined

by the relation q0=uq=q.p p0+m, we conclude that it is the geometrical locus of the space-
like vector qs defining the section (3 (q, p).

according to the right coset hr = T B ~ + ( l, 1). In the former case,

R‘s ’ - ( B~o+~ q ’ and q’ is built from q through the Lorentz boost 

Therefore, the section (3.10) is valid for both ri and and points of
both of them can be parametrized by (q, p) E 1R2 according to P. The left
and right actions of ~ + (1, 1 ) on ri and rr, respectively, are then perfectly
symmetrical unlike what was encountered in I. On ri, the action is

Vol. 52, n° 1-1990.
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where

with a’ = and

Similarly, on r/

where now

It is then obvious that both rI and rr have the same invariant measure

with respect to (3 .17) or (3 . 20). This fact could have been easily inferred
through contraction from the (unique !) invariant measure (2 . 23) on the
Lobachevskian plane in its version "~" or "J~+’B A curvature-dependent
(q, p) parametrization of these phase spaces is possible through
equation (3 . 8) and equation (2.17).

where xo depends on (q, p):

The 2-form 0153 of equation (2. 23) then reads

and gives by rescaling and contraction

Annales de l’Institut Henri Poincaré - Physique théorique
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It is also interesting to see what happens to the invariant metric ds2, the
other Kâhlerian attribute of ~. In terms of q and p it reads

We obtain, in the limit K - 0,

We now turn to the task of contracting the infinitésimal generators (2 . 27)-
(2. 29) of the representation TEo introduced in Section 2. Once again, and
as well known, a rescaling is necessary [ 17] :

The commutation rules (2.30) become:

and should yield the Poincaré commutation rules in the limit K - 0.

However, things are not so straightforward, if we examine more carefully
the limit of the operators (3 . 31 ), after changing the variable ~ into (q, p),
according to (3.25). We then obtain, for small K (see the Appendix for
more details):

Two problems arise here: the first and more puzzling one is the presence
of a singularity in the expression of K2. To get rid of it we must impose
the following condition on the space of functions p) carrying the
contracted representation:

Then we are left, and this is the second problem, with a nonstandard
representation of P~+ (1, 1), due to the embarrassing presence of a factor
of 1 /2 in the commutation rules:

[compare with the limit K - 0 of the rules (3.32)].
Actually we should not be so worried about this discrepancy. After all,

the contraction procedure forces us to a change of representation space,
by imposing on the original one a subsidiary condition (or polarisation

Vol. 52, n° 1-1990.
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condition in the Kirillov-Kostant-Souriau terminology), namely the condi-
tion (3 . 36). In a certain sense the latter parallels the disappearance of the
real part of ç when we too cavalierly take the limit K ~ 0 in

equation (3.25). The operators Ko, Ki, K2 are defined on a space of
analytic functions, and if there are some compensating terms on the
right-hand side of their commutation rules, they will not survive after
contraction. The limit space on which Po, P, 6L and fi act is genuinely
singular. This point will be further clarified when we eventually identify it
as the momentum space carrying the Wigner representation of P~+ (1, 1)
for mass m &#x3E; 0.

Now, to remove the factor 1 /2, we rescale (again !) 6L and the variable
q:

Let us adopt the (définitive !) symbols:

for the time-translation generator,

for the space-translation generator,

for the Lorentz boost generator,

for what we shall call the "polarization operator". Their commutation
rules look familar

The polarization condition coming from (3 . 36),

is perfectly consistent with our original aim, namely reaching through a
contraction the of ~(1, 1). The carrier space of the latter
should be characterized by the Klein-Gordon condition:

Annales de l’Institut Henri Poincaré - Physique théorique
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Now the representation (3 . 39)-(3 42) has a remarkable feature:

So the condition (3.45) is really what we need to describe our representa-
tion space. More precisely, the latter is made up of solutions to:

namely,

where qs is the section vector given by equation (3.11):

and q&#x3E; (p) is chosen to lie in L2 (~~. dp/po).
The operators of energy, Po, and momentum, P, are diagonal in such a

representation. Indeed, for a function f of the type (3 .49):

On the other hand, since the exponential factor is "transparent"
with respect to the action of the boost:

we simply have

The Poincaré global actions are then easily deduced from the above.
If we do ignore the phase factor i. e. if we just look at the

Poincaré action on the functions p, (3.50), (3.51) and (3. 53) are clearly
recognized as the original infinitesimal Wigner action on L2 (’~m , 

or equivalently,

Vol. 52, n° 1-1990.



102 S. T. ALI, J.-P. ANTOINE AND J.-P. GAZEAU

where k --_ k is another notation for the space component of a vector k.
So the polarization condition (3.45) definitely forbids the use of
L2 (~2, dq dp/po) as a representation space, reintroduces a wave equation,
namely the Klein-Gordon equation (3 . 46) and, up to a phase factor, leads
to the momentum version (3 . 57) of the Wigner representation P (m).

4. WEIGHTED POINCARÉ COHERENT STATES

The Perelomov construction of coherent states on the Lobachevskian

plane ~ SU ( 1, 1 )/U ( 1 ) is based on the systematic identification (proper
to quantum mechanics):

for any constant phase ue R. So the objects considered are rays 
instead of simple elements P in the Hilbert space. The second ingredient
in the Perelomov construction is the existence in ffEo of specific rays 
left invariant under the action of the representation operators TEo (k), for
any element k of the compact subgroup U ( 1 ):

i. e. TEo (k) cpo = ~k~ 
cpo, ’ri k E U (1). Examples of such states are provided

by the basis elements (2.33). Indeed, we have

A Perelomov coherent state is then defined by

where (po obeys (4 . 2) and p (Q is the left factor in the Cartan decomposi-
tion (2 . 12), g=p(03B6)k of gE SU (1, 1 ). Hence the collection [the SU ( 1, 1 )-
orbit through of coherent states ]§ ) , when g runs throughout
SU ( 1, 1), is labeled by points in ~.
A wide set of properties are displayed by such states: nonorthogonality,

overcompleteness, existence of a reproducing kernel, minimization of cer-
tain inequalities, etc. We refer to reference [7] for a comprehensive inven-
tory of them. Let us just mention the crucial one for our purposes:

Annales de l’Institut Henri Poincaré - Physique théorique
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(overcompleteness or resolution of the identity), where

The proof of (4. 5) stems from Schur’s lemma, applied to the irreducible

representation TEo. However, equation (4. 5) can be considered as a direct
consequence of orthogonality relations holding on the whole group

SU ( 1, 1), for discrete-series representations:

where the form ( , )Eo and the Haar measure dg are given by (2. 34) and
(2. 39) respectively. Note that equation (2.40) is a particular case of
the above relations. Picking cp 1= cp2 = cpo and integrating over the U ( 1 )
parameter leads to the resolution of the identity (4. 5).
The latter can be cast into a form seemingly more appropriate to

contraction. We reintroduce the (q, p) variables (3 .25) for D and the

expression (3 . 27) for the 2-form 00. The result reads (with m = K Eo).

where q, p) stands for e. (see (4.4))

We could now choose an appropriate (po and perform a contraction on
(4 . 8) to arrive at a parallel resolution of the identity for P~+ (1, 1). Howe-
ver, as a cursory examination indicates, this is fraught with too many
distracting technical problems.

Let us therefore stick to the original de Sitterian structure, namely the
contracted its particular section

Hence we pick an element p in the Wigner representation space

Je m = L 2 (f ~, dk/ko) and following 1 we study the square-integrability of
the function fP’ : I-’ -~ ~ defined by:

)&#x3E; is the invariant form on 

and Um (q, p) is a shortened notation for 11 p)). Note that we
consider the elements of as functions of the single variable k.
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The key integral to be investigated for constructing coherent states is
the following one:

Integrating over q leads to the delta function

X is a strictly increasing function of k and vanishes if and only if k = k’:

Next, performing the dk integration, changing p into - p, using the fact
that and the invariance of the measures, we obtain:

This integral is finite if p and p’ are in the domain of the quadratic form
associated to the energy operator Po, i. e. p, cp’ E D (PÕ/2). Recall that

More precisely, we have the following estimate

This inequality should be compared to its SU ( 1, 1) counterpart

where the equality is easily deduced from equation (4. 8).
Inequality (4.17) clearly indicates that we lose one of the most attractive

features of the coherent states, namely the resolution of the identity, if we
define the latter in the canonical way [compare to equations (4.4) or
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for a given p E D (Pô~2), c~ being some normalisation constant.
Fortunately there exists a way to avoid the above difficulty. The calcula-

tion of the integral (4 .15) has brought out the bounded positive symmetric
kernel

Its appearance can be prevented by just "weighting" the action of Um in
Definition (4.19), by the adjunction of a multiplication operator T(p).
Thus we introduce the states

where p E D (PÕ/2), the operator T (p) is defined by:

and P is the momentum operator:

This definition makes sense, since the operator 1 m ( P0-p.P p0+m)= T (p)2
is positive definite: its spectrum, for a given p E £, is the real interval

( ~ "’ , + (0). More explicitly the state ~p~~, ~~ reads:

The following statements about square-integrability on and r respec-
tively, then follow directly.

First we have the estimate in Je m:

Next it is trivial to derive the following result from the calculation of
I (O, O’)?
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for all cp E D (PÔ/2). This equality allows one to establish:

THEOREM 4.1. - If 11 E Hm is in the domain of (or of the quadratic
form associated to Po), then the map W03B2~: Hm ~ L2 (r, dq dp/p0) given, for
any cp E by the relation

is an isometry. D

Borrowing again the terminology of 1 and [9], it can be said that any
11 is "admissible" and Um is "square integrable" mod (T, ~).
Given an admissible 11, we may consider its orbit under Um:

From the above, Sp is overcomplete in and moreover

The family of vectors

will be called the set of weighted Poincaré coherent states on the Poincaré
phase space r, for the section P.
The usual consequences follow from the resolution of the identity (4. 29).

For instance, the existence of a reproducing kernel

such that

and [FD 11 == W~ W~* is the projection operator onto the subspace Je 11 of
L2 (r, dq dp/po) which is the image of Je m under W~;

Next we recover orthogonality relations similar to those given by (4. 7)
in the semi-simple case.

Annales de l’Institut Henri Poincaré. Physique théorique



107DE SITTER TO POINCARÉ

THEOREM 4.2. - The following orthogonality relation holds for all ~1,
112 E D (PÕ/2) and all cp I, P2 E 

A Wigner transform may also be introduced. To do this, we denote by
~2 the Hilbert space of all Hilbert-Schmidt operators on with
scalar product

Then if p~ ~ stands for the rank one (thus Hilbert-Schmidt) operator

the orthogonality relations (4.35) can be recast into the form

for all 112 in D (PÕ/2).
The domain D (Pô~2) is dense in It follows that the linear space of

all p, , 11 E D (PÕ/2), is dense in ~2 Next let us define a map:

by the relation

Then W is a linear isometry, which can be extended by continuity to the
whole of ~2 (~m)~

will be called the Wigner transform map and W p is the Wigner transform
of p. The range of the linear map W is dense in L2 (r; m/2 03C0 dq dp/po)
and coincides with the domain of the operator Ho:
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5. CONCLUSION

A representation D + (Eo) ofSOo(2, 1 ) +, as displayed in (2.26), belongs
to the discrete series and hence admits coherent states in the sense of

Perelomov. On the other hand, the representation P(m) of ( 1, 1 ) which
is the contracted version of D + (Eo) is not a discrete series representation
[there are none for 1)]. Hence 9 (m) does not admit Perelomov
type coherent states. As was pointed out, and explicitly demonstrated in
I, an extended notion of square integrability of a group representation
enables one to construct physically interesting coherent states for

~(1,1).
Their construction is, however, dependent on the judicious choice of a

section. One such choice was made in I. In this paper we looked at a

second possible choice of a section, namely the one given in (3.10). While
this in no way exhausts all possibilities for obtaining sections, the use of
(3 .10) demonstrates how square integrability features of the representation
D + (Eo) persist in the transition to 9 (m) by the contraction procedure. It
is also indicative of the reason behind the existence of a more general
notion of square integrability for the representations of P~+ (1, 1 ).

It ought to be pointed out, however, that the introduction of the notion
of a weighted coherent state in (4 . 21 ) is new in this context. It enabled

us to obtain a resolution of the identity (4.29), without any further
conditions on the resolution generator (analyzing vector) q, unlike in I,
where coherent states without weighting - but with additional admissibility
conditions on q - had been constructed. Weighted coherent states could
also have been introduced in I, and results completely analogous to the

present ones could have been obtained. As a matter of fact, as we shall
demonstrate in a succeeding paper [18], there exists a whole family of
sections of P~+ (1, 1 ) for which similar notions can be introduced. This
also seems to indicate that the existence of orthogonality conditions on
homogeneous spaces, of the type (4.38), is generic and not just limited to
the Poincaré group.

APPENDIX

In this appendix, we examine in more details the effect of the contraction
K - 0 on the commutation rules (2.30) of the de Sitter Lie algebra. We

keep using boldface letters to denote space components of the 2-vectors.
Indeed, it turns out [19] that a substantial part of the formulas obtained
here admit a straightforward generalization to the (1 + 3)-dimensional case,
when one performs a similar contraction from SOo (2, 3) toward

~(1,3).
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First of all, we define the dimensionless parameter 03BE=03BA/m. Writing
properly the matrix elements ar~ of (3 . 7) to the first order in ç, we obtain
for the section matrix p (n):

together with the condition q0=q.p p0+m, where Fi (i= 0, 1, 2) are differen-
po + m

tiable functions of q and p, analytic in ç in a neighborhood of ç = 0. Let
us write

Then the relation nô - ni - n2 =1 imposes the constraint

Defining the function h (q, p) = m/p0f20 (q, p), the complex variable § ~ D
reads, according to (2 .17):

with

The arbitrary function h is to be chosen in such a way that the commuta-
tion relations of the rescaled SOo (2, 1) generators Ko, 1, K2 go over,
as ~ -~ 0, to those of the Poincaré Lie algebra. Going back to the q, p
parametrization, we obtain, to the zeroth order in ~:
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Inserting (A.4) and (A.5) into (2.27)-(2.29), we obtain (writing as usual
K Eo = m) to the zeroth order in ~:

with

To get a finite result from (A . 6 . c), we are forced to impose on the
functions ~‘ (q, p) in the representation space the polarization constaint:

This yields:

Next we rescale 2 q - q, 2 K - K, but we recover the Poincaré commuta-
tion relations only if = 0, i. e. h = h (p), and then :

So, finally, on functions of the form (3.49), f (q, p) = p (p), the boost
generator K acts as:

where F (p) is an arbitrary function of p - which we may safely put equal
to zero.
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