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Analysis of a quantum Markov chain

Jocelyne MARBEAU and Stanley GUDDER

Department of Mathematics and Computer Science,
University of Denver, Denver CO 80208

Ann. Inst. Henri Poincaré,

Vol. 52, n° 1,1990~ Physique théorique

ABSTRACT. - A quantum chain is analogous to a classical stationary
Markov chain except that the probability measure is replaced by a complex
amplitude measure and the transition probability matrix is replaced by a
transition amplitude matrix. After considering the general situation, we
study a particular example of a quantum chain whose transition amplitude
matrix has the form of a Dirichlet matrix. Such matrices generate a
discrete analog of the usual continuum Feynman amplitude. We then
compute the probability distribution for these quantum chains.

RESUME. 2014 Une chaine de Markov quantique est analogue a une chaine
de Markov stationnaire classique avec la difference que la mesure de
probabilité est remplacee par une mesure d’amplitude complexe, et la
matrice des probabilites de transition est remplacee par une matrice d’am-
plitude de transition. Apres avoir considere Ie cas general, nous etudions
le cas particulier d’une chaine quantique dont la matrice de transition est
une matrice de Dirichlet. De telles matrices conduisent a un analogue
discret des amplitudes de Feynman continues. Nous calculons ensuite les
distributions de probabilité de ces chaines quantiques.
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32 J. MARBEAU AND S. GUDDER

INTRODUCTION

The time evolution for a reversible quantum system is usually governed
by a one-parameter unitary group U (t). This unitary group can then be
used to compute the state of the system at any time from its initial state.
To be precise, if the initial state at time t = 0 is given by a unit vector x#o
in Hilbert space, then the state at time t is U (t) Moreover, U (t) can
be used to find transition amplitudes which are important for calculating
scattering cross-sections, decay lifetimes and decay probabilities. If the

system is in the state’" at some time, then U (t) is the transition

amplitude that the system goes to state cp after an elapsed time t.

In this paper we consider a simplified discrete version of quantum
mechanics. In this case, observables only have a finite number of values
and time is discrete. We then have a finite dimensional Hilbert space H
and a single unitary operator U on H which generates a discrete unitary
group U (n) = Un. We can then interpret  cp, as the transition ampli-
tude from state B)/ to state p in one time step. If ~, ~=0,1, ..., n -1, is
an orthonormal basis for H, we define the n x n transition amplitude
matrix A relative to this basis by A~k = ( ~r J, U ~rk). It is clear that Â is a
unitary matrix.
From the probabilistic viewpoint, ((p,UB)/) is the conditional amplitude

that the system is in state p given that it was in state B)/ one time
unit previously. The usual transition probability matrix of conventional
probability theory is now replaced by the transition amplitude matrix A.
Since we have a probabilistic interpretation, one might suspect that there
is an underlying discrete stochastic process that generates these transition
amplitudes. This is indeed true and the functions Jj of this process can be
interpreted as quantum mechanical observables or as we shall call them,
measurements. Since A is unitary, we call Jj a unitary process and much
of our work in Section 1 can be applied to such general processes.
However, we shall be primarily interested in processes with the additional
properties of being Markov and stationary. For this to happen, A must
not only be unitary but it must be stochastic. We then call fj a quantum
chain.

In Section 1 we consider the general theory of quantum chains. Section
2 studies a particular example of a quantum chain whose transition

amplitude matrix has the form of a Dirichlet matrix. Such matrices

generate a discrete analog of the usual continuum Feynman amplitude
([2], [5], [6]) and might be useful in providing a method of approximation
to Feynman integrals. They have also been useful in certain elementary
particle studies [7]. We compute the probability distribution for these
quantum chains in Section 3. In an appendix we prove some technical
results that are used in the proofs of the theorems of Section 3.
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33ANALYSIS OF A QUANTUM MARKOV CHAIN

There are various other approaches to quantum Markov processes that
have been considered in the literature. Although these approaches are
quite different in scope from that presented here, the reader may want to
consult some of them for a comparison ([ 1 ], [3], [4], [8], [9], [ 11 ]).

1. QUANTUM N-CHAINS

Let Q be a nonempty set called a sample space. The elements of Q are
called sample points and they represent a set of possible configurations
for a physical system. Let A be a a-algebra of subsets of Q and let

A : A - C be a complex measure with A(Q)==1. We interpret A as a set
of quantum events. If A (A) ~ 1, then A (A) is interpreted as the amplitude
that the event AeA occurs and P (~) = I A (~) 12 is the probability that A
occurs. Let S = {~ ’ - - be a finite set and let f : SZ -~ S. We call f a
measurement if f-1 (s .) e A, j = 0, ... , n -1, (sj)] =1. We inter-

as the event that f has the outcome The sample points in
are interpreted as the set of configurations of the system that

result in the outcome Sj upon execution of the measurement f To avoid
measure-theoretic complications, we have assumed that f has only a finite
number of outcomes. The more general situation is treated in [5], [6].

Let f and g be measurements with outcome sets R = ~ ro, ... , rrn _ 1 ~ and
S = ~ so, ... , s~ _ ~ ), respectively. We say that g does not interfere with f if
for all j, k and for j= 0, ... , m -1

This conditions states that the probability is the sum of the

probabilities for the subevents f -1 (rj) n g-l (sk). Thus, if P (r J)] ~ 0
we have

so sk - P [g-1 (sk) ~.f’-1 (rJ)] is a probability distribution on the outcome
space S and we can condition g with respect to f. If g does not interfere
with f, as we shall see in Section 2, it is possible that f interferes with g.
Notice that a measurement g : S~ -~ S does not interfere with itself since
g-l (Sj) F) g-l (sk) equals g-1 (Sj) E A if j = k and equals p E A if j # k.

For Ai, 2EA with we interpret
A(03941|03942)=A(03941 n 03942)/A(03942) as the conditional amplitude of 0394 1 given

A~. If A (~2) = 0, we define A (Aj d2) = 0. Care must be taken if A = 0

Vol. 52, n° 1-1990.



34 J. MARBEAU AND S. GUDDER

since there are examples in which A(A~)=0 but [3]. In
general, the formula 42~ only holds when

Let /o~ ’ ’ - be a finite sequence of measurements with the same
outcome space S = ~ so, ... , sn _ 1 ~ . We an N-chain if
the following conditions hold:

Property (Cl) fixes the initial condition of the process ftj(C2) permits the
use of conditional amplitude formulas. An N-chain {ft} is stationary if

for every j, k = 0, ... , n -1 and t =1, ..., N - 1 and

Of course, ~)!/o ~)]=0 if k # 0 for any N-chain. An N-chain
{ f ~ is Markov if

for any ... , j 1= 0, ... , n -1 and t =1, ... , N -1.
We interpret a stationary Markov N-chain ~, f ~ as a repeated measure-

ment using the same measuring apparatus and f corresponds to the
measurement at the discrete time t. Then A ~.f’~ 1 (sk)] corresponds
to the amplitude of a transition of the system from outcome ~ to outcome
Sj in one time step. The complex conjugate A [f2l (sk)] is interpret-
ed as the transition amplitude from sj to sk in minus one time step; that
is, the amplitude that if the outcome s~ results at t = 2 then at time t =1
the outcome was sk. An N-chain is unitary if f2 does not interfere with f1
and for j# k we have

Equation ( 1 ) means that the system cannot instantaneously jump from
"state" s~ to "state" sk It is reasonable that f2 does not interfere
with fl since the measurement f2 is performed at a later time than fl.
However, since fl is performed at an earlier time, it is possible that fl
interferes with f2. We interpret

Annales de l’lnstitut Henri Poincaré - Physique théorique



35ANALYSIS OF A QUANTUM MARKOV CHAIN

as the transition probability from sk to s3. If/2 does not interfere with Il
we obtain

From (2) we conclude that

A unitary, stationary, Markov N-chain is called a quantum N-chain. The
n x n matrix with entries A~k = A [f 2 1 (s~) I f ~ 1 (sk)] is the transition

amplitude matrix 
We now show that the transition amplitude matrix for a quantum

N-chain satisfies some quite restrictive properties. First, is unitary.
Indeed, from ( 1 ) we and if j = k, since f2 does

r

not interfere with fl, from (3) we have

Second, it follows from (C2) that the entires A~ are nonzero, j,
~=0,...,M-1. Third, is a stochastic matrix in the sense that

~A~=l, ...~-1. This follows from
j

Notice that the last two properties hold for any N-chain, while the first
property holds for any unitary N-chain.
For any does not interfere with fo for all t = 0, ..., N

and equals p otherwise. is

stationary and/2 does not interfere with fl, then ft+1 does not interfere
withJ; for any t = 0, ..., N -1. Indeed, for ~ 1 we have

For a quantum N-chain we have the following stronger result. In the

sequel, we use the notation Pr ( j) = P 1 (s~)], Â = 

Vol. 52, n° 1-1990.



36 J. MARBEAU AND S. GUDDER

THEOREM 1 . 1. - For a quantum N-chain {h}, f , does not interfere with
f any 

Proof - We can assume that t&#x3E; 1. By Markovicity and stationarity
we have

Iterating this equation gives

Since Ar’ -~ is unitary, we have

COROLLARY 1 . 2. - For a quantum N-chain ~, f ~, f does not interfere
with f , for 0 _ t _ t’ _- N if and only if

J

be a quantum N-chain with transition amplitude matrix Â = 
The amplitude at time t = 0, ..., N is given by the unit vector

and the distribution at time t = 0, ..., N is given by the probability distribu-
tion

Notice that fo = ( 1, 0, ... , 0) and Po (k) = bk, o. We now show that]; and
Pt can be computed from Â. 

’

THEOREM 1. 3. - For a quantum and

Annales de l’Institut Henri Poincaré - Physique théorique



37ANALYSIS OF A QUANTUM MARKOV CHAIN

Proof. - By Markovicity and stationarity we have

Hence

It follows that f = A’/o and P, (k) = I 2. 0

Let ~,o, ... , ~,n-1 be the (possibly repeated) eigenvalues of the unitary
matrix A and let ~ro, ... , ~rn _ ~ 1 be the corresponding orthonormal basis
of eigenvectors. We can now find an explicit expression for Pt (k). In fact,

Hence, from (4) we have

We have shown that corresponding to a quantum N-chain there is a
transition amplitude matrix A where A is stochastic, unitary and has all
nonzero entries. Conversely, any n x n matrix with these three
properties is the transition amplitude matrix of a quantum 
with a given outcome space S = { so, ...,~_~}. We can construct ( £ ) as
follows. Let be the set of "sample paths". For

~ _ (s~, s~, ..., E S2 define

Let A be the power set on Q and define the complex mesure A : A -+ C
by A (4) _ ~ ~ A (~) : Since A is stochastic, we have A (Q) =1.
For t = 0 , ..., N define ;: Q - S by ; (so, ..., 

= where jo = 0 .

Vol. 52, n° 1-1990.



38 J. MARBEAU AND S. GUDDER

We first show that {~} is an N-chain. Clearly, (Cl) holds. To verify
(C2) we have from stochasticity and the nonzero condition that

For stationarity we have for t &#x3E;_ 1

In particular,

It follows that

so A is the transition amplitude matrix Moreover, by (6) we
have

so {/~} is stationary. For Markovicity, we apply (6) and stationary to
obtain

The unitarity of {/,} easily follows from the unitarity of A.

2. DIRICHLET MATRICES

In the previous section we showed that an n x n matrix A is the transition

amplitude matrix for a quantum N-chain if and only if A is stochastic,

Annales de l’Institut Henri Poincaré - Physique théorique



39ANALYSIS OF A QUANTUM MARKOV CHAIN

unitary and has all entries nonzero. We now give an example of such a
matrix and find an explicit expression for the distribution Pt (k) for any
t=o,1, ...

Let n and a be positive integers that are relatively prime. The Dirichlet
matrix M (n, a) is the n x n matrix with entries

It is shown in [5], [6] that M (n, a) generates a discrete analog of the
usual continuum Feynman amplitude for a free particle [2] and as n - 00
this analog approaches the Feynman amplitude. Moreover, it can be

shown that M (n, a) is unitary ([5], [10]). Clearly, M (n, a) has all nonzero
entries.

Let S (n, a) be the Dirichlet sum

The following result is proved in [10].

LEMMA 2 . 1. - (a) If na is even, then

for every integer 0 ~ k _ 2 n - 2. (b) if na is odd, then

for every integer 0 _ k _ 2 n - 2.
It follows from Lemma 2.1 a that if na is even then the column (and

row) sums of M (n, a) all equal n-1~2 S (n, a). Moreover, it is shown in
[10] that I S (n, a) 1= nl/2. Therefore, the matrix

v

is stochastic. The factor n-1/2 S (n, a) does not affect unitary, so M’ (n, a)
is still unitary and of course has all nonzero entries. In the sequel we shall
not bother to multiply M (n, a) by n -1~ S n ) and shall just work with
M (n, a) since the distribution Pr is unaffected. Unfortunately, if na is

odd, a similar trick does not work and M (n, a) cannot be made stochastic.
For example, if n = 3 and a = 1 we have

Vol. 52, n° 1-1990.



40 J. MARBEAU AND S. GUDDER

The column sums are 1 /, J3 and (l+(x)//3 so no multiple of M(3,1) isstochastic. However, using the construction of Section 1, M (n, a) can still
be interpreted as the transition amplitude matrix of a unitary process {~}.
Although {ft} is not a quantum N-chain, it is still of interest ([7], [10]).
Since M (n, a) is unitary, Pt is a probability distribution. For these reasons,
we shall consider M (n, a) for arbitrary (relatively prime) n and a in our
computation of P~.

In order to apply (5) we need the eigenvalues and eigenvectors of
M (n, a). This has been done in [10].

THEOREM 2 . 2. - (a) If na is even, then for j = 0, ..., n --1-, the eigenvalues
of M (n, a) are - 

, - ~ - ’

. and a corresponding orthonormal basis of eigenvectors is

(b) If na is odd, then for j= 0, ..., n -1, the eigenvalues of M (n, a) are

and a corresponding orthonormal basis of eigenvectors is

Applying Theorem 2. 2 for na even, we obtain

and for na odd we have

Since I S (n, a) = Jn we have from (5) that, for t &#x3E; 0

for na even and

for na odd. Although (7) and (8) give explicit expressions for Pr, they are
not in closed form and they do not give us much information about the
dynamics of the system. We perform the technical work of evaluating

Annales de l’lnstitut Henri Poincaré - Physique théorique



41ANALYSIS OF A QUANTUM MARKOV CHAIN

certain summations in the appendix and we apply these results to compute
Pr in the next section.

3. PROBABILITY DISTRIBUTIONS

We now compute the probabilities Pr (k) given by (7) and (8) of Section
2. For an integer t, let t2 denote the number of times a factor 2 appears
in the prime decomposition of t and by convention 0~=0. We denote the
greatest common divisor of two integers n and t by (n, t). If an integer d
divides an integer k we write 

THEOREM 3 . 1. - Let (n, t) = d and t &#x3E; 0. (a) If n is even, then Pt (k) = d/n
and if t2 = n2 and 2 k/d is odd. Otherwise, Pt (k) = 0. (b) f

n is odd, then Otherwise, Pt (k) = 0.

Proof. - (a) Applying (7) and Lemma Al (a) of the appendix we have

Suppose t2 ~ n2. Then nt/d2 is even so

The geometric series has sum d if and sum 0 otherwise. Suppose
t2 = n2. Then is odd so

If 2 k/d is an odd integer, the geometric series has sum d. Otherwise, we
have

Since t2 = n2 and n is even, we have d is even so the last expression
vanishes. We conclude that when does not vanish we have

Vol. 52, n° 1-1990.



42 J. MARBEAU AND S. GUDDER

where n’ = n/d and It follows that (n’, t’) =1. If t2 ~ n2 and 
then is even and n’ at’ = ant/d2 is even. Applying Lemma A 2 (a) of
the appendix gives

Hence,

If t2 = n2 and 2 k/d is odd, then nt/d2 is odd and n’ at’ = ant/d2 is odd.

Letting 2 k/d= 2 p + 1 and applying Lemma A 2 (b) we have
. ø’ - 1

Again,

(b) Let n be odd and a even. Applying (7) and Lemma A 1 (a) we have
Pt (k) as in (a). If ~~~2? then ntltf is even so as in (a) the geometric
series has sum d if and sum 0 otherwise. If t2 = n2, then nt/d2 is odd.
Since a is even we have

As before the geometric series has sum d if and sum 0 otherwise.

Again, as in (a), when it does not vanish. Finally, let na be
odd. Applying (8) and Lemma A 1 (b) we have

The geometric series has sum d if dlk and sum 0 otherwise. When 
does not vanish we have

where and Again, we have (~~)=1. Applying Lemma
A 2 (c) and (d) we conclude that

Annales de l’lnstitut Henri Poincaré - Physique théorique



43ANALYSIS OF A QUANTUM MARKOV CHAIN

Theorem 3.1 gives the surprising fact that Pt is independent of a. We
now consider discrete times at which the probability distributions coincide.

COROLLARY 3 . 2. - (a) If n is odd, then t) _ (n, s).
(b) is even, then if and only if (n, t) _ (n, s) and t2, s2 ~ n2 or
~2=~2=~2’

Proof. - Let dt = (n, t) and ds = (n, s). (a) Sufficiency is clear. For neces-
sity, there exists a k such that Pt (k) ~ 0. Then

Hence, dt= dS. (b) Sufficiency is clear. For necessity, assume Pt = PS. Sup-
pose t2 ~ n2 and dt I k. Then

Hence, dt = ds. If s2 = n2, then since Ps (~) ~0.2 is odd. But then 2 

is odd which is a contradiction. Hence, s2 ~ n2 so t2, ~2 ~~2- Suppose
t2 = n2 and 2 k/dt is odd. Then as before, If ~2~2~ then since

But then is odd which is a contradiction. Hence,

We call p the probability period of the process if p is the smallest positive
integer such that Pt + p = Pt for all t. In the next proof we shall need the
following well known fact. For any nonnegative integers m, n, t, (n, t) = (n,
mn + t).

COROLLARY 3 . 3. - (a) If n is odd, the probability period is n. (b) If n is
even, the probability period is 2 n.
Proof - (a) Since (n, t) _ {n, n + t), by Corollary 3 . 2, for every

t. The smallest positive integer such that is p = n. Hence,
n is the smallest positive integer such that P n = Po. Therefore, n is the

probability period. (b) First, (n, t) _ (n, 2 n + t). Suppose t2 = n2 = m. Then
t = 2m p, where p and q are odd. Hence,

Since 2 q + p is odd, (2 n + t)2 = m. Next suppose (2 n + t)2 = n2 = m. Then
2 n + t = 2m p, n = 2m q where p and q are odd. Hence,

Since p - 2 q is odd, t2 = m. By Corollary 3 . 2, Pf=Pt+2n for every t. Now

suppose p &#x3E; 0 and Pp = Po. By Corollary 3 . 2, ~==(~0)=(~). Hence, 
so p = rn for some positive integer r. If r =1, then p2 = n2 but 02 ~ n2 which
contradicts Corollary 3. 2. Hence, r ~ 1. If follows that 2 n is the smallest
positive integer satisfying P 2 n = Po. Therefore, 2 n is the probability
period. D

Vol. 52, n° 1-1990.



44 J. MARBEAU AND S. GUDDER

If follows from Corollary 3 . 3 that we need not compute Pt for t &#x3E;-_ n if
n is odd and for t &#x3E; 2 n if n is even. The next corollary shows that for n
even we also need not compute P~ for ~~.

COROLLARY 3 . 4. - (a) (b) If n is even, and

Proof. - The proof of (a) is clear. (b) By Theorem 3.1, Pn (k) =1 if
and only if 2 k/n is odd. But 2 k/n odd is equivalent to 2 k = nY for r odd
which is equivalent to k = (n/2) r. Since 0~~- 1, this holds if and only
if k = n/2. For the second part, (n, t) _ (n, 2 n - t). Suppose t2 = n2 = m. Then
t = 2m p, n = 2m q where p and q are odd. Hence,

Since 2 q - p is odd, (2 n - t)2 = m. Next suppose (2 n - t)2 = n2 = m. By a
similar argument t2 = m. By Corollary 3 . 2, D

We now apply our previous results to compute Pt for the case n =12.
This is given in Table.

TABLE. - (Pr (k) for n =12).
tBk 0 1 2 3 4 5 6 7 8 9 10 11 1

0 100000000000
1 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
2 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0
3 1/4 0 0 1/4 001/4001/400
4 001/30001/30001/30
5 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
6 1/2000001/200000
7 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
8 1/3 0 0 0 1/3 0 0 0 1/3 0 0 0
9 1/4 0 0 1/4 0 0 1/4 0 0 1/4 0 0
10 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0
11 I 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
12 0 0 0 0 0 0 1 0 0 0 0 0
13 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
14 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0
15 1/4 0 0 1/4 0 0 1/4 0 0 1/4 0 0
16 1/30001/30001/3000
17 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
18 1/2000001/200000
19 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
20 001/30001/3000 1/3 0
21 1/4 0 01/40 0 1/4 0 0 1/4 0 0
22 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0 1/6 0
23 1/12 1/12 1/12 1/2 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
24 1 0 0 0 0 0 0 0 0 0 0 0

Annales de l’lnstitut Henri Poincaré - Physique théorique



45ANALYSIS OF A QUANTUM MARKOV CHAIN

4. APPENDIX

In this appendix we prove some technical results that are needed to prove
Theorem 3 .1. As usual, we assume that (n, a) =1 and k= 0, ... , n -1.

LEMMA A .1. - Let (n, t) = d. (a) Then

(b) If na is odd, then

Proof - (a) Split the sum S1 into d parts to obtain

Letting j = s + mn/d gives

Since dl t and dz I nt we have

and the result follows.

(b) Again, split the sum into d parts to obtain

Since d I t the last exponential term equals

Since na is odd, (- l)~~=(- and

Vol. 52, n° 1-1990.



46 J. MARBEAU AND S. GUDDER

so the product of these two terms is unity. The result now follows. D

LEMMA A. 2. - Let (n, t) == 1, k = 0, ..., n -1. (a) If nat is even,

where (1 is the integer defined by (1[ =1 (mod n), 0  (1 _ n -1.
(b) If nat is odd.

where a satisfies at =1 (mod 4 n), 0 _ a _ 4 n -1.
(c) If na is odd and t is even,

where p is the remainder of  + k (mod n).
2

(d) If nat is odd,

where a satisfies 03B1t =1 (mod n), 0 _ rlv _- n -1.

Proof. - (a) Since (n, t) =1, by the Euclidean algorithm there exist

unique integers q and a such that O~a~-1. Then

k=(rlvt-qn)k and we have

But (qn)2 = so

Let m be the integer satisfying

Since nat is even

Annales de l’lnstitut Henri Poincaré - Physique théorique



47ANALYSIS OF A QUANTUM MARKOV CHAIN

But by Lemma 2.1 we have

for 0 _ m  2 n -1 and (a) is proved.
(b) The sum

is a partial sum of

Now 4 nat is even and (4 n, t) =1 since (n, t) =1 and t is odd. Moreover,
0~2~+1 ~4~-1 and a satisfies (mod4~0~o~4~-L If follows
from (a) that

We now decompose T into its even and odd parts T = E + U where

Since nat is odd, the last summand becomes

Hence,

The odd parts is given by

Vol. 52, n° 1-1990.
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Since nat is odd, we have (2 j + 1 ) t + (2 k + 1) even. Hence,

Hence, U = 0 and

The result now follows.

(c) Define the sum

Since t is even, t + k is an integer and nat is even so we can use the result
2 .

of (a). Let p be the remainder (mod n) of + k It now
2 2

follows that

(d) Define S as in (c) and replace k by k as in (a) to obtain

Annales de l’lnstitut Henri Poincaré - Physique théorique



49ANALYSIS OF A QUANTUM MARKOV CHAIN

It remains to compute the sum

Let m be the integer defined by

Then

and

Since nat is odd we have and

Hence,

Applying Lemma 2.1 we have

and the result follows.
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