
ANNALES DE L’I. H. P., SECTION A

XUE-PING WANG
Resonances of N-body Schrödinger operators
with stark effect
Annales de l’I. H. P., section A, tome 52, no 1 (1990), p. 1-30
<http://www.numdam.org/item?id=AIHPA_1990__52_1_1_0>

© Gauthier-Villars, 1990, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1990__52_1_1_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


1

Resonances of N-body Schrödinger operators
with stark effect

Xue-Ping WANG(*), (**)
Institute of Mathematics,

Peking University, 100871 Beijing, China

Ann. Inst. Henri Poincaré,

Vol. 52, n° 1,1990 Physique théorique

ABSTRACT. - In this paper, we apply the analytic distortion technique
to study the resonances of atomic type N-body Schrödinger operators
with Stark effect. By introducing a suitable Dirichlet problem, we give
precise location for resonances generated by eigenvalues below the bottom
of the essential spectra and as a consequence, we obtain an upper bound
on the widths of resonances which are exponentially small. Our result is
almost optimal in some cases.

RESUME. 2014 Dans ce travail on etudie les resonances de Foperateur de
Schrodinger a N-corps du type atomique avec l’effet Stark par la technique
de distortion analytique. En introduisant un probleme de Dirichlet conven-
able, on donne la localisation precise pour des resonances engendrees par
des valeurs propres au-dessous du spectre essentiel. Par consequent nous
obtenons une borne superieure sur la largeur de resonance qui est exponen-
tiellement petite. Notre resultat est presque optimal dans certain cas.
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2 XUE-PING WANG

1. INTRODUCTION

The resonances in Stark effect have been noticed since the early days
of quantum mechanics [20]. Titchmarsh first undertook a systematic math-
ematical study of such phenomena. In fact he studied only the problem
with pure Coulomb potentials [24]. In that case the results are nowadays
fairely satisfactory: one knows how to calculate the widths of resonances
generated by negative eigenvalues [10]. In general cases, the resonances of
Schrodinger operators with Stark effect are defined in [13] and [15] by
analytic dilation and in [8] and [9] by parabolic analytic dilation for both
one and N-body problems. But as far as the author knows, the question
remains open until now how to calculate the widths of resonances for
one-body Stark Hamiltonian with general potentials, not to speak of the
same problem for N-body Schrodinger operators. In [26], we studied the
resonances of one body Schrodinger operators with Stark effect. Making
use of the analytic dilation (or more exactly, analytic distortion) in negative
xi-direction, we arrived at obtaining a precise location of resonances
generated by a negative eigenvalue Ao of - A + V (x). As a corollary, we
derive an upper bound on the widths of these resonances of the form:

for any E &#x3E; 0. In comparing with the results of [10], we see that this result
is almost optimal.

In this paper we shall study the resonances of N-body Schrodinger
operator with Stark effect:

in L2(RVN). Here P&#x3E;0, ~=(~’~ .... and A, is the Laplacian
on The charges qj may be any real number, but it is natural to assume
that:

We shall apply methods of [26] with a little modification to study the
resonances of N-body Schrödinger operators ( 1. 2). Let E=inf cress (H (0)) .
Assume that ~,o  ~ is an eigenvalue of H(0) with multiplicity m. Choose
a smooth real, function x on R such that for 11 &#x3E; 0 sufficiently small,

and to simplify the computation of numerical ranges, we assume that
and 0 for Then for and

Annales de l’Institut Henri Poincaré - Physique théorique



3RESONANCES OF N-BODY SCHRODINGER OPERATORS

03B8~R with I e I sufficiently small, the map: is a diffeo-

morphism on R~. It induces a unitary operator on which we

denote T (8, x). For a generic point x E RV N, we write: x = (xl, ..., 
with Then the distorted Stark Hamiltonian for e real is defined

by

in L2(RVN). To discuss the holomorphic extension of H(P, e) in e, we
make reasonable assumptions on V~ and In particular, our asumptions
are verified if (RV) or V~ is a sum of Coulomb type potentials and
Vij is a Coulomb or Yukawa potential on RB By the choice of x, we can
check that H (P, 9) so defined can be extended to a holomorphic family
of type (A) for I small and Im6&#x3E;0, with constant domain

Here and in the and

For sufficiently small, we prove that the essential

spectra 9) are contained in the t E ,

~0}. Therefore the resonances near Ao are defined. By studying
the Dirichlet realization of H (P) on the domain:

we obtain as in [26] the location of the resonances of near Xo. In
particular we get an upper bound on the width of resonances of the form,
for any E &#x3E; 0,

where S &#x3E;__ 1 is some constant depending only on the charges q~. In case all
but one qj equal zero, we have S =1. But in general case we have S &#x3E; 1.

See Theorem 5. 6. In the former case, our result is almost optimal. But in
general, one could hope to obtain an upper bound of the form:

where R = (qî + ... + qN) 1 ~2 . See also Remark 4 . 4. In comparing with the
work [26], we see that the main difference resides in the location of
essential spectra for distorted Hamiltonian: In one-body case this follows
easily from Weyl’s theorem, while in N-body case, we have to use compli-
cated Weinberg-van Winter equations.
When trying to treat the regular N-body Schrodinger operators with

Stark effect by our method, one runs into some technical difficulties due
to the removal of the centre of mass. In fact because our deformation is
not linear in the coordinates, it is difficult to determine the essential

spectra by an induction on N. This difficulty might be overcome by the
exterior dilation technique introduced as in [5] and [23]. But then the
domain question of H (P, e) is more delicate.

Vol. 52, n° 1-1990.



4 XUE-PING WANG

The plan of this work is as follows. In Section 2, we introduce in detail
the analytic distortion machinery and study its action on the free N-body
Stark Hamiltonian. In Section 3, we give the definition of resonances.
Here the main task is to identify the essential spectra of 8). In
Section 4, we introduce the Dirichlet problem and study the stability of
the eigenvalues of near Ao. As in [26], we prove that there are
exactly m eigenvalues, counted according to their multiplicity, of HD ((i)
which converges to Ào when p tends to zero. In Section 5, we construct a
Grushin problem for H (P, 8) and obtain a precise location on the resonan-
ces near Ào. As a corollary, we get (1.4).

This paper is a revised version of preprint [31]. After this work was
finished, I learned that I. M. Sigal has also some works on related subjects
(cf [29], [30]). In particular in [30], Sigal also studied Stark resonances
for N-body operators (1.2) with q~  0 for all j. But both methods and
conditions are different from ours. Sigal assumed the interacting potentials
V;  to be repulsive and this made it easier to estimate the essential spectrum
of distorted Stark Hamiltonian (see condition IV in Section 2 [30]).

2. ANALYTIC DISTORTION

In this section, we introduce the analytic distortion used in this paper.
For the technical reason in the location of the essential spectra of distorted

Hamiltonian, we use a distortion slightly different from that of [26] which
depends only on one variable See also [6], [ 16], [ 18] .

Let x be a smooth function over R such that:

We require ~ to satisfy that 0~(~1 and for 1~1+~.
Clearly such functions exist. For ~, &#x3E; 0 and e E R, define the transformation
4Yo on 

Then I is sufficiently small, is a diffeomorphism on RvN and
induces a unitary operator (U(9) (depending on 03B2 and A) on L2 by:

where 4Y§ (x) denotes the Jacobian of the transformation ~e.
N

Now let Ho (P) = ~ ~ - ~1~ + ~ q~ be the free Hamiltonian with Stark
j= 1

effect. Put:

Annales de l’Institut Henri Poincaré - Physique théorique



5RESONANCES OF N-BODY SCHRODINGER OPERATORS

N

Then we can write: 9) = ¿ H0j(03B2, 9), where
;= 1

Remark 2.1. - Notice that the explicit calculation of the coefficient
functions is not necessary. In the following, we shall use only the proper-
ties :

Where O ( ) is some function with support in { X z I  03B2-103BB (1 + 11)} and
is of the order 0 uniformly in x~.

Let Q denote the domain: We should

keep in mind that in the following, p &#x3E; 0 will always be sufficiently small.
For 8 E S2, t E R, we define:

Then Ho e) defined by (2 . 4) has a natural extension in 9 into Q.

PROPOSITION 2 . 2. - {l) For 03B8 E Q, Ho (03B2, 9) defined on

is closed in and is a holomorphic family of
N

type (A), where X 1= ~ 
j = i

(ii) For any E &#x3E; 0, let ~io = 13 (E, Im 9»0 be small enough. Then the numer-
ical range of Ho 9) is contained in E (e, - A (1 + 11) Q - E), for 0  03B2 ~ 03B20.

Proof - Let

J ~

Then for z e C with

- r w v » , .,

one can prove that for some one has:

This involves an elementary but lengthy calculation. For simplicity, con-
sider only the cas Re 9=0, Im8=&#x3E;0. Put: 

We need only to prove (2.6) in the region
~)-z) (J ~ 12 + 131 + I Re for some 6 &#x3E; 0 appropriately

Vol. 52, n° 1-1990.



6 XUE-PING WANG

small. By the estimates:

for 191 small enough, we obtain in the above region that

, . , ,

Let ~ denote the sum over the j such that I &#x3E; (1 + 11) Let ¿ + (resp.
¿-) denote the sum over the j such that (resp. Then
one has:

Here the signs ± depend on + By the choice of z, we derive from
(2. 8) for 03B2 &#x3E; 0 sufficiently small that

From (2.7) and the above estimate, it follows that:

For 8&#x3E;0 sufficiently small, we have necessarily From (2.9), we

(|03B6|2 + |z1|). Therefore in the region in consider-

ation, one has:

Since I zl ( &#x3E;__ ~ ~J (1 + q) X + E, one obtains for p &#x3E; 0 sufficiently small that
~)2014z)~c(p(~~+~z~~) for some c&#x3E;O. Now (2 . 6) follows from

(2. 9). In the region where (2. 6) is valid, the symbol p - z is globally
elliptic. Let B (x, D; z) denote the pseudodifferential operator with symbol
(p - z) -1. Then by the results on composition and continuity of pseu-
dodifferential operators [ 17], one derives from (2 . 6) that

B (x, D; z) is bounded on L2 and

Annales de l’Institut Henri Poincaré - Physique théorique



7RESONANCES OF N-BODY SCHRODINGER OPERATORS

where R~ (z), j =1, 2, are pseudodifferential operators of order 0 (hence
bounded on L2) and for z in the region
such that (2 . 6) is valid. This enables us to conclude that for Re z large
enough, 8) - z is invertible and

" v B1 i "’’’ i ~ 
- - ~ . ~ , _ _ r

It follows that ( - ~ x I) (Ho 8) - Z) is bounded and

By (2 .10), we conclude easily that is closed on ~. By the

expression for Ho (fi, 9), one sees clearly that the map: o) f
is holomorphic for each f E qø. This proves (i).
To prove (ii), we write: 8)= Ho (0) + fl Xi (9), where Xl (8) corres-

ponds to the distorted Stark effect. Remark first that the numerical range
is contained in E(9,-~(1+~)Q-8). We compute

the numerical range of Ho(6) in assuming N =1. Denote:

I&#x3E; (x, 9) = x e Then it is easy to compute:

Here ~’ denotes the Jacobian of 0 and w = (wl, W21 ..., = 
,

Since 0(1. 1&#x3E;’ (x) = 0 6!), for ~ 1, Ho (9) can be written as

where the coefficients in the terms of lower order are of the order 0 8 ~).
Let u E D (A) and II u II = 1. Making use of (2 . 11), one has:

Since F = ( 1 +6/) ~ 2014 1, we deduce from the above expression that:

Let R denote the remaining terms in (2.12). Then it is easy to estimate:

Vol. 52, n° 1-1990.



8 XUE-PING WANG

This shows that for 03B2&#x3E;0 sufficiently small,

Since

and E &#x3E; 0 is arbitrary, we derive that the numerical range of Ho 8)
is contained in E (8, - X ( 1 + 11) Q - J.l), ~ &#x3E; 0 can be arbitrary, provided
0  ~i _ with ~io (Im 9) sufficiently small..
From Proposition 2. 2, we derive the following.
COROLLARY 2 . 3 . - For Z E (8, - A (1 + ’1’~) Q - E), 9 E Q, Ho 8) - z

is invertible in L2 and the resolvent is jointly analytic in z and 8. Moreover,
we have

for 0  (3 -_ with fio = j3 (Im e) &#x3E; 0 small enough.
Observe that from the proof of Proposition 2. 2, it is clear that 

can be chosen locally uniformly in 8 E S2. The analyticity in 03B8 ~ 03A9 in

Corollary 2. 3 means that for every K cc Q there exists such that
for 003B2~03B2K, (H0(03B2, 03B8) is jointly analytic in 03B8~K and

zeCBE(9, -~(1+T~)Q-8). In the following flo will always denote some
small positive constant depending on Im8&#x3E;0 locally uniformly in 

Let Lo (fi, 0) = i e ~ ° Ho (fi, 8). Then Corollary 2. 3 says that

and

for 

LEMMA 2 . 4. - With the above notations, one has for e E Q, 0  fio :

Proof. - Recall that the results (a), (b) are true for

9)=z(~’~K+pXi) ([28], [15]). We shall prove the lemma by com-
paring Lo (P, 8) with Lo (P, 9). Assume first N =1. Then Lo (P, 8) coincides
with Lo(j3, e) outside some compact set in !RB An easy argument shows
that aess (Lo 8)) = cress ([0 (a, 9)) = 0. This means that (Lo 9) - 
defined for Re z  -2(l+ri)~Q can be meromorphically extended to C.
Let a&#x3E;9,P(.) polynomial}. For define;

Annales de l’lnstitut Henri Poincaré - Physique théorique



9RESONANCES OF N-BODY SCHRODINGER OPERATORS

/(~e)=~’~/(6’~), F(e)=U(6)/(e). F(8) is well defined and

belongs to ~ for Then for Re z~ - 1, one has:

But the left hand side of (2 .14) is holomorphic in z E C. This shows

that  (Lo 9) - z) -1 F (9), G (9) ~ is entire in z E C. We can check that

~ F (8), f E A ~ is dense in L 2 (f~"). From (2 , 14) it follows that the poles of
(Lo (P, 8) - are absent, so a (Lo (P, 8)) = 0.
Next we construct approximation for (Lo (P, 8) - z) - ~ . Let F, w be given

in (2.11). Define:

Then for any E&#x3E;0, one has

Here cl, c2 &#x3E; 0 depends only the choice of x. such that

~ ax a~ a ( j3, 8; z) ~  cay (3~ °‘ ~  ~ &#x3E; - 2, unformly in Re z  E. (2 . 1 5)

Here Cexy may depend on Im6&#x3E;0, but is independent of E&#x3E;0.

LetA(P, 0; z) denote the pseudo-differential operator with symbol
a 8; z) and B = ( 1- W (D)) ([0 9) - z) -1. Then we can write;

By (2 .15), one has; uniformly in E &#x3E; 0 and

Re z  E. Note that

Since

and

are smorthing in both x and ç variables, we obtain:

Vol. 52, n° 1-1990.



10 XUE-PING WANG

Let (Im 8) be sufficiently small and Ro &#x3E; 0 sufficiently large. Then

the above estimates shows that II R 1 (?, 9; z) + R 2 (P, 6; z) II - for

Re z  E, I z Therefore in the same region, we have the
expression:

By (2 .15), one sees that 8; z) is uniformly bounded in RezE.
Consequently,

Now (b) follows from the local boundedness of the resolvent. Lemma 2.4
for N =1 is proved. For N &#x3E;__ 2, remark that:

For e) verifies (a)-(b). For by esti-
mating the numerical range of 8), one sees that

and

Therefore, all 9) statisfy the condition (P) of Theorem 3 1 in

[14]. In addition, they generate exponentially bounded semigroups. By
repeatedly applying Theorem 3.1 in [14], we obtain

since we always assume that (a) is proved for all N. (b) for
N &#x3E;_ 2 can be proved in the same way as in the step for N =1. The details
are omitted..

COROLLARY 2 . 5. - Let Uo (t; ~i, 9), denote the semigroup generated
by Lo 8). Then for any E &#x3E; 0 there exists C &#x3E; 0 such that:

Proff - It suffices to apply Lemma 2. 4 and Proposition 3 . 4 in [28]
which says that if A generates exponentially bounded semigroup and if

&#x26;,- - = ,...

then for 

Annales de l’Institut Henri Poincaré - Physique théorique



11RESONANCES OF N-BODY SCHRODINGER OPERATORS

3. RESONANCES

Let denote the operator defined by ( 1. 2). In this section, we want
to define the resonances of H (?) near a given value Ao E R. To ensure the
self-adjointness of in L2 (f~"N), we assume initially that Vj’S and
Vij’s are real valued functions and as multiplication in L2 (f~x), they are
compact relative to Ax. In the later we shall frequently utilize the following
conditions. Assume that there exists R&#x3E;0 such that

and for XERV with y=0, 1, ..., N. Here and in the

following, we often write: V~ = For ~&#x3E;0, let U(6) denote the distortion
operator introduced in section 2. Put:

where V(6)=U(8)VU(e) ~. For the notational convenience, we have
omitted the dependence of V(9) on P and A. In order to discuss the

holomorphic extension of H (?, 9) in 9, we make the following distorsion
analyticity assumption on V~~, 

There exists such that for as multiplication
operator from D (A) to L2 defined for 8 real as above

extends to a holomorphic family of bounded operators for 9 in
Q with relative bound 0. For simplicity we shall assume that
(3 .1 ) is satisfied by Vij (8), with x

replaced by xi - Xj’ xo =0. (3 . 2)

If all satisfy the assumption (3 . 2), then we conclude from Proposition
2 . 2 that 8) defined on D is closed for 03B8 ~ 03A9 and is a holomorphic
family of type (A). Observe also that by our choice of x, we can show
that if Vo~ has holomorphic extension into the domain:

for some R, E &#x3E; 0, then it satisfies the
assumption (3 . 2). For the two body potentials, we assume:

For 1 Vij is dilation analytic
in the sense of Combes (see [2], [4], [15]). (3 . 3)

Remark 3 . 1. - Our assumptions on are verified if (a) C6 (R")
or Vo~ is of the form ~~/~2014~~ , where the sum is finite and Zk E R,

(b) ~1, is a Coulomb potential or Yukawa potential.
(a) is obvious and (b) can be proved by the method of Hunziker [ 18], § 5. ,

Note that the distortion utilized by Hunziker corresponds to a linearization
of the present one. The details are omitted.

Vol. 52, n° 1-1990.
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In order to define the resonances of H(p), we have to identify the
essential spectra of H (P, 8), making use of Weinberg-van Winter equa-
tions. Introduce first some notations needed later on. See [21]. Let

D = (Co, C1, ..., Ck) be a cluster decomposition of the set (0,1, ..., N).
Let I D I denote the number of clusters in D. We define (assume always
that 0 E Co),

for k &#x3E;_ 1. Put:

which acts on the space

where In the case we have 9)=H(~, 9) and in
the case we have: 6)=Ho(P, 6). IfS=(DN+i, ..., Dk),
is a string of cluster decomposition with Dj+ 1 &#x3E;- Dj and we define:

where the sum £’ is taken over all indices i, j which belong to different
clusters in but belong to the same cluster in Dk. For

..., Dk), we define i (S) = k. For ~ 03C3 (HD 8)), we

define:

Then we have the Weinberg-van Winter equation:

By the standard technique used in the proof of HVZ Theorem [23] we
can show that:

This result is also true for P=0 and 6=0. In this case, we have:

Annales de l’Institut Henri Poincaré - Physique théorique
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where

We want to clarify the relationship between 8)) and

cress (H (0, 0)). Our main result in this section is the following.

THEOREM 3. 2. - Put: A = inf 03C3 (H (0, 0). Under the assumptions (3 . 1 )-
(3 . 3) , for every E &#x3E; o, 8E.Q, there exists such that for o  (3 _ (30, one
has:

The proof of Theorem 3 . 2 is broken into several steps. We first compute
the numerical range of H 9) and H (9).

LEMMA 3. 3. - Let N 8) [resp. N (8)] denote the numerical range of
H ( [i, 8) [resp. H (9) == Ho (9) + V (0)1 ° Then one has:

(i) There exists C &#x3E; 0 such that N(Ø, 9)~E(8, -C). Assume N =1. Then
for any E&#x3E;o, one has N ([i, 9)~E(8, for [3&#x3E;0 suffi-
ciently small;

(ii) For any E &#x3E; 0, there exists C &#x3E; 0 such that

for all 03B8 ~ 03A9 and 03B2 &#x3E; 0 sufficiently small.
Proof. - For u E  = I , we want to estimate ( H 9) u, u ~ .

We write 9) as 8) = H (8) Xl (8), where the last term corres-
ponds to the Stark effect. The numerical range is easy to
compute. By the choice of x, it is contained in the domain
E(9, -~(l+~)Q-s). By the definition of A, we have: ( H (0) u, M) ~A.
We estimate:

Making use of (3 . 1 )-(3 . 3) and the Cauchy equation, we can show that
the second term on the right side of (3.8) can be estimated by:

Vol. 52, n° 1-1990.



14 XUE-PING WANG

Noticing that V is Ho-bounded with relative bound zero, we can derive
that with a, b indepen-
dent of u. Then (3 . 8) gives:

for some constants C, C’&#x3E;0.
From the proof of Proposition 2. 2, we see that:

for 03B2 &#x3E; 0 sufficiently small. By the assumptions on V, we can write:
where V 1 (8) is Ho-bounded with relative bound 0.

Therefore for any E &#x3E; 0, there exists C &#x3E; 0 such that

for any u e D (8) with I u II = 1. This implies that for 03B2 &#x3E; 0 sufficiently small,
one has:

Taking E =1/2, we obtain from the above estimates that for N  1,
9) ~ E(6. 2014C), for some C &#x3E; 0 sufficiently large but independent of

9 If N=1, from (3 . 2) and the choice of x, it follows that

Vi (6)=9(P~ for some &#x26;&#x3E;0. Then one has:

This proves the assertion in (i) for N =1. (ii) follows from (3. 9) and the
estimate on Im ( H (8) u, u ~ . ..
Remark that if 1 _ i ~ j _ N are repulsive, then the second part of

(i) in Lemma 3 . 3 holds for any N and Theorem 3. 2 can be proved much
more easily.

Since 9) - z is invertible for some z outside N (fi, 8), Lemma 3. 3
tells us that the is contained in the resolvent set
of H e) (see Kato [ 19]).
We want to apply the method of geometrical spectral analysis to locate

the essential spectra of H 8). For this purpose, recall from [7] some
notations.

DEFINITION 3. 4. - Let A be a closed operator in L2 (Rm) with Co as
its core. We define Ness (A) and N~ (A) respectively by:

such that for any compact K,

there is NK such that supp un n K = 0 for n &#x3E;N~
and ~ (A - A) )2014~ 0 when n tends to +00}.

Annales de l’lnstitut Henri Poincaré - Physique théorique



15RESONANCES OF N-BODY SCHRODINGER OPERATORS

In order to apply these notions to the proof of Theorem 3 .2, we
introduce the following partition of unity on R"N. Let D = (Co, Ci) be any
two cluster decomposition of ~ 0,1, ...,N} with 0 E Co . Let QD denote
the set:

Notice that Qo U U QD = RvN. Let xo + ~ XD =1 be a partition of unity

subordinate to this covering. We define:

N~ (A) = {~ ~ C; there exists a Weyl sequence (un) for A and A
such that supp un c supp xD, where xD (. ) = XD (. /n) ~ .

For any two cluster decomposition D, let HD(P, 8) denote the correspond-
ing cluster operator as before. Then applying the result of [7] to H (P, 8),
we obtain:

LEMMA 3 . 5. - Assume the conditions (3 . 1)-(3 . 3). For any cluster decom-
position D = (Co, C1), set HD 9) = HCo 9) (8) I + I (8) C1 ( fl, 8) where
C1(03B2, 8) is the operator obtained from HC1 0) by analytic dilation. Then
we have:

Proof - Note that HC1 (p, 8) is well defined by the assumption (3 . 3).
The desired result follows easily from (3 . 11 ) and the fact that
HD (P. 8) = HD (P, 9) on the support of 3~ and therefore

LEMMA 3.6. Under the assumptions (3.1)-(3.3), for 03B8~03A9,
(H (03B2, 8)) is contained in the lower haf complex plane {Im z  0 } .

The above lemma can be proved by constructing a suitable space of
distortion analytic functions and making use of the analytic continuation
of (H (~i) - z) -1 from the upper half complex plane. Since the proof is by
now standard, we omit it here (cf. [2], [4], [15] and [18]).

PROPOSITION 3 . 7. - Let L (~, 8) = i. H (~, 8). Then under assumptions
(3 . 1) and (3. 2), L (Ø, 8) generates an exponentially bounded strongly con-
tinuous semi-group and satisfies condition (P) in [14]: For each E E R there

Vol. 52, n° 1-1990.
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exists RE &#x3E; 0 such that for WE = ~ z ; Re z  E, I Im z ~ &#x3E; RE }, one has:

and

Proof - Seeing Lemma 3.3, we need only to prove (3.12) for WE
replaced by for some C &#x3E; 0 large
engouh. We use an induction on N. For N =1, we need only to prove:

Then the desired result follows from Lemma 2 . 4. By approximating V (8)
by Co - potentials, we can assume without loss that V(9) is in 
Put g (t ; z) = V (o) Uo (t ; [i, 8) e~Z. Then Corollary 2 . 5 gives 

for Re Z  E and t &#x3E; 0. Clearly g (t ; z) is compact
and measurable for We can apply Riemann-Lebesgue lemma and
by the arguments already used in [ 15] we conclude that

when |Im z| ~ ~ and -C~Re z~E. This
shows that (3 .12) is true for N=1. Assume now (3 .12) is proved for

Let For an arbitary cluster decomposition
D= {Co, C1, ... , Ck ~ , put LD ([3, 8) and

Le . ( [i, 8) = i e - ~ H~~ ( [i, e) . Since and LD ( [i, 8) and 8)
generate exponentially bounded semigroups, it follows from the induction
hypothesis and Theorem 3.1 in [14] 8) also satifies (3 .12). Let

8; z) and I (fi, 9; z) be defined by (3 . 4) with H~ replaced by LD.
Then in WE with RE large enough D (fi, 8; z) and I (?, 8; z) are well defines
and uniformly bounded and

If Re z = - C with C &#x3E; 0 large enough I(P, 8; z) can be expanded in a
convergent series whose general terms are of the form:

where r= ~2~ - ’ ’~N~} forms a connected diagram [21]. Ir (z) is
compact and uniformly bounded in By Corollary 2.5 and the
arguments used in step N = 1, we derive that: lim ~ Ir (2014 C + =0 and

so lim ~ I 8; - C + = 0 Applying Lemma B. 5 in [5], we obtain:

uniformly in - C _ r~ _- E. Now ~3 . I 2) results from (3 .13) with large
enough. Proposition 3 . 7 is proved by induction..
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Proof of Theorem 3.2. - We use an induction on N. For N= 1, we
deduce from lemma 3 . 5 that

where Ho (P, 8) is obtained from Ho by analytic dilation. Acconding
to the results of [13], one has:

By (ii) of Theorem 3 .1 in [7], if Ness (A) c W and CEW is connected
with (C "" W) o p (A) # 0, then cress (A) c W . Therefore,

which proves (i) for N =1, (ii) and (iii) for N =1 follows from (i) of
Lemma 3 . 3. Now assume that the results are ture for N = m. When

N = m + 1, let be a two-cluster decomposition of

where Hci 8) is obtained from HC1 (P, 0) by analytic dilation. By the
results of [ 15],

E = inf 03C3(HC1 (0, 0)). Since the number of particles in Co is less than or
equal to m, by the induction assumption,

with Eo = inf 03C3(HC0 (0, 0)) and Qco = ¿ I Proposition 3 . 7 implies

that 6) has the properties of contained spectrum (condition
(P) in [14]). It is known that 8) has the some properties
(cf [ 15]). From Theorem 3 . 1 in [14], we obtain ;

Ness (H (, 9)) c E (8, E-( 1 + 11) A Q - E), so by the argu-
ment already used in the step N=1, (i) for N = m + 1 is poved. To prove
(ii) for N = m + 1, we use the Weiberg van Winter equation:

According to (i) of lemma 3 . 3, this equation is valid in C B E (9; - C),
for some C &#x3E; 0 large enough. We want to prove that it is also valid for
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For any two-cluster decomposition D=(Co,Ci), by proposition 3. 7
and Theorem 3 . 1 in [14], one has:

By the induction hypothesis,

_

03A3j= Inf 03C3(Hcj(0, 0)) and ¿ and

uniformly in and Since
generates exponentially bounded semigroup, we

derive from Proposition 3 . 4 in [28] that there exists C&#x3E;0, independent of
0, such that

Therefore

This shows that I (HD (P, 9) - ] is bounded uniformly in
and By an easy induction, we

can show that the same estimates for 8) are true when D ( &#x3E;_ 2. Let
H (8) denote the distorted schrodinger operator without homogeneous
field. Then the corresponding Weinberg-van Winter equation:

is valid A - E). See (ii) of lemma 3. 3 and Theorem 4 in [ 18] .
(The proof of Theorem 4 in [ 18] implies that a (H (8)) c {1m z -- 0}.) From
(ii) of lemma 3 . 3 for HD (8), we derive that I (6; z) and D (8 ; z) are

bounded uniformly in CBE(9, A - E). Since

in order to show the invertibility of I + I (P, 8; z) for
and 0P~f~ which implies that (3.14)

is valid A - (1 + 11) A Q - E), it suffices to prove:

uniformly in z e C B E (9, A - A ( 1 + 11) Q - E). The proof for (3 . 16) follows
the argument of Proposition 3 . 3 in [28]. Remark first that general terms
in I (P, 8; z) can be written as:
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where forms a connected diagram (see
[21]). Let A (9, z) denote the same operator as (3.17) with 9)
replaced by H~ . (0). We need only to prove 

J

which implies (3 .16). By the assumptions (3 .1 ), (3 . 2), we can approximate
Vij by functions in Co (R~). Thus without loss, we consider only the case

E Co (R~). (See also the proof of Lemma 2 . 8 in [28].) Since the diagram
associated to A e; z) is connected, we can write:
~1 (9) = (8) = E C 1 C~i 1 ) (8)) (with xo = 0) . Commute (9) - x J 1 ~ ($)
with (HD - z) -1 until it is absorbed by Since all the resulting
commutators are uniformly bounded, we derive from the boundedness of

that A(p,e;z)-A(6;z)=~(P) in the norm of
operators. Here depends on 1m 8 &#x3E; 0, but is uniform in

A-~(l+rt)Q-8). This proves (3.16), so (3.15) is valid in
the above domain. (ii) for N = m + 1 is proved. (iii) follows from (3.14)
and the uniform boundedness of (I+I(P, 8; z) -1). This finishes the proof
of Theorem 3 . 2 by induction..
From the proof of Theorem 3 .2, it is clear that if all charges are

different from zero and have the same sign, say, then
cr ess (H 9)) = ø. This should not be surprising, seeing the result of [15].

Let Se be an open connected domain strictly contained in the comple-
ment of E (9, E - ~, ( 1 + rt) Q - E). Then Theorem 3 . 2 says that the spectra
of H (fl, 8) in Se are discrete.

THEOREM 3.8. - Under the assumptions (3.1)-(3.3), the spectra of
8) in Se are independent of e E Q. More precisely, f z E Sel n Se2 and

then z E cr (H $2)) and the algebraic multiplicity of z
relative to H (Ø, 91) and H $2) is the same.

Proo, f : - Let A denote the set of (x&#x3E;0 and
P ( . ) polynomial}. If f E A, U (9) f is holomorphic in e in a whole small
complex neighbourhood of 0. We can prove as in [ 18] and [26] that for f, ’,
g in A, ( f, (H ([i) - z) -1 g) defined for Im z &#x3E; 0 has a meromorphic
extension in z into Se and that

This proves that a {H ( j3, 9)) n Se is independent of 9 as point sets. Now
let ZE Set be an eigenvalue of H (fi, 6~ 7=1.2. To prove that the
multiplicity of z relative to H (13, 9J and H ( j3, 82) is the same, we remark
that for any compact K c c Q, we define the spectral projector 9),
9 E K, relative to z. Let 7r(6) denote this projector. Then since
{H (p, 9), 8 E K} is a holomorphic family of type (A), x (9) is holomorphic
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in 8 E K. In particular, if K is connex, the multiplicity of z relative to
8), 9 E K, is constant. Then the desired result follows by suitably

choosing K. See the proof of Theorem 4 in [18] and Theorem 2.2 in [26]
for more details..
The proof of Theorem 3. 8 shows also that the spectra of H (p, 9) in Se

are independent of the choice of x. We define R = U (Se U a (H 9)) as
e

the resonances of H (fi). Observe that by Remark 3.1, we have included
a slightly larger class of potentials than usual (cf. [9]). But the main interest
of this work is to estimate the width of resonances which is exponentially
small. The remainder of this paper is devoted to the study of resonances
generated by the eigenvalues of H (0, 0) below the bottom of the essential
spectra.

4. STABILITY OF EIGENVALUES

We keep the assumption (3 .1 ) on the potentials and denote:

H = H (0). Let 03BB0  L * inf 03C3ess (H) be an eigenvalue of H with multiplicity
m. In this section, we shall introduce a suitable Dirichlet problem and
study the stability of Ao under the perturbation of Stark effect. Since the
proofs are often almost the same as in [26], we will only sketch the details.

Let À be a fixed number in the interval ]0, (L - Ao)/Q[. Let M be the
domain depending on fi  0 with piecewise smooth boundary defined by:

Let P (P) denote the Dirichlet realization of H (P) on M with zero boundary
condition on aM. is selfadjoint with domain D(Ap). Let c &#x3E; 

be a positive function of 03B2&#x3E;0 such that c(03B2)~0 when 03B2~ 0. Put:

for 03B2 &#x3E; 0 sufficiently small. Let 1, ..., Jln be the eigenvalues of P in
I (~), repeated according to their multiplicity. To study the relationship
between the and we recall first Agmon’s result on the exponential
decay of eigenfunctions of N-body schrödinger operators.
THEOREM 4 . 1 [1 ]. - For a unit vector 03C9~(03C91, ..., in we define

the operator Hco by:

Set: ~w = inf cr Let f be an eigenfunction of H with eigenvalue Then

for anv we have
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where d(x) denotes the geodesic distance from x to some fixed point xo in
R"N in the metric c (x) dx2. Here - 03BB0, for x~0 and c(O)= - Ao.

Notice that Lro takes only a finite number of values and

To estimate the decay of the eigenfunctions of we observe that for

every E &#x3E; 0, there exists R &#x3E; 0 such that:

for any ue C.f (OR)’ SZR - ~ ~ x I &#x3E; R ~ . For the operator P on M, we

get:

for any u E C~ (M n QR). By the definition of M, we can choose E &#x3E; 0

sufficiently small so that c (x) + on M. From (4 . 4) we can
prove the following result (see also [26]).

LEMMA 4. 2. - Let f~ be the orthonormalized eigenfunctions of P 
associated with the eigenvalue in I (~). Then for every E &#x3E; 0, there

exists ~o &#x3E; 0 such that:

where dp (x) denotes the distance from x to zero in the metric

(c (x) + dx2 and dx2 is the usual Euclidean metric on 
In order to obtain an upper bound on the widths of resonances, it is

important to know the behavior of fi’s near the boundary aM. For this
purpose, we give a lower bound of d~ (x) on M.

LEMMA 4. 3. - Let d~ (x) denote the distance from x to 0 in the metric
(E X1- Ao) + Then we have:

Recall that 
The proof of (4. 6) is the same as in [26]. We omit it here.

COROLLARY 4. 4. - With the above notations, we have:

Here the constants S depending only on the charges qJ is defined as follows.
Set : ak = ~ q J , bk = 2 (E - 7~0) - ~ ~, and ck = bk + (bk - 3 ~,2 ak) 1 J2 . Then
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Proof - It follows from (4. 6) and an easy computation. In fact, let
I(x) denote the right hand side of (4 . 6) be the restriction of f
to the part of boundary where I = We want to find the minimum

of h for k. To be definitive, consider only the case k =1.
Thus let

for ~~/P. 7~2. We can check that the minimum of this function is
attained at the point:

and the minimum equals : ~ 2 ( I + À2 À2 This proves

(4 . 7) ..
Remark 4. 5. - Note that S &#x3E;_ 1 in general and the equality holds if and

only if there exists some 1  jo __ N, such that qj = 0 for j ~ jo. Observe
also that the metric is non-degenerate on the domain
M’= {~Xl&#x3E;-À/~} and for

This suggests that one might hope to have an upper bound on
the widths of resonances of the form (1. 5)..

THEOREM 4 . 6. - Under the assumption (3 .1 ), assume that

03BB0  03A3 = inf 03C3ess (H) is an eigenvalue of H with multiplicity m. Then for fi &#x3E; 0
sufficiently small, there exist exactly m eigenvalues, counted with their

multiplicity, of P in I (~i). Let ~,1 (~3), ~2 (~3), ..., denote these

eigenvalues. Then,

The proof of Theorem 4. 6 is similar to that of Theorem 3 . 5 in [26]
and we omit it here. Remark that as in the proof of Theorem 3 . 5 there,
we can show that when P tends to zero, the spectra of P below 

(E &#x3E; 0 sufficiently small) tend to cluster around those of H. This enables
us to choose an interval 1= [Ào - E, Ao + E] independent of 03B2 &#x3E; 0 such that:

and

uniformly in From Lemma 4. 2, we can prove the following
result. See also [ 11 ].
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5. LOCATION OF RESONANCES

In this section, we shall give precise information on the location of the
resonances generated by the eigenvalues of H (fi) below the bottom of
essential spectra and as a corollary, we derive an upper bound on the
widths of these resonances. For the sake of coherence, we precise the data
utilized in the previous sections.

Let ~,o  ~ be an eigenvalue of H (0) with multiplicity m. For r) &#x3E; 0
sufficiently small, let x be a function chosen as in section 2:

1} and ~=1 for t~1+~. Set: 03BB=(1-~) (03A3-03BB0)/Q. Define
the analytic distortion induced by the map 4Yo as in section 2. Let 8)
be the distorted N-body Schrodinger operator. Then the restriction of

9) on the domain M [cf (4.1)] coincides with that of By the
result of section 3, the resonances of H are defined in the region S~:

where J.1 = (~ - r~ 2/6, provided ~ &#x3E; 0 is sufficiently small. We want to
study the resonances of H (fl) near Xo. For 03B2&#x3E;0 sufficiently small, there
are exactly m eigenvalues of P (p) in [~,o - pl/2, Ao + p1~2]. Set:

To study the resonant problem:

we shall approximate f in M by the eigenfunctions of P (fi) and outside
M, we shall construct an approximate inverse of H ( j3, 8)-z. See also [26].

Since the eigenvalues of H (fi, 9) in S (9) are essentially independent of
03B8~03A9 (see Theorem 3. 7), 9 will be fixed in the following discussions. For
R~ 1, define the operator H(P, 9) by:

where for i &#x3E;_ 1 and 9), ~ is a

smooth function on RV which equals 0 in some neighborhood of 0 and
equals 1 outside a slightly bigger neighborhood.

PROPOSITION 5 . 1. - For any 03B8~03A9 and E &#x3E; o, there exist R0, 03B20 &#x3E; 0
such that for z E C"" E (9, E - ( 1- ) A Q - E), H 8) - z is invertible for

and R~Ro’ Moreover, we have:

uniformly in R &#x3E;_ Ro and 0  13  
Proof - We use an induction on N. For N = 1, this result is proved in

[26]. Suppose that the result is true for all 1 _ N  m. For N=m+ 1, we
shall apply the Weinberg-van Winter equation (3 . 5) for H (p, 9). Let
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D = (Co, Ci, ..., Ck) be a cluster decomposition of the set {0, 1, ..., N}.
Let 9) denote the corresponding operator of 9). Then,

where H~(P,6), y~l, is the same as in (3 . 5). By the proof of
Theorem 3 . 2, we see that the spectra of 9) are contained in the
region E(6, 1~2014~(1 +~)Q~.2014s). By the induction hypothesis, we see that
the spectra of ( fl, 9) are contained in E (8, A (1 + 11) E), pro-
vided R &#x3E; Ro is sufficiently large. This means that for any D with I D ~2,
we have:

Now define 8) and 9) as in section 3 with Hp(P, 9) replaced by
8) and by V~(9). Then for z in the complementary of

the domain E(9, we have the Weinberg-van Winter
equation:

Observe that 8; z) is a finite sum of the operators of the form:

Since the diagrams associated to 9; z) are all connected (see [21]), the
contain at least one of the potentials We approximate the 

appeared in (5 . 6) by smooth potentials (uniformly in R &#x3E; 1). From the
choice of ~ ( . ), we see that for such smooth potentials, we have:

uniformly in x E RN and R &#x3E; 1. From the proof of Theorem 3. 2, we see
that (HD.-z)-l is uniformly bounded in By a
limiting argument, we derive for general potentials satisfying (3 .1) - (3 . 3)
that:

uniformly in This proves that 6)-z
has a right inverse. In the same way we can prove that its left inverse

exists, so H (P, 8) - z is invertible. (5 . 3) follows easily..
Remark that L - (1 + 11) A Q = Ao + (E - ~2 &#x3E; 03BB0. For 03B2 &#x3E; 0 sufficiently

small, one has: S(0) ~ C B E (6, E-(l+r~Q-8). In the latter applica-
tions, R &#x3E; Ro will be fixed so that (5 . 3) holds for zeS(6). To study the
local behavior of the resolvent, it is convenient to use the notations of

Helffer-Sjostrand [12]. Let A~, 0  fio, be a family of bounded operators.
Let KAp ( . , . ) be its integral kernel. For a positive continuous function f
on U x U we shall write: (x, y) = O (exp ( - f~ (x, y)) on U X U, if for
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any E &#x3E; 0 and for any (xo, ..., yo) E U X U, there exist two neighborhood
yo such that for some C &#x3E; 0, independent of (xo, yo) and

~3 E ]0, one has: .

for any Similarly in ~3-independent case, we write

KA (x, y) = O (e-f ~x~’’}), if (5 . 7) is satisfied by A and f with ~3 =1.

LEMMA 5.2. - Let Q be a domain in R" and r c C. Let P denote the
Dirichlet realization of - A + V (x) (not necessarily selfadjoint). Suppose
that there exists some positive continuous function ~, (x) on Q such that:

Assume that P - z is invertible for z E I-’ and the resolvent is uniformly
bounded in z. Then for any E&#x3E;O, we have:

uniformly in and zer Here denotes the geodesic
distance from x to y in the metric ds2 = ~, (x) dx2.

Proof. - For given (x0, y0) ~03A9 X Q, we choose two disjoint
neighborhood U3Xo and Vy0. Let 03C8 be a function equal to 1 on U and
to 0 on V and 0~B)/~1 in general. For v E C.f (V), set:

Then we can verify the following identity (see
Agmon [1]):

where f = eh and /!(~)=(l2014s)B)/(~’)p~(x, yo). From the above identity, we
obtain from (5.8) that (see also Agmon [1])

By the choice of B)/, V h I Z __ ( 1- (x) on U and |h|2 = 0 on V. We derive
from (5.9) that:

This proves the result in the off-diagonal case. When (xo, yo) is on the

diagonal of Q x Q, the desired result follows from the assumption on the
uniform boundedness of the resolvent..
From Lemma 5 . 2, we obtain the following corollary.

COROLLARY 5. 3. - Let denote the Dirichlet realization of H 8)
on M, which is independent of 9. Then for z E S (8) and 0  ~o P ((3) - z
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is invertible and

uniformly in ze S (9). Here d~ ( . , . ) is the distance function in the metric

(c (x) + dx2.

Proof. - The inversibility of P (fi) - z for z E S (8) can be proved by an
induction on N as in Proposition 5. l. To prove (5.10), we notice that
for any E &#x3E; 0,

provided 03B2&#x3E;0 is sufficiently small and R &#x3E; 1 is sufficiently large. The
function is positive, lower semicontinuous on M. We can

approximate it arbitarily well by positive continuous functions. Therefore
we can apply Lemma 5 . 2 to obtain the desired result..

PROPOSITION 5 . 4. - Let 3p (x, y) be defined by:

Then for f ’ixed ~ E Q, we have.

sufficiently small and uniformly in z S (8).
Seeing Corollary 5.3, Proposition 5.4 follows from the same arguments

as those used in the proof of Proposition 4.2 in [26]. See also [12]. We
omit its proof here. Observe in particular that if U and V are two compacts
in M, the same arguments give the estimate:

in the sense of (5.7).
Now we turn to construct a Grushin problem for 6)2014z. This

procedure is the same as in [ 12] and [26]. But for the reader’s convenience,
we give still a brief description. Let ... , Ilm be the eigenvalues
of in the interval I(P), with associated eigenfunction
ui (i), ..., um (p). Define the maps:

for ..., For zeS(6), consider the Grushin problem for
P (?) in matrix form:

with (v, We decompose L2 (M) as the orthogonal sum:
L2 (M) = E’ + E", where E" _ ~ ul, ..., For f E L2 (M), we shall write

Annales de l’Institut Henri Poincaré - Physique théorique



27RESONANCES OF N-BODY SCHRODINGER OPERATORS

the corresponding decomposition as f =f’+ f". Let denote the
restriction of P ( j3) on E’. Since there are no spectra of P (fi) in S(6) other
than ..., P’ (p) - z is invertible for z E S (8) with uniformly bounded
inverse. For any (v, v +) the problem (5.12) has a unique solution given
by

where

As in [26], we have the following.

LEMMA 5. 5. - With the notations of Proposition 5.4, we have:

and

where (5.14)2 and (5.14)3 should be interpreted in suitable spaces
(cf. [ 12], [26]).

Consider now the operator:

where R - p Rt p and p is a smooth function with compact support
in M and p=1 on ~ I x~ I (~,-s/2)/(3 for all j}. Let B)/ be a smooth
function with support contained and on

{~.j~(c~-~/2)/P}, where o  c  1 is chosen so that

for xEsupp(l- p) and y~supp03C8 or for and
By Corollary 4.4, such c exists and in the case N=1,

we can take c =1- 2 - 3~2 [26]. Now for zeS(8), define F(z) by:
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Then a direct computation gives: (z) F (z) = I + K (z), where
K (z) = (z)) 1 ~  2 with Kij (z) given by :

Making use of Proposition 5 . 4 and Lemma 5.5, we can derive from (5 .15)
as in [26] that in the norm of bounded operators on L2 X Cm,

uniformly in zeS(8). As a consequence of (5.16), g&#x3E; (z) is invertible for

fi &#x3E; 0 sufficiently small. We write this inverse, ~ (z), as:

From (5.16) and the expression 8 (z) = F (z) (I - K (z) + K (z)2 - ... ), we
can prove that

where So=~S(E-~o)~&#x3E;0. In fact, by a direct computation, one has:

Making use Proposition 5.4 and Lemma 5 . 5, we can prove as in [ 12]
section 9 that the first two terms on the right hand side of (5.18) are of
the order Õ (e-4So~3~). This justifies (5 , 1 7).

THEOREM 5.6. - Under the assumptions (3.1)-(3.3), suppose that

is an eigenvalue of H(o) with multiplicity m. Let

~,1 (~), ..., Jlm be the eigenvalues of P in the interval I (~). Let r (~)
denote the resonances of in S (8). Then there exists a bijection
b:{ 1(03B2), ... , m (03B2)} ~ 0393(03B2) such tha t:

Here the constant S &#x3E;_ 1 is defined in Corollary 4.4.

Proof - We sketch only the proof since it is the same as in [12]
and [26]. The basic point is that 8) - z is invertible if and only if
E - + (z) is bijective on C"". Then we have the formula:

See [12]. By (5 . 20), we can show that the spectrum of H 8) in S (8) is
in one-one correspondence with the zero of det E - 

+ (z), even if we count
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the multiplicity of these elements. Since the spectrum of H (P, 8) in S (8)
is essentially independent of 9 eQ (theorem 3.8), the desired result follows
from (5 , 1 7)..
Remark that Jll (?), ..., Jlm are all real. For given E &#x3E; 0, choose 11 &#x3E; 0

sufficiently small and study the Dirichlet problem of H (P, 8) on M defined
with A = (1- r~) (~ - Then we conclude from Theorem 5.6 the fol-

lowing result on the widths of resonances.

COROLLARY 5.7. - Under the assumptions of Theorem 5.6, for any E&#x3E;O
there exists ~o &#x3E; 0 such that for z (~3) E F (~i), we have:

for 0  Po’ Here Q = ~ ~ I and S is given in Corollary 4.4
Notice that in Theorem 5.6, the error estimate contains a factor depend-

ing on 11 &#x3E; 0, the parameter used in the definition of the Dirichlet problem,
while in (5 . 21 ), the estimate is independent of 11. Finally we indicate that
the resonances in S(8) defined here are the same as those defined by
analytic dilation ([9], [ 15]). In fact let A denote the space of functions of
the form: P (x), c &#x3E; 0 and P(.) is polynomial on R"N. These
functions are both distortion analytic and dilation analytic. If V/s are
also dilation analytic, we can show as in [18] that the resonances defined
by these two approaches both coincides with the set:

Thus they are the same as point set. But in both cases one knows there
are exactly m resonances, we conclude that they are the same, even if we
take into account the multiplicity of each element. As in [ 12], we can show
that the eigenfunctions of are good approximations of the resonant
states. The details are omitted.
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