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Poisson-Lie groups and complete integrability
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F-59655 Villeneuve d’Ascq

F. MAGRI
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ABSTRACT. - This is the first part of a work on Poisson structures on
Lie groups, complete integrability and Drinfeld quantum groups. In sec-
tions 1 and 2 we establish the algebraic preliminaries of the theory. Sec-
tion 1 deals with a new kind of extension of Lie algebras, called twilled
extensions (in French, extensions croisees), and with the special case of
the dual extensions which are exactly the Drinfeld-Lie algebras. Section 2
deals with the exact Lie bigebras arising from the solutions of the classical
and modified Yang-Baxter equations. The case of the non antisymmetric
solutions (quasitriangular bigebras) is emphasized. In section 3 we study the
equivariant one-forms and equivariant families of vector fields on a Lie
group, and we introduce the notion of the Schouten curvature. In section 4

we prove the existence of the canonical representations of a twilled exten-
sion in the space of smooth functions on the Lie group factors, when these
are connected and simply connected. Part II will study the Poisson and
Lie-Poisson structures on groups, while Part III will connect this theory
with that of the bihamiltonian structures and complete integrability.

RESUME. - Nous exposons ici la premiere partie d’un travail sur les
structures de Poisson sur les groupes de Lie, la complete integrabilite,
et les groupes quantiques de Drinfeld. Aux paragraphes 1 et 2, nous eta-
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434 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

blissons les preliminaires algebriques de la theorie. Le paragraphe 1 traite
d’une notion nouvelle d’extensions d’algebres de Lie que nous appelons
extensions croisées (en anglais, twilled extensions), et du cas particulier
des extensions duales, qui sont exactement les bigebres de Lie de Drinfeld.
Le paragraphe 2 concerne les bigebres de Lie exactes definies par des solu-
tions de 1’equation de Yang-Baxter classique ou modifiee. Le cas des solu-
tions non antisymetriques (bigebres quasitriangulaires) est etudie en details.
Au paragraphe 3, nous etudions les formes equivariantes et les familles
de champs de vecteurs equivariantes sur un groupe de Lie, et nous introdui-
sons la notion de courbure de Schouten. Au paragraphe 4, nous montrons
1’existence des representations canoniques d’une extension croisee dans
les espaces de fonctions lisses sur les groupes de Lie facteurs, lorsque ceux-ci
sont connexes et simplement connexes.
La deuxieme partie sera consacree a l’étude des structures de Poisson

et de Lie-Poisson sur les groupes, tandis que la troisieme partie etablira
la relation entre cette theorie et celle des structures bihamiltoniennes et
de la complete integrabilite.
t

INTRODUCTION

This article is the first part of a work on Poisson structures on Lie groups
and their relationships with classical and quantum complete integrability.
It expands in several directions the fundamental work of V. G. Drinfeld
on Poisson groups and Lie bigebras. Sections 1 and 2 are algebraic in .

nature, although they are motivated by the differential-geometric concepts
to be introduced later. In section 1 we introduce the twilled extension of
two Lie algebras, a Lie algebra defined by a pair of Lie-algebra represen-
tations and Lie-algebra cocycles, a notion which generalizes that of a semi-
direct product. The Drinfeld-Lie bigebras are obtained as dual twilled exten-
sions, i. e., twilled extensions in which the two Lie algebras are in duality.

Section 2 deals with the exact Lie bigebras. These are Lie bigebras defined
by an exact cocycle. For a given Lie algebra g, and vector space 1) isomorphic
to the dual of g, we investigate the conditions under which a mapping r
from 1) to g is a Jacobian potential, i. e., it defines the structure of a left-exact
dual twilled extension on g x 1). We show that a necessary and sufficient
condition for r to be Jacobian is the ad-invariance of both its symmetric
part and its Schouten curvature. When r is antisymmetric this condition
reduces to the generalized Yang-Baxter equation introduced by Drinfeld
in [4 ]. The case where the Schouten curvature of r vanishes is of special
importance. We show that, for a potential with invertible ad-invariant
symmetric part, this condition is equivalent to the modified Yang-Baxter
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435POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY

equation introduced by Semenov-Tian-Shansky [9 ], and we call the poten-
tials with invertible ad-invariant symmetric part whose Schouten curvature
vanishes quasitriangular potentials. The corresponding Poisson structures
on Lie groups and Lie algebras are the ingredients of the theory of completely
integrable Hamiltonian systems (see [9] ] [10 ]) which we will discuss in
parts II and III. When the potential is antisymmetric, the Schouten curvature
reduces to the Schouten bracket. Therefore, in the antisymmetric case, the
vanishing curvature condition reduces to the classical Yang-Baxter equa-
tion (or classical triangle equation). This equation was first introduced
by Sklyanin [72] as the classical limit of the quantum Yang-Baxter equa-
tion. The classical Yang-Baxter equation was shown by Gelfand and
Dorfman [6] to be the vanishing of a Schouten bracket, and Drinfeld [4]
related it, as well as the generalized Yang-Baxter equation, to Poisson
structures on Lie groups. The interpretation, which we introduce here,
of the Jacobian condition in the non-antisymmetric case as the vanishing
of a Schouten curvature has not been hitherto mentioned in the literature.
In addition, we show at the end of this section that a triangular or quasi-
triangular potential defines an exact dual twilled extension which is iso-
morphic to the semi-direct product of two Lie algebras in duality.

In section 3, we consider a Lie group G, with Lie algebra g, acting on a
Lie algebra 1) by Lie algebra morphisms. We draw a parallel between equi-
variant one-forms on G with values in b and equivariant families of vector
fields on G parametrized by 1). On the one hand, the Cartan curvature
of an equivariant one-form is an equivariant two-form with values in 1),
and the vanishing of the Cartan curvature is equivalent to the existence
of the primitive. On the other hand, the Schouten curvature of an equiva-
riant family of vector fields parametrized by h is an equivariant family
of vector fields parametrized by 1) x 1), and the vanishing of the Schouten
curvature is equivalent to the requirement that the family of vector fields
constitute a representation of the Lie algebra 1). If, in particular, the Lie
algebra 1) is Abelian, the Cartan curvature reduces to the exterior diffe-
rential while the Schouten curvature reduces to the opposite of the Lie
bracket, and the dual roles of these objects appear clearly. The values at
the identity of these forms or vector fields determine them entirely. The
corresponding algebraic objects the coboundary and Cartan curvature
of a linear mapping from g to a g-module 1), the Schouten bracket and
Schouten curvature of a linear mapping from a g-module b to g are pre-
cisely those that appear in the study of the Jacobian potentials. An invertible
Jacobian potential is the inverse of a linear mapping whose Cartan curvature
is ad-invariant, and an invertible quasitriangular potential is the inverse
of a linear mapping whose Cartan curvature vanishes. We give an example
of such a linear mapping with vanishing Cartan curvature which arises
in the theory of the integrability of the Toda lattice.

In section 4 we prove that, given connected and simply connected Lie
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436 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

groups, any twilled extension of their Lie algebras acts on the Lie groups,
i. e., admits a representation in the spaces of smooth functions on these
Lie groups. This proof uses the results of section 3 to construct the group-
cocycles associated with the given Lie-algebra cocycles. From the families
of vector fields constructed in this section, the Poisson structures on Lie
groups satisfying Drinfeld’s property, group multiplication is a Poisson
morphism, will in turn be constructed and studied. They will be applied
to the theory of integrable systems in parts II and III.

1. TWILLED EXTENSIONS OF ALGEBRAS
AND DRINFELD BIGEBRAS

This section deals with twilled extensions of Lie algebras. We use this
term to emphasize the symmetric role played by the two Lie algebras.
Particular cases of twilled extensions are the well-known semi-direct pro-
ducts (or inessential extensions) and the Drinfeld bigebras [4] ] [J] ] which
are less familiar. A Lie algebra has a twilled extension structure if and only
if it is the direct product of two vector subspaces which are Lie subalgebras.

Let g and 1) be real or complex, finite-dimensional Lie algebras whose
elements will be denoted by x, y, z, ..., and by ç, ~, ... respectively.
We assume that each of these Lie algebras has a representation on the other.
This means that we consider bilinear mappings A : 9 x 1) --+ 1) and

x g --+ g such that the partial linear maps -~ g,
obtained from A and B by fixing their first arguments, obey the following
conditions :

Once these representations have been specified, we may seek the addi-
tional conditions under which the bracket

defines a Lie-algebra-structure on, the vector space ~ := g x 1). When
the Jacobi identity for the antisymmetric bracket (1.2) is satisfied,
we shall say that the Lie algebra thus defined is the twilled extension of 9
and 1). When the representation A (resp., B) vanishes, the bracket (1.2)
reduces to the bracket of the semi-direct product of g with t) (resp., of 1)
with g), which shows that the twilled extensions are a symmetric variant
of the semi-direct products.
By imposing the Jacobi identity on the commutator (1.2), one readily
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437POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY

obtains the additional necessary and sufficient conditions on the repre-
sentations A and B :

The conditions may be rewritten as

by using the partial maps Aç : 9 ~ 1) and Bx: 1) -&#x3E; g obtained from the

maps A and B by this time fixing their second arguments,

These conditions express the fact that A and Bare one-cocycles on I)
and g, respectively. In fact, the vector space Hom (g, t)) of linear maps
from g to t) may be regarded as an b-module, using the representation of b
on g defined by B, and the adjoint representation oft). Similarly, Hom (t), g)
may be regarded as a g-module, using the representation defined by A.
Then A, considered as a linear map from h to Hom (g, t)), is a one-cocycle
on t) with values in the h-module Hom (g, t)). Similarly, B is a one-cocycle
on g with values in Hom (!), g). Therefore a twilled extension of the Lie
algebras g and I) is defined by a pair of bilinear mappings A : g x I) -~ !)
and B : I) x 9 ~ g such that

i) the partial mapping Ax (resp., Bç) defines a representation of the Lie
algebra g (resp., t)) on the Lie algebra h (resp., g),

ii) the partial mapping Bx (resp., A~) defines a one-cocycle on the Lie
algebra g (resp., t)) with values in the g-module Horn (t), g) defined by
the representation Ax (resp., in the b-module Hom (g, t)) defined by the
representation B~).

In particular, if one of the two representations vanishes, say A, the
cocycle conditions (1.3) reduce to

which expresses the fact that Be; is a derivation of the Lie algebra g. We
thus see that twilled extensions correspond to one-cocycles in exactly
the same way as semi-direct products correspond to derivations.
The problem of constructing a twilled extension is greatly simplified

in the case when the given Lie algebras g and t) happen to be in duality,
i. e., they are related by a bilinear form ~ , ~ : ~ x 9 ~ ~ that identifies
each Lie algebra with the dual space of the other. In this case, we shall
speak of a dual twilled extension or, for short, of a dual extension. For such
a pair of Lie algebras, there is a natural choice for the representations A

Vol. 49, n° 4-1988.
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of g on 1) and B of b on g, namely the coadjoint representations defined by

where the transpose is taken with respect to the given duality form. Under
this choice, conditions ( 1.1 ) are automatically satisfied, while condi-
tions (1.4) reduce to the single condition

yielding the constraint upon the Lie algebra structures on g and 1) and the
duality form by means of which the dual extension t is constructed. To
obtain this result it suffices to remark that, when A and B are defined by (1. 7),
conditions (1.4) are the duals of each other. We shall also refer to dual
extensions as Drinfeld bigebras (or Lie bigebras) [4] ] [J] ] since the two
notions obviously coincide (See [7 ].)

Cocycles defined by the coadjoint representation of a Lie algebra struc-
ture, as in (1.7), are called Jacobian cocycles.
When condition (1. 8) is satisfied, the Lie bracket (1. 2) on the dual exten-

sion f is the only Lie bracket for which the natural scalar product

defined by the duality form is invariant under the adjoint action in f. This
remark shows that Manin triples [5] ] are in one-to-one correspondence
with dual twilled extensions.

2. EXACT DUAL EXTENSIONS
AND YANG-BAXTER EQUATIONS

Left-(resp., right-) exact twilled extensions are naturally defined as those
twilled extensions for which the one-cocycle B on g (resp., the one-cocycle A
on 1)) is exact. Here we shall treat the case of the left-exact dual extensions,
or exact Lie bigebras, an object that is no longer self-dual. (The right-exact
dual extensions may be treated in a similar fashion, by exchanging the roles
of g and t).) 

,

Let g be a Lie algebra, and let 1) be a vector space. Let Ax be a repre-
sentation of the Lie algebra g on 1). With any element r in Hom (1), g),
considered as a 0-cochain on 9 with values in the g-module Hom (1), g),
we associate a coboundary br : 9 ~ Hom (1), g) defined by

We shall assume ~ that g and 1) are in duality and 0 that Ax = ad *. We shall
investigate the additional conditions on the 0-cochain r under which the
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exact one-cocycle ~r is Jacobian, i. e., defines the structure of a left-exact
dual twilled extension on t = g x ~ ~ g x g*, also called an exact (or a
coboundary) Lie-bigebra structure on g. A 0-cochain r on g with values

in Horn (~, g), i. e., a linear mapping from ~ ,~ g* to g, or an element in

g (x) g, such that 5r is Jacobian will be called a Jacobian potential. As we
shall show below, the Jacobian condition is expressed most naturally in
terms of the Schouten bracket and curvature of r, which we now define.

Let g be a Lie algebra and let t) be a g-module that is not necessarily
a Lie algebra. We denote the action of g on b by x ~ Ax. To each linear
mapping r : ~ -+ g, we associate its Schouten bracket, an antisymmetric
bilinear mapping [r, r] from t) x h to g defined by

If, in addition, we assume that ~ is a Lie algebra and that g acts on t)
by derivations, to each linear mapping r : ~ ~ g we can associate its

Schouten curvature, an antisymmetric bilinear mapping Kr from t) x ~
to g, defined by

Obviously, if t) is Abelian, the Schouten curvature reduces to the Schouten
bracket. We shall see in section 3 that Kr is the algebraic version of the
contravariant analogue of the Cartan curvature of Lie-algebra valued one-
forms on a Lie group.
By considering the particular case where 9 and b are in duality, the action

of g on l) is the coadjoint action Ax = and where the linear mapping r
is antisymmetric, we shall show that our definition of the Schouten bracket
extends the usual one because, in this case, we can identify [r, r ] : t) x l) ~ g
with an antisymmetric trilinear mapping

defined by

Using the antisymmetry of r, we can write

whence the identity

(Here and below, (D denotes the sum over the circular permutations of

the indices 1, 2, 3.)

Vol. 49, n° 4-1988.



440 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

This identity shows that [r, is indeed antisymmetric as a function of
its three arguments
We now turn to the problem of determining the Jacobian potentials

(not necessarily antisymmetric) on a Lie algebra g. Specifically, the problem
is to find conditions on a linear mapping r : g* -~ g under which the
bracket [,]’ = t(~r) on g* that is explicitly given by

is antisymmetric and satisfies the Jacobi identity,

Let us set r=a+s, tr= -a+s, where a=-(r-tr) and are

the antisymmetric and symmetric parts of r, respectively. Then it is easily
seen that condition (2. 7) is equivalent to the ad-invariance of the symmetric
part s of r,

In fact,
(2.10) [~ ~ + [~ - - + = - + 

If s is ad-invariant, [~, ~ ]r depends only on a, and

We can now discuss the Jacobi identify, using the Schouten bracket
[~]) E 9 (8) 9 0 9 of the antisymmetric part, a, of r. We shall prove
the identity 

-

In fact, using the Jacobi identity in g, and

we obtain

Annales de Henri Poincaré - Physique " theorique "



441POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY

which proves (2.12) since ([~, is antisymmetric. Formula (2.12) shows
that the Jacobi identity for [, ]r is equivalent to the ad-invariance of [a, a ].
Thus we can state

PROPOSITION 2.1. - An element r of g (8) g is a Jacobian potential if
and the symmetric part s and the Schouten bracket [a, a ] of
the antisymmetric part r, are ad-invariant.

The condition adx = 0 is called’ the generalized Yang-Baxter
equation (GYB). The condition ~[~~]~==0, which obviously implies
(GYB)/is called the classical Yang-Baxter equation (CYB).
By the above result, the set of Jacobian potentials on g can be regarded

as a trivial fibre bundle P, contained in g (8) g, whose base is the vector
space of ad-invariant symmetric elements of g (8) g, and whose fibre is the
set of solutions of the generalized Yang-Baxter equation. Our aim is to
introduce an important subclass of Jacobian potentials, the quasitriangular
poten~tials, those with vanishing Schouten curvature when 1) ~ g* is equipped
with the Lie bracket which we shall now define.
Each mapping s : 1) -&#x3E; g which is invertible or zero defines a Lie-algebra

structure on 1)

if s is invertible and

The numerical factor is introduced for convenience. When s is ad-invariant,
ad~ is a derivation [, ]s), and the bilinear mapping [s, s ] : t) x 1) -+ g
satisfies

and is ad-invariant.

A potential will be called regular if it has an invertible, ad-invariant sym-
metric part. Let r be a regular or antisymmetric potential whose symmetric
part we denote by s. When 1) ~ g* is equipped with the Lie bracket [, ]s,
the Schouten curvature (2.3) of r is given by

In fact, using the ad-invariance of s, we obtain

Vol. 49, n° 4-1988.
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whence

Therefore [a, a ] is ad-invariant if and only if Kr is ad-invariant. Thus,
PROPOSITION 2.2. - Let r be a regular or antisymmetric potential.

Then r is Jacobian i,f’ and only if the Schouten curvature Kr of r isad-invariant.
Clearly the regular .potentials with vanishing Schouten curvature are an

important subclass of Jacobian potentials. They will be called the quasi-
triangular potentials.
We shall now show that the quasitriangular potentials with preassigned,

invertible, ad-invariant symmetric part s are nothing other than the solu-
tions of the modified Yang-Baxter equation (MYB) in the sense of Seme-
nov-Tian-Shansky [9] ] [l o ] [11 ]. In fact, if we set

the condition Kr = 0, i. e.,

can be written as

Therefore, utilizing the ad-invariant scalar product s, we see that the condi-
tion Kr - 0 is the modified Yang-Baxter equation , for R = a . s-1. This
condition plays an important role in the theory of completely integrable
systems [9 ] [7~] ] [77]. This condition had been independently introduced
in [8 as the pseudococycle condition where it figured in the integration of
the finite Toda lattice equations.

If s is scaled by a numerical factor ~3 in ~, s’ defines the Lie bracket
on h,

The condition Kr - 0 is scaled accordingly to

and the case ~8=0, where r = a is antisymmetric g* is Abelian,
is nothing other than GYB. The modified Yang-Baxter equation is scaled to

But the case p 1 = 0 is to be excluded in (2 . 21) since, = 0, R is not defined.
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We have borrowed the term « quasitriangular » from Drinfeld’s article [5 ],
where it was defined in a seemingly very different way. We shall now relate
our vanishing curvature condition to equation (7) of [J]. In Drinfeld’s
notation, for r in 9 (8) 9, [r~2, r13 ] is the element +f 9 00 g (8) 9 which satisfies

Similarly,

Therefore, when s == - (r + tr) is ad-invariant,

In fact, Kr can be also written as

Equation (2. 22) shows that the ad-invariance of Kr, i. e., the condition
that r be a Jacobian potential, is equivalent to condition (6) of Drinfeld [J],
and that the vanishing of Kr, i. e., the condition that r be a quasitriangular
potential, is equivalent to condition (7) of Drinfeld in the same paper. So
a quasitriangular potential as defined above determines a quasitriangular
Lie bigebra structure on g, in the sense of Drinfeld. (But we observe that a
quasitriangular potentiel in our sense is necessarily regular.)
When r is antisymmetric,

and Drinfeld’s conditions (6) and (7) therefore reduce to GYB and CYB,
respectively, as expected.
We shall now summarize the various classes of potentials that we have

introduced and their relationships with the various definitions to be found
in the literature. Let us denote by S the star-shaped region of invertible or
zero symmetric elements Proposition 2 . 2 shows that, in the trivial
fibre bundle P of all Jacobian potentials, the set P’ of regular or antisymme-
tric Jacobian potentials is defined by

ad-invariant and Kr ad-invariant } .
For each ad-invariant symmetric element s of S, the fibre Ps of P (or P’)
over s is

Kr ad-invariant}.
In particular, by proposition 2.1, the fibre Po over 5=0 consists of the
antisymmetric potentials r whose Schouten brackets are ad-invariant,

and [r, r] ad-invariant } .
Vol. 49, n° 4-1988.
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As mentioned above, an element of Po is a solution of the generalized Yang-
Baxter equation (GYB). The exact Lie bigebras defined by antisymmetric
Jacobian potentials have been called Lie-Sklyanin [bigebras] in [7].

In the fibre bundle P’, we have identified the important subset of the
regular or antisymmetric Jacobian potentials with vanishing Schouten
curvature

tr ad-invariant and Kr - 0}.
If s is invertible, the intersection Qs of Q with Ps is the set of quasitriangular.
potentials with preassigned ad-invariant symmetric part s. We have shown
that the potentials in Qs are in one-to-one correspondence with the solu-
tions of the modified Yang-Baxter equation (MYB) relative to s. They define
the quasitriangular Lie bigebras, which are therefore in one-to-one corres-
pondence with the Lie-Semenov algebras (See [5 ], [9], [1 ].)

If s = 0, the intersection Qo of Q with Po is the set of antisymmetric
potentials with vanishing Schouten bracket,

Annales de Henri Poincaré - Physique theorique



445POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY

i. e., the solutions of the classical Yang-Baxter equation (CYB) or triangle
equation. They can be called triangular potentials and they define the
triangular Lie bigebras [5 ].

In view of the existing terminology we shall say that a potential in PS
is a solution of the generalized modified Yang-Baxter equation (GMYB)
relative to s.

Many examples of Lie bigebras and their quantization have already
been given by Drinfeld [4] ] [5 ]. In the examples that we borrow in the list
below, we have recast the first two in our language of dual twilled extensions.

i) The trivial left-exact dual extension is defined by the potential r = 0
on g, which is of course Jacobian and even triangular. Whence B = 5r = 0
and g* is Abelian. The corresponding Poisson structure on G, the connected
and simply connected Lie group with Lie algebra g, is trivial.

ii) The trivial right-exact dual extension defined by the potential p = 0
on g*, whence A = 5p = 0 and g is Abelian. The corresponding Poisson
structure on the Abelian group g* is the Lie-Poisson structure.

iii) By the Whitehead lemma, any semi-simple Lie bigebra is exact.
iv) In the non-Abelian, two-dimensional Lie algebra g with the basis
e2 and the Lie bracket e2 ] = a e ~ there exist Jacobian cocycles

B : 9 ~ Hom (~ g) defined by , ( 2) /3 1 J. ~e~ ’
which define on g* the Lie brackets 1 0

Those cocycles are not exact unless /~ = 0.
v) Let us consider g = sl(2, C), with the basis

and g* with the dual basis H *, X + *, X - *. Since

the Kilting form of g considered as a linear mapping k from g* to g has
/1 0 0

the matrix 1 0 0 2 (1 O 00 2 0 1 0 0

We consider r = s + a, where s has the matrix 0 0 2 and a has

0 0 0 ~0 2 O

the matrix 0 0 2014 2 . Since s is a multiple of the Killing form, s is

0 2 0

Vol.49,n"4-1988.



446 Y. KOSMANN-SCHWARZBACH AND F. MAGRI

ad-invariant. Moreover Kr - [a, a ] - [~~] vanishes since

Thus r is a quasitriangular potential on g.
The coboundary of r is B = ~r : g ~ Hom (g*, g), where ~r(H) = 0,

/ 0 2 0 / 0 0 2B

~) has the matrix - 2 0 0 and ~r(X ’) has the matrix 0 0 0 .

B 0 0 0 2 0 0
When we identify Hom (g*, g) with g (x) g, we obtain

This is the simplest particular case of the formula for arbitrary semi-
simple Lie algebras and Kac-Moody algebras given by Drinfeld in [J].

vi) When g is an arbitrary Lie bigebra, f = 9 x g* is a quasitriangular
Lie bigebra. In fact, on the dual extension Lie algebra f there exists a
canonical quasitriangular potential m : t* -~ ~ defined by

The quasitriangular Lie bigebra f is called the double of the Lie bigebra g.
(See [5], [1]). For instance, taking the double of the two-dimensional Lie
bigebra of example iv) will furnish an example of a four-dimensional quasi-
triangular Lie bigebra.

In the rest of this section we shall consider the case where a dual twilled
extension is a semi-direct product.

Quasitriangular Lie bigebras and semi-direct products.
Let r be a Jacobian potential in g (8) g. Then 1) ~ g* is a Lie algebra ~r,

with the Lie bracket

and therefore, as shown by formula (2.1),

Let be the corresponding left-exact dual extension, with the Lie bracket

Annales de l’Institut Henri Poincaré - Physique " theorique "



447
POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY

This Lie bracket can also be written as

When r is regular or antisymmetric, t is also a Lie algebra ts. with the
Lie bracket defined by (2.13) or (2.13’),

Since s is ad-invariant, ad~ is a derivation of both hS and ~-~ is a

semi-direct product Lie algebra with the Lie bracket

We shall show that when r is triangular or quasitriangular, and 

are isomorphic Lie algebras. More precisely,

PROPOSITION 2 . 3. - The linear mapping u : (x, ç) E f ~ (x - rç, ç) E f
is a Lie algebra isomorphism from to the semi-direct product i, f ’
and only i~’ the Schouten curvature of r vanishes.

In fact

To prove this formula, we use the identity

and its consequence

Whence

as claimed.
Therefore quasitriangular and triangular exact dual extensions are in

fact semi-direct products and, in particular, any triangular exact dual
extension is isomorphic to the semi-direct product of g with the Abelian
Lie algebra g*, defined by the coadjoint representation.

Setting
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we obtain the following commutative diagram of linear mappings, with
two exact sequences :

While i and j are Lie-algebra morphisms in all cases, the linear mappings
u, ~, are Lie-algebra morphisms if and only if Kr - 0. In fact

and

and the property for u was proved above.
This diagram shows that, when the Schouten curvature of r vanishes,

the exact sequence of Lie algebra morphisms

is an inessential extension [2] of g ,  Lie

subalgebra of complementary to the ideal

which is equivalent to the canonical inessential extension

defined by the coadjoint representation of g on t).

3. CARTAN AND SCHOUTEN CURVATURE FORMS

To continue our study of twilled extensions we need some results concern-
ing equi variant one-forms with values in a Lie algebra, and equivariant
families of vector fields parametrized by a Lie algebra, and defined on a
Lie group. They will be reviewed briefly in this section.

Let G be a Lie group with Lie algebra g acting on a second Lie group H
by means of a family of morphisms Cg : H ~ H. This action induces an
action of G on the Lie algebra b of H which will be denoted by Ag : b ~ t).
The corresponding infinitesimal action will be denoted by A~ : ~ -~ t),
with x E g. A typical example is the case where H = G and Cg(h) = g . h ~ ~* ~.
A one-form co : JE(G) -~ h, defined on G and taking values in t), is said
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to be equivariant with respect to the actions Lg by left-translations, and Ag
of G on itself and on t) if

for every vector field X E ~(G). It is obvious that equivariant one-forms
are completely defined by their value at the identity e of G. Indeed, the
value cog at the point g is related to the value c~e at the identity by the relation

which can also be written as

where lx is the left-invariant vector field on G defined by an element x
In g.

For any one-form co, and for an equivariant one-form in particular,
there is an associated Cartan curuature two-form

If the group G is connected and simply connected, the vanishing of Q is
equivalent to the existence of a primitive function (or primitive) for OJ [3] J
which is defined as the unique function a~ : G ~ H such that

where the composition on the left-hand side denotes the action on 
of the differential at of the left translation by o-(~)’~.
Our aim in this section is to state and prove the equivariance property

of the curvature form Q and the primitive function o- of an equivariant
one-form. We must first prove that Q fulfills the relation

or equivalently,

where Qg and Qg denote the values of Q at the points g and e of G. This is
accomplished by observing that

and that
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These equalities show that (3. 8) is valid when Qg is given by

We therefore obtain

PROPOSITION 3.1. - The ’ Cartan curvature ’ [~,~] ] of the ’

equivariant 03C9 defined by , 9 ~ b is the ’ equivariant two-form
defined by Qe : g x 9 ~ h, where ,

where 03B403C9e is the coboundary of 03C9e in the cohomology of the Lie algebra g
with values in the g-module !).

This result shows that, for equivariant one-forms, the process of com-
puting the curvature form Q is purely algebraic. Qg will be called the Cartan
curvature of the linear mapping cve.

Example. The linear space of sequences, x = of real or complex
matrices of a given order constitutes a real or complex Lie algebra g with
the Lie bracket defined by 

,

This Lie algebra  is infinite-dimensional. We consider the linear mapping
I defined by

Its Cartan curvature vanishes because

We shall now prove that the primitive 03C3 of an equivariant one-form OJ,
with vanishing Cartan curvature Q satisfies the condition

To prove this identity we introduce the auxiliary one-forms

and

depending parametrically on a given element g’ of G. As a consequence
of the vanishing of the curvature Q of cv, the curvature forms of c/ and cc~"
also vanish for any g’ E G. Indeed, let us show that the functions
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and

are primitives of cv’ and respectively, satisfying the additional condition

The relation, 6’( g) -1 ~ dQ’( g) = follows from the chain rule, while the
second relation, 7"(g)~ o~/’(g) == follows from

where we have used the identity

which is valid for any Lie group morphism Cg : H -~ H. Finally, it suffices
to observe that = if a~ is equivariant. Then the relation (3.11) that
was sought follows from the uniqueness of the primitive of a form with
vanishing curvature on a connected Lie group [3 ].
We shall now study equivariant families of vector fields on G parame-

trized by 1), a concept which is dual to that of one-forms taking their values
in 1). To construct such a family, we consider a linear mapping j9 1) ~ 9
which we use to define, for each ç in 1), a vector field Xç on G according to

In this way we obtain a family of vector fields parametrized by the algebra 1)
with the equivariance property

with respect to the actions Lg and Ag of G. Conversely, it is easily seen
that any family of vector fields satisfying (3.18) can be put into the form
of (3.17) for p : 1) ~ g defined by /?(~) = X~(e). This justifies the name of
equivariant family of vector fields parametrized that we have given
to (3.17).
The main property of families of equivariant vector fields is that of

being closed under Lie brackets. The Lie bracket of Xç and X,~ is given by

where
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is the Schouten bracket of/?, where p is considered to be a one-form on 1)
with values in g. In fact, from the relation

we see that the value of the commutator at the identity determines the
commutator at each point g,

Since

the chain rule yields

where x (resp., y) is the value at e of the Lie derivative of the g-valued
function, g ~ p. Ag-l(’1) (resp., 7? o Ag-1(03BE)), by the vector field X03BE (resp., 
In particular, for g = e,

This proves (3.19).
The Schouten curvature of the equivariant family of vector fields X

indexed by 1) is the family of vector fields Jf indexed by b x 1),

If the equivariant family of vector fields X is defined by p : ~ ~ g,
then Jf is the equivariant family of vector fields defined by Kp : 1) x 1) ~ g,
where

The bilinear mapping, K~ is called the Schouten curvature 
This result shows that the process of computing the Lie bracket is purely

algebraic, and that it allows us to deal easily with the question of deter-
mining when the vector fields Xç yield a representation of the algebra 1)
over G. Indeed, the relation

is valid if and only if the Schouten curvature of p vanishes.
When p, as a linear map from 1) into g, is invertible, we introduce the

equivariant one-form defined by

and we compute the coboundary, and the curvature, S2e. We obtain

PROPOSITION 3.2. If ~7 1 = then
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and

The results of this section show that the Schouten bracket is the exact
counterpart, for equivariant families of vector fields, of the exterior diffe-
rential for forms, and that the Schouten curvature for vector fields is the
analogue of the Cartan curvature for forms. Therefore this section provides
the differential-geometric constructions which justify the algebraic defi-
nitions of section 2. The results of this section regarding the existence of
the primitive will be used in the next section.

4. CANONICAL ACTIONS OF TWILLED EXTENSIONS
ON THE FACTOR LIE GROUPS

Let G and H be Lie groups with Lie algebras 9 and 1), respectively.
When G and H are connected and simply connected, any twilled extension f
of g and 1) acts canonically on both G and H, i. e., it admits representations
in the spaces of smooth functions over G and H. This property is a conse-
quence of the relation between twilled extensions and one-cocycles that
was explained in section 1. In view of their importance, we shall now study
these actions in detail. It is sufficient to construct the action on G because
that on H is defined analogously. Let us denote the elements of G by

...

The basic tools for constructing the action of f on G are the bilinear
mappings A : 9 x 1) ~ 1) and B : 1) x 9 ~ g that have already been
discussed. Let us recall that these mappings satisfy the following four
conditions :

The first two conditions imply that A defines a representation of 9 on 1),
and that B defines a one-cocycle of g with values in Hom (1), g). We assume
that the Lie-algebra representation A is the differential of a group repre-
sentation of G on 1), which, in this section, we denote by the same letter,

-~ 1), for g in G. When G is connected and simply connected, a
uniquely determined Lie-group representation corresponds to each Lie-
algebra representation.

Let us now show that, out of the Lie-algebra one-cocycle B and the
action A, we can construct a one-cocycle of G with values in Hom (1), g).
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Here the action of G on the vector space Horn (1), g) is defined by

for mE Hom (1), g). We consider B to be a linear mapping from g to the
G-module Hom (1), g) considered as an Abelian Lie algebra. We apply
the results of section 3 in the case of an Abelian G-module. Since B is a

one-cocycle of g, the Cartan curvature of the equivariant one-form ~i
on G with values in Hom (1), g) defined by B vanishes. Therefore, if G is
connected and simply connected, ~3 has a unique primitive, b, satisfying

Furthermore, in the case at hand, identity (3.11) takes the form

These two relations express the fact that the mapping b which we have
constructed is a one-cocycle of G with values in Hom (1), g). By definition,
b satisfies the differential equation

We now state the following basic identity relating the one-cocycle bg
on the group G to the one-cocycle Bx of the Lie algebra g,

This identity is obtained by computing the partial derivatives with respect
to g and g’ of the cocycle condition (4. 7), at g = e or g’ = ~

and then by eliminating the differential of b between these two relations.
In the constructions that we have prescribed, we have used the mappings

Ax and Bx, defined over g, which fulfill conditions (4.1-4), to arrive at
the linear mappings Ag and bg, defined on G, that fulfill the conditions

We observe ~ that we have ~ used only conditions (4 .1 ) and 0 (4 . 2) in this
construction. In fact, (4.10) is the group-theoretical form of condition (4.1),
while (4.11) is the group-theoretical form of (4.2). Consequently, Ag and 0
bg satisfy additional conditions which characterize the group one-cocycles
associated with twilled extensions, namely,
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Condition (4.12) expresses the fact that the group cocycle bg measures
how much the action Ag differs from an automorphism of the Lie algebra 1),
while in the corresponding condition (4.3), the Lie-algebra cocycle Bx
measures how much the infinitesimal action Ax differs from a derivation
of the Lie algebra 1). To prove (4.12), let us introduce the mapping
6 : G -~ L 2(1), 1)), where L 2(1), 1)) is the linear space of bilinear mappings
from 1) x 1) to 1), defined by

We observe that 6 fulfills the cocycle conditions

as a result of the cocycle condition on bg and of identity

which is valid for any representation Ag of G. Then a simple computation
shows that the derivative E of o-g at the identity e,

i. e., the Lie-algebra cocycle corresponding to the group-cocycle (7, is deter-
mined by

and vanishes because of (4.3). Also, by (4.7) and (4.17), the differential
of 6 at g satisfies

and therefore the differential of 6 vanishes everywhere on G. Since G is
connected and cr vanishes at the identity, 6 itself must vanish on G.
The second condition (4.13) can be rewritten, using the Schouten bracket

bg of the linear mapping bg from the g-module b (for the action Ax)
to the Lie algebra g, given by formula (3.20), and the coboundary ~bg
of bg considered as a one-cocycle of the Lie algebra h with values in the
h-module g (for the action B¿;). In fact, (4.13) is equivalent to

In order to prove formula (4.13), we consider the mapping
g defined by
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The derivative of f with respect to g is given by

where rx is the right-invariant vector field defined by x in g, and where

To obtain (4.22) we have used the relations (4.8), (4. 7) and (4.17) in the
following forms :

In the notations of (4 . 23), the basic identity (4. 9), relating the one-cocycle bg
of the group G to the one-cocycle Bx of the algebra 9, can be written

From (4.22) and (4.23) we obtain

The derivative of f vanishes on G because of identities (4.12) and (4.4).
This implies that f - 0 since f vanishes at the identity e and G is connected.

Let us summarize the preceding discussion.

PROPOSITION 4.1. - (Properties of the Group-Cocycles Associated with
Twilled Extensions). Let G and H be connected and simply connected Lie
groups with Lie algebras 9 and L~. Suppose that Ax : ~ ~ h and Be; : 9 ~ g
are representations of 9 on h and on 9 which lend 9 x £) the structure
of a twilled extension, i. e., that Ax and Be; satisfy conditions (4 . 2) and (4.3)
in addition to (4 .1) and (4 . 4~ . Let Ag and Bh be the group representations
whose differentials are Ax and Then there exists a unique one-cocycle b
of the group G with values in Hom (£), g), and a unique one-cocycle a of
the group H with values in Hom (g, £)) which satisfy, respectively,
(4 . 27) db(g)(v)= gEG, vETgG, be = 0 ,
(4 . 28) da(h)(w)= 0 hEH, wEThH, ae = 0 .
The soiution b of (4 . 27) satisfies the one-point relation (4 . 9) and the two-

point cocycle condition (4.7), while the solution a of (4.28) satisfies the
analogous relations. The integrability conditions for equation (4.27) for b
are (4.1) and (4.3), while the integrability conditions for equation (4.28)
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for a are (4.4) and (4.2). Furthermore, (4.4) and (4.2) imply (4.12) and
(4.13), while (4.1) and (4.3) imply the analogous conditions on a.
Once the one-cocycle b: G --+ Horn (1), g) has been constructed, the

action of the twilled extension f on G is readily obtained by introducing
the vector fields on G,

where Rg is the right-translation defined by g. We shall show that they
satisfy the commutation relations

and

so that the vector fields

yield an action of f on G.
Commutation relation (4.29) is well known. To prove (4.30) we recall

that (4.29) implies that

for any right-invariant one-form 03C1  defined on G, where  E g*. Then, from
the relation

which is equivalent to definition (4.30), we obtain

proving (4. 32). Finally, to prove (4. 33) we first observe that (4. 32) implies
that
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Then, taking the Lie derivative of (4. 36) along the vector field we obtain

proving (4.33). The last statement about the commutation relations for
the vector fields follows from

We summarize these results in the following proposition.

PROPOSITION 4. 2. - (Canonical Representations of Twilled Extensions).
Let G and H be connected and simply connected Lie groups equipped with
infznitesimal actions Ax : b ~ b and Bç : g ~ 9 that lend f = 9 x 1) the
structure of a twilled extension. We denote the corresponding group-cocycles
defined in 3.1 by b : G ~ Hom (1), g) and by a : H ~ Hom (g, 1)). Then
the twilled extension ~ = 9 x 1) acts canonically on G (resp., on H) by the
vector fields on G (resp., H),

and there ’ is a ~ canonical representation of the twilled extension I in the space
of smooth functions over each of the factor Lie groups.

If t is a left-exact dual twilled extension defined by a Jacobian potential
p : 1) -+ g, then, by definition, B = ~ i. e., by (2 .1 ),

where Ax = Therefore

where Ag = Adg and, by (4. 30),

Let X~ be the equivariant family of vector fields on G parametrized by 1)
defined by p as in (3 .17). Then
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and, by definition (4.34),

We conclude this study of the representation of the algebra t on the
group G with a final remark regarding the transformation properties of
the vector fields ~(~) with respect to the left-translations on G. As is well
known, the vector fields rx are Ad-equivariant, i. e., they satisfy the trans-
formation law

There is no such simple transformation law for the vector fields Because

of the bg’s cocycle property they satisfy the more complicated transformation
law

as can be easily shown from the identity

This transformation law can be given a geometric meaning by intro-
ducing the multiplication map 03C0 : G x G ~ G defined by 03C0(g,g’) = gg’.
We shall have to invoke this transformation law (4.47) in parts II and III
of this article where we shall call it the Drinfeld property of the vector fields 03C603BE.
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