MAURIZIO SERVA

Relativistic stochastic processes associated
to Klein-Gordon equation

Annales de I'l. H. P, section A, tome 49, n°4 (1988), p. 415-432
<http://www.numdam.org/item?id=AIHPA_1988__ 49 4 415 0>

© Gauthier-Villars, 1988, tous droits réservés.

L’acces aux archives de la revue « Annales de I'L. H. P, section A » implique
I’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIHPA_1988__49_4_415_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Henri Poincaré,

Vol. 49, n° 4, 1988, p. 415-432. Physique théorique

Relativistic stochastic processes associated
to Klein-Gordon equation

by

Maurizio SERVA

Dipartimento di Fisica, Universita’ « La Sapienza »,
00185 Roma, Italy and INFN, Sezione di Roma, Italy

ABSTRACT. — A stochastic interpretation of Klein-Gordon equation is
proposed. The starting point is the construction of relativistically covariant
diffusions satisfying a property similar but not identical to the Markov
property. It is then shown that the continuity equation associated with
these processes together with the relativistic version of mean Newton
equation are equivalent to the Klein-Gordon equation.

REsUME. — Nous proposons une interprétation stochastique de I’équation
de Klein-Gordon. Le point de départ est la construction d’une diffusion
relativiste covariante qui satisfait une propriété similaire (mais pas iden-
tique) a la propriété de Markov. Nous montrons ensuite que 1’équation
de continuité associée a ce processus plus la version relativiste de I’équation
de Newton en moyenne sont équivalentes a 1'équation de Klein-Gordon.

1. INTRODUCTION

In the last years considerable efforts have been made to provide a sto-
chastic mathematical formulation of equations describing quantum mecha-
nical systems. The reason for this can be partially found in the technical
potentialities of the probabilistic approach and partially in the atmosphere
of new interest inside the scientific for theories in which probability and

. stochastic processes play an important role [4], [5].
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416 M. SERVA

In this paper we give a probabilistic interpretation of Klein-Gordon
equation by using relativistically covariant Bernstein diffusions. The
approach we make has many common points with the method used by
Nelson [6], [7] to obtain Schrédinger equation and, from a mathematical
point of view, it represents a relativistic version of it.

The theory of Nelson, known as Stochastic Mechanics has received
some attention from physicists during the last twenty years and the original
idea has been enriched with important contributions; we refer for example,
to the incorporation of spin [8-/1], to the variational approach [12-14],
to the operative definition of momentum [5-17], to the reformulation of
the theory in every representation [8], [I8-20], to the extensions to non-
flat manifolds [2]], [22], and so on. Also this theory suggested the way
to face and solve for the first time some problems of tunnelling in multiwell
potentials [I-3].

In spite of this progress, and in spite of various efforts, a complete rela-
tivistic generalization has not been achieved up to now.

The reason for this is not directly related to stochastic mechanics but
it originates from the well known difficulties connected with relativistically
covariant Markov diffusions. Hakim [23], in fact, has shown that the
expectation of the square of position increment during an infinitesimal
time interval cannot be left proportional to the time interval itself in a
relativistically covariant frame.

To make clear the content of this paper it is useful to recall briefly the
main aspects of Nelson’s theory.

Stochastic mechanics hypothizes that the motion of a point-like
particle is determined by the joint action of classical forces and of a random
disturbance of non specified origin producing continuous but non diffe-
rentiable trajectories. This assumption has both a kinematical content
and a dynamical one; the first is carried out by the fact that the increment
of spatial position during an infinitesimal interval of time is the sum of a
«classical » term (the product of a drift by the time interval) and a brownian
increment, the second is realized assuming that Newton equation still
holds in average. In this frame the possible trajectories of a particle are
the realizations of a Wiener process whose drift and initial density are the
solution of continuity and Newton equations.

Since the dynamics of systems described by the Schrédinger equation
are time reversible, it is not astonishing that stochastic mechanics also is
reversible [24]. Past and future play, in fact, the same role in the theory
so that the evolution of the system will be described as a Markov process
if a prevision about the future, knowing the past, is wanted and as an « anti-
Markov » process (a Markov process with inverted time) if a description
of the past, knowing the future, is needed. The two processes are equivalent
“and also enter symmetrically into the definition of the mean acceleration
that is fundamental for the derivation of the dynamical part of the theory.
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RELATIVISTIC STOCHASTIC PROCESSES ASSOCIATED TO KLEIN-GORDON EQUATION 417

The situation is completely analogous to the classical mechanics where
the particle trajectory into a certain time interval, once given a velocity
field, is reversible and completely determined fixing the initial or otherwise
the final position.

In the stochastic frame, the time reversal invariance says that the pro-
bability associate to a single path is the same if we consider it as the realiza-
tion of the Markov process or of the anti-Markov one. This implies that
the continuous, non-differentiable trajectories (that are symmetric with
respect to time inversion) are generate by a mechanism which remains
partially arbitrary.

The above considerations are, in our opinion, of great importance for
the physical understanding of the theory and they play an important role
in the present work.

The efforts of physicists working on the relativistic generalization of
the theory have been mostly concentrated on the attempt to circunvent
the problem pointed out by Hakim. Since covariant diffusion in physical
time were not available it was clear from the beginning that some other
kind of processes had to be used to construct relativistic stochastic mecha-
nics. Attempts have been made in various directions; some authors, for
example, have introduced additive hypothesis like discrete time [25] or
extended fluid elements [26]. In this paper we are concerned with the
research of a description not containing additive assumptions; for this
reason we review similar attempts part of which related to the Dirac
equation and part to Klein-Gordon equation.

One approach (not hystorically the first) has been inspired by recent
papers that provide a path integral description of 1 + 1 dimensional
Dirac equation [28], [29]. This works on path integral exploit the formal
analogy with a « heat » equation associated to a process with the speed
of light which inverts the direction of motion at Poisson distributed random
times. It should be kept in mind that they do not provide a truly stochastic
description of a Dirac particle as well as Feynman path integral does
not provide a truly stochastic description of a non relativistic system. In
order to obtain stochastic mechanics it is necessary to interprete the conti-
nuity equation satisfied by the quantum mechanical probability density
as a forward Kolmogorow equation [30]. This procedure for the 1 + 1
dimensional Dirac particle case leads us to consider processes which are
a generalization of the ones associated to the path integral formulation.
For these generalized processes the probability of an inversion of velocity
during an infinitesimal time is not anymore a constant but depends on the
position and on the direction of motion.

Unfortunately this approach, due to G. F. De Angelis, G. Jona-Lasinio,
N. Zanghi and the present author, has been only partially extended to
the 3 + 1 dimensional case and it does not provide a derivation of the
dynamical part of the theory.

Vol. 49, n® 4-1988.



418 M. SERVA

A different direction of research has been indicated by F. Guerra and
P. Ruggiero [31], [32]. Taking into account that time and space formally
play an identical role in relativistic theories they propose to consider
four-dimensional diffusions with an invariant time as parameter while
the physical time is a random variable.

A process of this type has very particular features, in fact, since time
has a diffusive nature, the particle can change direction in his temporal
motion. In this frame, a particle moving backward in time can be inter-
preted as an antiparticle while the points of inversion of temporal motion
can be interpreted as points of creation or destruction of pairs of particles.
The reason for this is of simple understanding; let us take the example
of a particle moving forward in time till the instant t, where it starts to
move backward, an observer sees a pair of particles at any time before ¢,
and no particles afterwards, therefore he decides that at time t, a particle
and an antiparticle have been annihilated.

Generally, a trajectory can intersect much more than once a hypersur-
face of constant ¢ so that a theory of this kind can be thought to describe
a many particle system with destruction and creation of pairs. One possible
interpretation of this fact is that the four-dimensional one-particle process
is only a mathematical « trick » to describe a many particles reality; from
this point of view the invariant time has no physical meaning and it is
only an instrument utilized to associate a probability measure to any
possible realization of the « true » many particle process.

Another possible interpretation, mathematically equivalent to the first,
is that the one-particle trajectories have physical reality and that a micro-
scopic particle can really invert the temporal motion. From this point of
view the invariant time is again an instrument to associate a probability
to any realization but also it appears as a generalization of proper time.
For example, in the present model, it turns out that the equation

dx*dx, = mc?*(dr)* holds in average providing a probabilistic definition of
the 1nvar1ant parameter .

In spite of that, 7 is not proportional to the time of the system rest frame
(in our model such a frame does not exist) and it has not analogous « confi-
gurational » meaning. In other words an orbserver, looking at a single rea-
lization, is not able to associate an invariant time to each point of the trajec-
tory, nevertheless he can give to t an averaged operative definition.

A partial result (that also has inspired the present work) in the direction
of construction of a relativistic process of this kind has been obtained
by F. Guerra. He considers a four-dimensional markovian diffusion
satisfying stochastic differential equations of the type

dq*(zr) = v*(q(z), T)dt + dw* with E[dw"dw*] = 2vp**dz.

The problem arises from the fact that the metric #** cannot be taken equal
to g™ =diag (1, — 1, — 1, — 1) since it must be positive definite. The
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author makes a choice that remains partially arbitrary and the origin of
which is difficult to motivate, furthermore additional problems arise in
relation to the definition of a stochastic version of second principle.

In this paper we adopt a different approach. We propose to abandon
the Markov property in order to define diffusions satisfying a slightly
different property that is, in this context, as « natural » as the Markov one.

We have previously remarked that the time reversibility of classical
trajectories is maintained in Nelson theory and it leads to a description
which considers together a Markov process and an anti-Markov process.
In the relativistic formulation of stochastic mechanics we also expect
invariance with respect to inversion of invariant time (charge conjugation).
This symmetry suggests that this theory too can be constructed utilizing
two processes which together take into account of the reversible nature
of diffusive trajectories. Nevertheless, we are not obliged to consider a
Markov process and then a complementary anti-Markov one; on the
contrary we can make the choice in the « natural » larger class of Bernstein
processes [33-35] that also contains combinations of Markov processes
and anti-Markov processes. Relativistic covariance restricts the choice of
such combinations to two of them: the first with the physical time diffusing
forward with respect to the invariant parameter and the space position
diffusing backward; the second (the complementary one) with time diffusing
backward and position diffusing forward. We must also consider the pairs
of processes that are obtained from the first via Lorentz boost. The conti-
nuity equation which is associated with these diffusions have a manifestly
covariant form (the laplacian of brownian motions is substituted by a
dalambertian). We emphasize that it is completely natural to have select
Bernstein diffusions since we want to describe a reversible dynamics and
we also emphasize that the asymmetry between space and time (that
disappears if we consider the pair of processes together) is the direct conse-
quence of a request of covariance.

We have seen that a process of this type crosses many times a given
hypersurface t = t, appearing to an observer as a cloud of particles with
total charge + e where pairs are continuously created and annihilated.
It is shown in the present article that the cloud spreads on a sphere of
radius { Ax ) = h/mc in agreement with relativistic quantum position
indeterminacy.

The work is organized as follows: In section 2 we describe the main
characteristics of the processes that we introduce and in particular we
explain the nature of Bernstein property which replaces the Markov
property. In section 3 the continuity equation, associated to these diffu-
sions, is found and it is shown to be relativistically covariant. In section 4
the natural generalization of forward and backward mean derivatives are
given in order to state, in section 5, the relativistic analog of mean Newton
equation.

Vol. 49, n° 4-1988.



420 M. SERVA

In section 5 it is also shown that the continuity equation together with
the relativistic Newton mean equation are equivalent to the Klein-Gordon
equation. The last one can be considered, in this context, as a linearization
of the first two.

In the appendix it is shown that the classical equation dx*dx, = mc*(dr)?
confining the 4-momentum of a relativistic system into an hyperboloid,
still holds in average providing the physical meaning of invariant time.

2. BERNSTEIN PROCESSES

The symmetry of physical trajectories with respect to the inversion of
invariant time allows us to utilize Bernstein processes to obtain the rela-
tivistic stochastic mechanics.

In this section we describe this class of processes without any reference
to physics and we also select and describe a sub-class directly related to
the present work.

The fundamental property of Bernstein processes is the following:

ELf((@))/P(< a), F(= b)] = E[f(x(x))/x(a); x(b)] 2.1

for each function f and for a < 7 < b.

The first expectation is conditioned by fixing the past of the process
up to time a and the future after time b, while in the second only x(a) and
x(b) are fixed. In other words; the probabilistic knowledge of the process
at time 7, if the past is completely known until time a and the future is
completely known after time b, is the same if only x(a) and x(b) are known.

This time symmetric property is satisfied both by Markov processes
and by anti-Markov processes and it is also satisfied by combinations of
the two.

“Let us make a first simple example; let us consider the two dimensional
process (x(t), y(z)) defined by the equations

x(1) =x; + wi(t — S)

Ya) =t + wy(T — 1) 2.2
where w; and w, are standard brownian noises. The process (2.2) is defined
onlyforS<t<T.

We see that x(t) is markovian with initial value x(S) = x; and that y(f)
is anti-markovian with final value y . It is easy to check that the combina-
tion of the two satisfies (2.1) and therefore is a Bernstein process.

The transition probability density of finding x(7) in x and y(t) in y, once
given the « initial » values x; and y,, is:

1 1 x—x)? (y—y,)?
PO yitlxe 83y 1= 50 o =g gy P { T 26=8) 2(T—f1) }
2.3)
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It is remarkable that this probability satisfies the equation
a:p = 1/2 [axaxp - ayayp] . (24)

In analogy with the markovian diffusions it is possible to define:

(1) = x; + J by(la, Y + Wiz — S)
S
T
¥0) = vy — J bl Y(W)du + wa(T — ) 2.5)

where b; and b, are two assigned drifts and again S <t < T.

Also this process satisfies (2.1).

The construction of the relativistic stochastic mechanics will be made
by utilizing diffusions of the type (2.5) so let us look at this more carefully.
We can easily convince ourselves that (2.5) satisfies a stronger property
than (2.1), in fact the probabilistic knowledge that we have of the system
at time 7 if we know all the past of x(u) before time g and all the future of
y(u) after time b is the same we have if we only know x(a) and y(b).

In other words:

E[g(x(r), W(1)/P < a), F(= b)] = E[g(x(z), ¥(0))/x(a), y(b)]  (2.6)
for each function g and for S<a<t<b<T.

A symbolic way of writing the differential equation satisfied by process

(2.5) could be:
dx = by(x, y)dt + dw,

dy = by(x, y)dt + dw, 2.7

where the anti-markovian nature of the Wiener increment in the second
equation is marked by a tilde.

In the following sections we will consider processes of type (2.5) with
an invariant time as parameter while the physical time itself will be a
stochastic process.

We will also require from these diffusions to be relativistic covariant.

3. CONTINUITY EQUATION

We will start the construction of relativistic stochastic mechanics intro-
ducing the process with invariant parameter t defined by

x(t) = x; + J tb+(x(u), {w)du + /hw(t — S)
S

ct(z) = ct; — f b (e(u), tw)du + /hwe(T — 1) 3.1)

where ¢ is the speed of light, # is the Planck constant and S <t < T.

Vol. 49, n° 4-1988.



422 M. SERVA

The realizations of (3. 1) are trajectories in the 4-dimensional space-time;
x(7) is the spatial position of the system while ¢(t) is the physical time. We
suppose the drift does not depend explicitly on the invariant parameter
(having the dimensions of a time over a mass). We observe that the three-
dimensional brownian noise appearing in the first equation is markovian
while the unidimensional one that appears in the second is anti-markovian.

Together with the class of processes (3.1) we must consider the comple-
mentary class obtained by reversing the invariant time. Furthermore, for
reasons of covariance, we must also consider the more general class which
originates from the first two by a Lorentz transformation. This more general
class of processes provides the ingredients of relativistic stochastic mecha-
nics.

Let us, for the moment, consider only processes of type (3.1).

The associate probability of transition (the probability of finding the
system in x and in ¢ at time 7 if it was in x; at time S and it will be in ¢,
at time T) is implicitly given by

px,t;t|x;, S;t,, T) = E[0(x — x(1))o(t — t(7))] (3.2
where x(t) and t(t) are the processes (3.1).

In order to obtain the equation satisfied by (3.2) we observe at first
that the following equalities hold:

tim £ 2075 ) = 1 10) = t:| = ba(x,0)

elt | o0—1

Iim E Mlx(r) =x, t(o’) = t:| = 3h

olt | O' —

tim | PO O e o) = x} — B(x, 1)

glt | o0-—T

lim E czlt(o)—"t(r)ﬁu(r):x, t(o—)z,;]zh‘ (3.3)
olt | g —7T

It should be remarked that the conditions in the above expectations
fix x(t) at the beginning of invariant time interval and #(t) at the end.

The derivative of p with respect to the invariant time is found by cal-
culating the limit:

lim (o — )7 'E[8(x — x(0))3(t — o)) — dlx — x(2)d(t — 1(r))] =
= lim (6 — 7)7'E[~ (x(0) = X(2)V[o(x — x(1))(t — {o))] +

1
+ 5 llxlo) — 2(D)VI? [8(x — x(2)d(t — t(0))] +
— (tlo) — 1(1))d, [6(x — x(2))d(t — (0))] +

- % [(t(o) — t(x))0. 1 [d(x — x(2)d(t — to)] + oc — D] (3.4)

Annales de I’ Institut Henri Poincaré - Physique théorique



RELATIVISTIC STOCHASTIC PROCESSES ASSOCIATED TO KLEIN-GORDON EQUATION 423

taking into account the equalities (3.3) and the independence of x(1),
t(o) from the increments x(c) — x(t), t(6) — t(tr) we see that the following

equation holds
0.p = — 0,(b% p) — (h/2)0"0,p (3.5

where 0,0* = ¢7207 — A and d,(b% p) = ¢~ 10(b% p) + V(b. p). The rela-
tivistic covariance of the equation (3.5) is explicit.
The « initial » conditions assigned to the solution p are

deip(x, t; S | xi: S’ tf, T) = 6(t - tf)

Jdt,p(x,t;Tlx,-, S;t;, T) = d(x — x;) (3.6)

they are a consequence of definitions (3.1), (3.2) and they correspond to
the stochastic « initial » values x(S) = x;, ¢T) = ¢,.

The transition probability of the diffusion (x'(t),#'(r)) obtained from
(3.1) by a Lorentz boost of velocity v also satisfies the covariant equa-
tion (3.5). The « initial » conditions will be given fixing vx'(S) + | v |*¢(S),
x'(8) — (v/| v|*)[ex'(S)] and ¢(T) + (v/c)x’(T).

Therefore, any process belonging to the general class is associated to
the covariant equation (3. 5) and to one of the above « initial » conditions;
furthermore, there is a reference frame in which its stochastic equations
take the form (3.1).

Let us consider again only diffusions (3.1). The (scalar) probability
density of finding the system in the point x, ¢t of space-time at the instant t
is:

p(x, t;1) = Idxidtfp(x, t;tlx;, S;ty, TI(x;, S5 t,, T) 3.7

where Il(x;, S;t;, T) is the probability density that the system is in x; at
time S and in ¢, at time T for which the following identity holds

M(x;, t5tp,7) = pl(x, t5 7). (3.8)

The scalar probability density (3.7) also satisfies an equation (3.5)
as well as the probability densities associated with processes of the general
class. '

It should be remarked that only the probability densities which are
stationary solutions of an equation (3.5) have physical relevance since
7 is not directly observable.

The situation is identical in classical relativistic mechanics. Let us consi-
der, in fact, the classical relativistic equations of a particle in a velocity
field (they can be obtained from (3.1) with the assumption 4 = 0); they
lead to the continuity equation

0.p = — 0,(b"p) = c™'abop) + V(bp) (3.9)
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where 7 is now the proper time. The above equation becomes the « true »
continuity equation only after we put d,p = 0.

In this classical frame the four-component density pb, (which in a four-
dimensional picture is the mean flux crossing in the point x a hypersurface
of constant ) has a direct physical meaning since it is the probability of
finding the system in x at the (physical) time ¢. Furthermore u = b/b, is
the velocity of the particle and bp = (pb,)u is the three-dimensional flux
density.

In the stochastic version, as it be will shown in section 5, it is possible
to define a four-component density and flux density with an analogous
meaning.

4. MEAN DERIVATIVES

In the previous section we have shown the main characteristics of the
diffusions we need in order to construct relativistic stochastic mechanics.
Now we are ready to extend the definition of mean derivatives previously
introduced by Nelson for Markov processes.

Let us consider again a process of type (3.1). Because of the anti-marko-
vian nature of the Wiener noise appearing in the second of the (3.1) it is
natural to generalize Nelson’s forward derivative in the following way.

D*F(x,t;17)= 1}?} E[F(x(0), t(c), 6)— F(x(7), t(t), 7) | x(t) =x, t{(o) =t J(c — 1) ~*

= Ll?;l E[(x(0) — x(t))VF(x, t; )+ % [(x(¢) — x(t))V*F(x, t; 1)+

+(t(0) — (7))o, F(x, t; 1) — ;: [(to)—1(2))0, *F(x, t; 1)+
+(0—1)0.F(x, t; 1)+ 0(6 —7)| x(1)=x, t(o) =t J(c —17) "' =

1
=bk (x, )0, F(x, t;1)— 3 h0,0"F(x, t; 1)+ 0.F(x, t; 7) 4.1)

where the position has been fixed at the beginning of the invariant para-
meter interval and the time at the end. This derivative has a manifestly
covariant form and it becomes a standard one in the classical limit # — 0.
For processes that take the form (3.1) only after a Lorentz transforma-
tion of velocity » the derivative must be defined fixing the conditions

vx(t) + |v]%t(x) = vx + |v|*t 4.2
x(r) — (/| v *)vx()) = x — (v/| v|*)(vx)

t(o) + vx(o)/c? =t + vx/c?.
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Furthermore, the stochastic equations satisfied by these processes can
be written in the differential form (with the convention (2.7))

dx = b (x,)dt + /h[dw + (y — n(ndw) + yBndwo ]
cdt = bS.(x, Bt + /h [ydwo + yB(ndw)] 4.3)

where n = v/|v|, B =|v|/c,y = (1 — B*)~* and w and w, are as usual
Wiener noises. It is easy to check that relations (4. 3) together with condi-
tions (4.2) define a mean forward derivative identical to (4.1).

Since both continuity equation and mean derivative are independent
of the v appearing in the stochastic equation (4.3), something like a gauge
invariance comes out. In other words, since the continuity equation and
the mean derivative are determined only by the drift they can be associated
with any possible cocktail of processes which have the same drift but
different « privileged reference frame velocities v ».

Let us now come back to the processes (3.1). We can define a second
mean derivative, that corresponds to Nelson’s backward mean derivative
fixing symmetric conditions with respect to (4.1)

D~F(x, ¢; 7)= lim E[F(x(0), #0); 0) ~ Fx(c) (r); 1) | (o) =x, () =t Jlo —7) !
4.4

This expectation can be calculated following a standard procedure (see
for example reference [24]).

We have
1
DF =0,F + b0, F + Ehaua“F 4.5)
where we use:
dp
¥ =b4h + h—. 4.6)
o

This further mean derivative also has a manifestly covariant form and
it can be associated with any cocktail of processes (4.3).

The system whose probability density is a solution of (3.5) and which
generates the derivatives (4.1), (4.5) is (invariant) time symmetric, for
example, it is possible to rewrite its continuity equation in the form:

1
0.p = — 0,(bp) + Eh@,ﬁ“p 4.7

in which the sign in front of the Dalembertian has changed and which can
be derived from the invariant time reversed stochastic equations

dx = b_(x, 0t + /A [dw + (y — Dn(ndw) + yBndw, ]
cdt = bO(x, 0)dt + \/h [ydwo + yB(ndw)] @.8)

Vol. 49, n° 4-1988.
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where we use the usual convention (2.7) and notations (4. 3). Furthermore,
starting from (4.8) and (4.4), it is possible to obtain the derivative (4.5)
directly while the derivative (4.1) is obtained by following the procedure
shown in reference [24].

It is easy to be convinced that equations (4.3) (together with the initial
density II(x;, S; t, T)) and equations (4.8) (together with the initial density
I(x;, T;t,, S)) associate the same probability to a given trajectory of the
stochastic system.

Therefore, we have arrived at the conclusion that such a system can be
described by one of the processes (4.3) as well as by one of the processes
(4.8) independently of v and also it can be described by any possible cock-
tails of these.

This freedom of choice comes out from relativistic covariance and inva-
riant time reversibility. About this last symmetry we remark that the
process described by equations (4.3) and the process described by equa-
tions (4.8) belong to two complementary class linked by invariant time
reversal.

We conclude this section with two definitions:

br= (b4 + bY)

Sbr= (b4 — b)) = — Sh—. 4.9)

N = DN =

5. DYNAMICAL EQUATIONS

In the previous section we have introduced all the kinematical ingre-
dients necessary to the construction of a relativistic stochastic mechanics.
In particular we have defined two mean derivatives in analogy with the
non-relativistic theory.

This section, on the contrary, is devoted to the dynamics of the theory.
The main assumption we make is that classical equations still hold in
average. In other words we state

D* + D_)x

1 e
“(D*D™ + D D)’ = SF*
L3¢ + DD =2 2 "

(5.1)

where the mean 4-acceleration is defined in analogy to Nelson’s accelera-
tion and where e is the elettrical charge and F** is the elettromagnetical
tensor

F* = MAY — O°A*. (5.2)
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We have previously assumed that the drift does not depend explicitely
on 7, now we also assume

bH(x,t) = — 0"S(x, t) — (e/c)A¥(x,1). 5.3
With this assumption, once the derivatives are explicitely calculated,
equation (5.1) may be rewritten: , _
0" [(0"S + (e/c)A")0,S + (e/c)A,) — (h*0"d,p'?)/p* 1 =0 (5.4)
and so
(0"S + (e/c)A")0,S + (e/0)A,) — (R*0*0,p ?)/p'? = m*c*  (5.5)

where m is a constant that we identify with the mass of the particle.

Since we assume, in analogy with the classical case, that b* and b~ are
not explicit functions of T and since b* — b~ = hd log p, we also implicitely
assume that the density p does not depends directly on the invariant time.
In other words, the physical solutions of equation (4.7) are the stationary
solutions for which:

0up=—0, (b4 p) —~ (1/2)043, p = — 0,(*0) = 00,8 +(e/)A)p]=0. (5.6)

It is easy to show that the complex function

W(x, 1) = p'x, 1) exp { iS(x, )/ } (5.7
satisfies the Klein-Gordon equation
(ihd* — (e/c)A*)ihd, — (e/0)A )Y = m*c*¥ (5.8)

and so we arrive at the conclusion that the quantum behaviour of a system
described by a function W satisfying the Klein-Gordon equation has an
explanation in an underlying stochastic process.

A problem could arise at this point; the scalar density p is positive and
the same could be expected for the fourth component density pb, but,
on the contrary, it is sometimes negative at least in some regions of space-
time. This fact has a simple explanation which leads us to interpret pb,
as the charge density.

We first of all observe that pb,, in the 4-dimensional picture, represents
the mean flux crossing a hypersurface of constant ¢ in a point x. In the
classical case this flux is always positive because the fourth component
of the trajectory of the system is a monotone growing function of proper
time, while in the quantum case it is not monotone and it can cross the
hypersurface in both directions.

The crossings from region t < t, to region t > t, give a positive contri-
bution to the fourth component density while the crossings from region
t > to to region t < t, give negative contribution.

An observer, looking at time t,, will see a particle with charge + e if
crossing is from region t < t, to region t > t, and a particle with charge
— e if the motion is opposite. Furthermore, when the same particle crosses
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twice the hypersurface, he will see a pair of particles with opposite charge
and, when the particle crosses it n times, he will see n particles with total
charge zero if n is even and with total charge e if n is odd.

It is easy to be convinced that, from the observer point of view, the sto-
chastic system will appear as a kind of dressed particle i. e. a cloud of par-
ticles with total charge e where pairs are continuously created and annihi-
lated.

Some easy calculations show that the cloud spreads on a sphere of radius
{ Ax > = hjmc according to relativistic quantum position indeterminacy.

We make these calculations for a free particle « at rest » for which
bt = b~ =0 and b = by = mc. This simple system can be described
by the equations:

x(t) — x(T) = (1)'*w(T — 1)
ct(t) — ct(S) = me(t — S) + (B)*?wo(r — S) (5.9)
the first process is anti-markovian while the second one is markovian.

We put x(T) = x, and #(S) = t, so that the particle is in ¢, at the (inva-
riant) time S. In the following (invariant) instants the particle can cross
the hypersurface t = t, many more times; but after the time S + At for
which:

(mcAt)? = | B3 (wo(S + At) — wo(S) | (5.10)
the positive drift contribution mcAz is greater than the brownian contri-
bution and it brings the system far from t,. Therefore we can assume that
after the (invariant) time S + At the system does not actually cross again
the hypersurface.

The relation (5.10) gives

At = h\m?*c*. (5.11)

On the other side we see that during this interval of (invariant) time
Az, in which the system can still be found with reasonable probability
in t,, the position spreads on a sphere of radius

CAx > = | (R)V2W(T) — (T — At))| = hjme (5.12)

that is the radius of the region of the space in which the particle can cross
the hypersurface. An observer, looking at (physical) time ¢, sees a cloud
of particles with linear dimension #/mc.

6. CONCLUSIONS

The model presented here gives a reasonable solution to the problem
of constructing relativistic diffusion associated to Klein-Gordon equation.

It also turns out that it shows some physical features of relativistic
quantum mechanics like pairs production and position indeterminacy.
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We think that this model also has an interest in view of possible exten-
sions and generalizations. A description of the Dirac particle, for example,
seems possible. First calculations show that, to reach this goal, some
constraints on the trajectories should be imposed. Once this is done, it
turns out that at least in the 1 + 1 dimensional case, the trajectories have
the speed of light in agreement with the assumption made in reference [30].
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APPENDIX

In classical mechanics the motion of a particle in an electromagnetical field is confined
into the hyperboloid of equation

m?c? = (dx,/dr)(dx"/dr) (A.1)

that defines the invariant mass. :

In the present stochastic model, the particle is not anymore confined into a hyperboloid
but equation (A.1) still holds in average. In other words the limit for At — 0 of a certain
mean of:

(Ax, Ax")/(A1)? = e [(t(0) — UD)K(x) — ) /(A7) x — [(x(0) — x())(x(c) — x(m) }/(A)*  (A.2)

with ¢ — t =1 — 4 = At > 0, is equal to m2c%

In (A.2) we only consider products of increments in neighbouring intervals of invariant
time because an average made on the same intervals diverges when At — 0 and therefore
it has no physical meaning.

In order to calculate (A.2) we consider at first a system that is in x(n) at time # and in
t(c) at time o. According to equations (3.1) we have:

x(x) — x(n) = f b (x(w), tu)du + /ho(x — 1)

n

(o) — 1(v) = f b (x(w), t@)du + /hido(c — 1) A.3)

T

with @(t — 1) = w(t — S) — w(n — S) and @o(oc — 1) = Wo(T — ) — wo(T — 7).
Then we consider the system that is in x(¢) at time ¢ and in ¢(r) at time 7. According to
equations (4.8); we have,

x(6) — x(1) = f ’ b_(x(u), tu)du + /héd(c — 1)

T

o(t(0) — tln)) = j b2 (x(u), tw)du + /hoo(c — ). (A.4)

All the brownian increments in (A.3) and in (A.4) are independent. On the contrary,
the integrals in equation (A.3) depend on the brownian increments in (A.4) and also the
integrals in (A.4) depend on brownian increments in (A.3).

The more reasonable mean of (A.2) is

{E[(Ax,Ax")/(AT)? | x(n) =x, t(o) =t ]+ E[(Ax,Ax")/(A1)? | x(c)=x, t(n)=t] } /2 (A.5)
where (Ax*Ax,)/(At)? is given by equation (A.2) together with equations (A.3) and (A.4).

In order to calculate exactly the limit of (A.5) it is sufficient to take (A.3) and (A.4)
till the order (At)*/2. For example with respect to conditions x() = x and t(¢) = t we have:

x(t) — x(n) = b(x,)Ar + Ir [(x(w) — x(M)V1b+(x, )du +

+ f (1) — (612, 1b4(x, Odu + /hao(z — n) + o(Ac>?) (A.6)
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we also have:
x(0) — x(t) = b&(x, t)AT + j [(x(w) — x(n))V1b_(x, t)du +
+ J“ [(tw) — t(0))0,1b—-(x, t)du + \/;l&‘)(a — 1) + o(AT¥?) (A.7)

from which we obtain:

E[—(x(0) — x(2))(x(c) — x(m)/(AD)? | x(m) =x, t(o) =t ]=b_(x, )b, (x, ) + hVb_(x, ) + . ..

(A.8)
where we have taken into account that:
E[(x(w) — x(m)o(t — n)] = E[(x(z) — x(n)o(r — n)] + o(A1) =
= h'2At + o(A7) (A.9)
for u > 7 and
E[(x(u) — x(n)d(e — 1)] = 0o(A1) (A.10)

for u < . In an identical way it is easily found:

E[c3(t(o) — t(x))t(z) — tn)/(AT)? | x(n) = x, t(0) = t] = b2(x, )b (x, £) + O (x, 1) + ...
(A.11)

and also
E[(Ax,Ax9)/(A)? | x(6) = x,t() = t] = b b~ + ho,b% + ... (A.12)

finally collecting (A.10), (A.11) and (A.12) we obtain the limit for At — 0 of (A.5) to
be equal to:
by,bh + 10,(0b") = m*c? (A.13)

where the last equality is simply given by (5.5). Equation (A.13), that reduces, to (A.1)
in the classical limit A — 0, defines an invariant mass and can be thought as a constraint
on the drift.
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