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How to Recover Euclidean Invariance

from an Ondelette Cluster Expansion (*)

Guy BATTLE (**)

Ann. Inst. Henri Poincaré, ’

Vol. 49, n° 4, 1988, Physique ’ théorique ’

ABSTRACT. The d-dimensional Lemarie basis is not the tensor product
of the j-dimensional basis with the (d-j)-dimensional basis, and the linear
relation between these bases is complicated. Nevertheless, we find a j-dimen-
sional regularization of the d-dimensional Lemarie basis defined by an
arbitrary cutoff in scale A. This orthonormal set has the important property
that the subspace spanned by it is precisely L 2(Rd - j) (8) L~, where L~ is
the span of the A-scale cutoff of the j-dimensional Lemarie basis. We use
this tensor product theorem to recover Euclidean invariance from the
ondelette cluster expansion. We will also apply it to Ward identities in
a future paper.

RESUME. - La base de Lemarie en dimension d n’est pas Ie produit
tensoriel de la base de dimension j et de la base de dimension d-j. La relation
lineaire entre ces deux bases est compliquee. Neanmoins, nous exhibons
une regularisationy-dimensionnelle de la base de Lemarie en dimension d
definie par un cut-off arbitraire a l’échelle A. Cet ensemble orthonormal
a la propriete importante que Ie sous-espace qu’il engendre est précisément

(8) LÄ ou LÄ est 1’ensemble engendre par la partie de la base de
Lemarie avec cutoff d’echelle A. Nous utilisons ce theoreme de produit
tensoriel pour retrouver 1’invariance Euclidienne dans la « cluster-expan-
sion » en ondelettes. Nous appliquerons ce resultat aux identites de Ward
dans un article suivant.
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404 G. BATTLE

1. INTRODUCTION

The problem of proving Euclidean invariance of a very singular field
interaction controlled by a phase cell cluster expansion that breaks Eucli-
dean invariance has been a recurring headache in constructive quantum
field theory. This is particularly true in the case where a multi-scale lattice
structure is built into the phase space localization. In this case a noteworthy
success in proving symmetry can be found in [I ], where Euclidean invariance
is recovered in the continuum limit of the lattice abelian Higgs2,3 models.
The aim of our paper is to show how Euclidean invariance can be proven
for any model controlled by a specific kind of phase cell expansion namely,
the ondelette cluster expansion [2 ]. We concentrate on the 4Jj quantum
field theory, but only in the interests of concreteness.
Thus our purpose here is not to « sell » the ondelette cluster expansion,

but to show that it passes a test that every phase cell expansion must pass.
The claim has often been made even by this author that with this
kind of cluster expansion « there are no cutoffs.» Instead of getting involved
in an esthetic dispute over what this really means, we simply meet the
legitimate objection that this phase space localization « shares the problem
of cutoffs. » Actually it should be emphasized that, a priori, ondelettes
destroy physical positivity as well as Euclidean invariance, but we will
show how both are restored.

Our approach combines a standard idea with a non-trivial tensor product
theorem for ondelettes. The standard idea is to super-impose a spherically
symmetric cutoff in both position space and momentum space. If the input
estimates for the given phase cell expansion are uniform with respect to
this cutoff, then a double-limit argument allows one to recover rotational
invariance, and the rest of the argument is easy. The sticking point is the
uniformity of the input estimates. For the ondelette decomposition, and
indeed for any phase space localization with a multi-scale lattice structure,
the more familiar ultraviolet sharp or exponential will
not do, because they destroy the scaling properties of the phase cell esti-
mates. One must use the inverse power cutoff given by the factor
(p2 + m2)-1~" in momentum space, because it is the only candidate for
reasonable scale homogeneity at small length scales. On the other hand,
this ultraviolet cutoff suffers from a loss in the degree of regularity as K: -~ oo.

Now for models whose ultraviolet divergences are marginal2014e. g., ~2n
interactions this poses no problem. But for the 4Jj theory this defect
is serious : although the phase cell estimates are uniform in x, it is not clear
that there is a continuation of the rotational symmetry into the region

2 (where ultraviolet singularities develop) because we do not have
_ analyticity in rc. Actually we believe that some kind of continuation argument
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405HOW TO RECOVER EUCLIDEAN INVARIANCE FROM AN ONDELETTE CLUSTER EXPANSION

is possible, but we propose a solution to the rotational invariance problem
which demands far less information about the cluster expansion and can
be adapted to recover physical positivity as well.

Let ~(~) be the free Euclidean scalar field in three dimensions with mass m.
The ondelette cluster expansion for 4Jj [3 ], [4 ], [5] is based on the decom-
position

where

and runs over the modified Lemarie basis [5 ]. Actually we are defining
the random variables ak by

and associating the regularization

to every finite set A. The corresponding regularization of the 03C643 interaction
will be denoted by ÀIA(4J), where ~, is the coupling constant. 
denote the free expectation functional and set ZA = ~ e - ~IA«~ ~ o . The
ondelette cluster expansion proves :

THEOREM [3 ]. - For sufficiently small /), and for arbitrary Schwartz
functions f ’1, ..., f", the limit  IIn-1 ~( f~ ) ~ ~, of

exists as A approaches the set of all modes in the sense of set inclusion.

The problem is to show that this limit is Euclidean invariant.

THEOREM 1.1. - ( II"-1 q~( f ) ~ ~, is invariant with respect to unit scale
translations.

The proof of this theorem is a standard type of argument [7] ] which
involves grubbing around with the convergence tails of the given cluster
expansion. The key input, of course, is the invariance of the modified Lema-
rie basis with respect to unit scale transitions.

LEMMA 1.2. - Rotations and unit-scale translations generate the

group of Euclidean motions (with respect to invariance of  03A0ni=1 03C6(fi)&#x3E;03BB).
Proof - It suffices to show that all translations along one axis are

Vol. 49, n° 4-1988.



406 G. BATTLE

generated. Now suppose a translation by x is generated. By the Pytha-
gorean Theorem it follows that translation by x2 is also induced. But
differences between induced translations are also induced, so translation

by 1) is generated. It follows from this inductive step and the

unit translation that (2 2014 1)N-translation is induced for an arbitrary
integer N. But integer linear combinations of these numbers are dense in R,
so the continuity property of  IIn-1 ~( f ) ~~, with respect to translations
generates arbitrary real transitions. II

Thus the Euclidean invariance problem reduces to rotational invariance,
which involves the difficulty we have already mentioned.
Our first step in getting around the problem is to note that rotational

invariance with respect to every coordinate plane is enough. On the other
hand, the modified Lemarie basis has seven-dimensional subspaces invariant
with respect to 90° rotations. By taking a sequence of sets A having this
symmetry when one removes the phase cell cutoff, we see that ( ~
has this symmetry, and so the goal of this paper is to prove :

THEOREM 1. 3. - 03A0ni=103C6(fi)03BB&#x3E; is rotationally invariant in the x1x2
coordinate plane.
What have we gained from this reduction? The idea is that if we impose

a phase cell cutoff in the 3rd coordinate direction then all ultraviolet diver-
gences are marginal. With this regularization imposed, we can therefore
use the (p2 + m2)- l~k ultraviolet cutoff to establish rotational invariance
in the perpendicular plane.

This strategy is not as easy as it sounds, because it is not all clear what
we mean by a « phase cell cutoff in the 3rd coordinate direction. » The diffi-
culty is that the three dimensional modified Lemarie basis is not the tensor
product of the two-dimensional modified Lemarie basis with the 
sional one. Indeed, the linear relation between these bases is complicated,
so it is not immediately clear how to truncate a basis of ondelettes « in the
3rd coordinate direction » without affecting the other coordinate directions
as well. One could probably get around this problem by basing the expan-
sion formalism on the tensor product of ondelette bases, but it would vastly
complicate the case structure of the expansion. Each phase cell could be
large scale in one direction and small scale in another.

Note. 2014 Elements of the modified Lemarie basis will always be referred
to as Lemarie functions, even if they are the special unit-scale functions that
modify the Lemarie basis.

In Section 2 we find a one-dimensional regularization of the modified
Lemarie basis satisfying the following conditions :

a) If A = 2 - P is the scale of the cutoff, then all Lernarie functions down
to that scale are included.
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b) At scales  A the orthonormal functions are two-dimensional Lemarie
functions tensored with (one-dimensional) A-scale functions only.

c) If JfA is the subspace of L2(R3) spanned by our orthonormal set,
then JfA = L2(R2) (8) 2A, where 2A is the subspace spanned by the A-scale
cutoff of the one-dimensional Lemarie basis.

This last condition is a non-trivial theorem (Theorem 2 . 2) which depends
on the block spin construction [8] of Lemarie functions in a significant way.
Theorems of this nature will also be applied to Ward identities in a future
paper.
Having outlined the strategy, we must now be more precise about how

the reasoning goes. For R &#x3E; 0 let ’R be a spherically symmetric Coo func-
tion such that ’R(X) = 1 for x ~  R, ’R(X) = 0 for x &#x3E; R + 1, and the
partial derivatives of 03B6R are bounded uniformly in R. Let .

where E is our new orthonormal set associated with the scale A.

Let ~,I~ °R~(~), ~ IA( 4» be the corresponding regularizations of the 4Jj inter-
action. Now in spite of our unusual kind of ultraviolet cutoff,

is well-defined for rc  oo by very basic estimation of convergent integrals
and this is the purpose of the A-regularization; but the main point is that
this regularization is rotationally invariant in the xlx2 coordinate plane.
This is a consequence of the tensor product theorem. Since

for some regular kernel t’), we have

which proves the desired symmetry for (1. 8). One can now preserve this sym-
metry by first taking the x = oo &#x26; R = oo limits and then taking the A = 0
limit.

Vol. 49, n° 4-1988.



408 G. BATTLE

THEOREM 1.4. - For sufficiently small /).

The proof of this theorem actually depends on the estimates for the ~pk
functions that we prove in Section 2, but given these estimates, it is clear
that the expansion formalism is unchanged and that convergence is uniform
with respect to A, x, &#x26;R. The identification of limits is due to the equation

where 03BBI039B,A(03C6) is the 03C643 interaction corresponding to the regularization

The equation holds because = down to scale A. Indeed the A-depen-
dence disappears when A  min { E A }, where Lk = 2’’’ is the scale

We close the introduction with a remark on how to prove physical posi-
tivity. One dimensionally regularizes the modified Lemarie basis in the
above manner (yet to be described) but in every direction except the direction
of Osterwalder-Schrader reflection. One can prove in the same way we
prove Theorem 2.2 below that the subspace spanned by the resulting
orthonormal set is a tensor product with as a factor, and so the regu-
larized free covariance has the reflection positive structure in that direc-
tion [7 ]. The limit argument is straightforward because no ultraviolet
cutoffs are super-imposed.
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APPENDIX

In this section we define our one-dimensional regularization, establish the fundamental
estimates on the new functions, and prove the tensor product theorem.
For the modified Lemarie basis we let l&#x3E; denote the special unit scale function whose
Z3-translates complete the basis. Recall [5 that 03A6 is given by

where X is the characteristic function of the unit interval [0, 1 ]. For any lower scale L = 2 -r
we let 1&#x3E;s denote the function for which L-3~2~5(L-lx) generates the sub-level associated
with the sth coordinate direction. Recall [5] that 1&#x3E;s is given by

where

The translates are given by

Vol. 49, n° 4-1988.
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Taking the translation rules into account one can see that 7 ondelettes are naturally asso-
ciated with the L-scale cube; there are 8 associated with the unit-scale cube.
We introduce the one-dimensional regularization B1B of this basis for a fixed but arbitrary

scale A = 2-p: down to that scale we take the same functions as before. For L  A we throw

away the 3rd sub-level and replace &#x26; L-3~2~2,m(L-ix) with 
where

Given the calculation in the introduction of [8 ], one can easily convince oneself that these
functions form an orthonormal set. Orthogonality in at least one variable is guaranteed
for any two such functions-whether they live on the same scale or not.

In the p = oo (A = 0) limit we obviously recover our modified Lemarie basis. Moreover,
for finite p the ondelette cluster expansion for the p-cutoffinduced on the 4&#x3E;1, theory converges
uniformly in p. Indeed for scales L  A the convergence problem becomes effectively

two-dimensional without direction is anything in the expansion formalism. The largerscale in the 3rd coordinate direction is fixed as far as case structure is concerned. From the
standpoint of basic ondelette estimates the scheme is that for modes k such that A,
we have by [5]-since = 0~ in this case-

for all real (3  M and all positive integers N  c(M, (3), where denotes the center of
the cube associated with k and

On the other hand if Lk  A, the basic ondelette estimate is two-dimensional.

THEOREM 2.1. - Let k be a mode for which Lk  A; where « mode » is now defined by
the one-dimensional regularization of the modified Lemarie basis. Then for all real {3  M
and all positive integers N  c(M, {3),

where denotes the center of the Lk x Lk x A rectangular solid associated with k.

Proof - The problem easily reduces to showing that the L1-norm of

Annales de l’lnstitut Henri Poincare - Physique ’ theorique "
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is bounded by

for the given ranges of parameter values. The input estimates are

for L - = 1, 2, and - oo  p 3  oo, where m &#x26; n are multi-indices and m,~ = N.
In the region I 2 L - 1. /1 = 1, 2, we use (2 .13) and

Now if we make the change of variables

and use Ln3 ::::;; we obtain the bound (2.11) provided that our momentum bounds
yield integrability in each region. This can be arranged choosing N sufficiently small relative
to M &#x26; ~, provided /3  M.

REMARK. - Estimate (2.9) is « better » than (2.7) because it is applied to only a two-
dimensional counting problem in the cluster expansion. For example, it is easy to see that
the usual cancellation of the 4&#x3E;1 mass bubble is unnecessary below scale A because diver-
gences are two-dimensional there.

Having established that the one-dimensionally regularized set BA does no harm to the
cluster expansion, we now prove the motivating result.

THEOREM 2. 2. - Let JfA be the subspace of spanned by the orthonormal set BA
defined above. Then

where f£A is the subspace of spanned by the A-scale cutoff of the one-dimensional
modified Lemarie basis.

Proof - First we show that c Q9 It suffices to express an arbitrary ~pk
in the one-dimensionally regularized set BA as a linear combination of functions of the
form ql, where f E and ql is a one-dimensional Lemarie function with scale &#x3E;: A.
Now if A, then ~pk is a three-dimensional Lemarie function (by definition of our ortho-
normal set). In this case there are two possibilities (see (2.1) &#x26; (2 . 2 . ~). Either ~pk already
has the form ql or

where ~~, is a two-dimensional Lemarie function with scale L). = Lk. The problem, then,
is to show that lies in But this is equivalent to showing that it is orthogonal
to and this orthogonality is a natural consequence of the block spin construction [8] ]
of the Lemarie basis. Indeed, for any Lemarie function ql E we have

Vol. 49, n° 4-1988.
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for all n because ql ultimately arises from ± 1 block spin assignments at scale L  Lk
(recall that (2.17) is only one form of the consequence). On the other hand, it follows from
Poisson summation that 

.

where the convergence of such a sum has already been established in [8 ]. Thus

and so the orthogonality of so ~~ is verified. This concludes the case A.
If Lk  A, then has the form

But the same reasoning that we have just given shows that is also orthogonal
to ~~ . This completes the argument that yeA c ~ 2A.
To prove that L2(!R2) Q 2A c ~~ we pick an arbitrary t/J;. (x) ql with Ll &#x3E;_ A and try

to express it as a linear combination of elements from our orthonormal set BA. There are
3 cases to consider:

In case a) we simply express i~~,(pi, p2) as a linear combination of the functions

This is possible because

and we can appeal to (2.18) and

Annales de Henri Poincaré - Physique theorique
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But a function whose Fourier transform has the form

is precisely an Lrscale Lemarie function and therefore a member of BA in this case.
In case b) we play exactly the same game with the roles of t/J). and ql reversed (except

the factor 2 in (2.21) is missing). The result is a linear combination of L).-scale Lemarie
functions, which belong to BA in this case as well.

In case c) the problem is to express ql as a linear combination of the functions 
But this possibility follows from (2.18), (2 . 22) &#x26; (2 . 23) again..
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