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SuMMARY. — Ideas of condensed matter physics are introduced into
relativity.

In 1859 Gustav Kirchoff formulated a principle about heat radiation,
which in paraphrased form reads as follows: « A volume of black body
radiation of temperature T has properties which are all together independent
of the material composition of the enclosing chamber. » The world of
physics has never been the same once workers such as Planck and Einstein
started some forty years later to understand the puzzle behind this obser-
vation.

In 1973 John A. Wheeler formulated a principle [/] which in paraphrased
form reads as follows: « A black hole of mass M, charge Q, and angular
momentum S has properties which are all together independent of the material
from which it is formed. » This, roughly, is also known as the « no hair »
principle.

Whether there turns out to be a historical parallel between these two
remains to be seen. Our present task is to make a number of quantum mecha-
nical observations about space-time with an event horizon.

Instead of focussing on curved space-time with a compact event horizon,
we shall focus on flat space-time with the infinite event horizon of an
accelerated coordinate frame. The geometry in the form of curvature has
thus been lost, but the normal mode spectrum becomes much simpler [2],
and many of the quantum mechanical essentials appear to remain the same.

The system we shall consider is a relativistic wave field, the Klein Gordon
field, partitioned into two subsystems, say I and II, by the two Rindler

Annales de I'Institut Henri Poincaré - Physique théorique - 0246-0211
Vol. 49/88/03/397/5 /$ 2,50/© Gauthier-Villars



398 U. H. GERLACH

coordinate charts [3] (also called I and II) of a pair of accelerated coordi-
nate frames.

2. Our point of departure is the analysis, first done by Unruh [4] and
other workers [5], [6], of an accelerated detector interacting with the
quantized wave field. They consider « elementary » interactions between
the detector and the wave field. By « elementary » we mean that only
finitely many (in their case one or two) quanta are involved in the interaction
process. Their central result is that the quantum mechanical description
of an elementary process is equivalent for inertial and accelerated coordi-
nate frames.

Let us assume that the normal mode spectrum of the quantized field
is discrete. This discreteness is achieved by confining the field to a pair of
semi-infinite cavities accelerating symmetrically into opposite directions.
Let the transverse cross sectional areas be L2. Let both cavities have finite
bottoms (b > 0). Thus their respective world lines are

x = + b cosh gr; t = bsinh gr.

Then the inner product of a) the familiar Minkowski vacuum | Oy )
of the quantized field with b) a Rindler vacuum | Og ), the ground state
relative to the pair of accelerated cavities I and 1II, is [7]

L\?> 1
<0R|0M>=exp{—<g> m}

One can readily see what happens in the limit of a continuous mode spec-
trum, the « thermodynamic » limit. It is obtained by removing both bottoms
(i.e. b — 0) of the accelerated frames. In that limit

(Or|Oy» =0,

i. €. the Rindler vacuum is orthogonal to the Minkowski vacuum. It follows
that the Rindler vacuum is orthogonal to every quantum state considered
by these workers in their analysis of accelerated detectors. In fact, in the
thermodynamic limit, the whole Hilbert space generated from a Rindler
vacuum is disjoint from that generated from the Minkowski vacuum.

3. A Rindler vacuum is a peculiar state. It has a large number of photons,
but they occupy pairs of opposite traveling modes in such a systematic
way, that each pair is not only 100 % correlated, but each mode is also
in a highly squeezed vacuum state [8].

If the Klein Gordon (KG) field is charged, then the photons get replaced
by Minkowski mesons and the paired correlated modes carry opposite
charge [9].

4. The Rindler vacuum for a given pair of accelerated coordinate frame
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is one which minimizes [9] the expected moment of mass-energy of each
KG subsystem I and II."Expanded in terms of the Minkowski Bessel modes
the moment for I is [/0]

HI = J‘ J‘ J dwdzk[lek + Hz)(l)‘rrel‘]

where

we™ 1
Hipk = ——— | @@ + = |.
1k ™2 sinh nw( okfek T o
can be viewed as the moment of energy of an individual mode, and

1 w
. + o+
HErel = - — (Aor- -k + agrale, )
2 2 sinh 7w
can be viewed as the correlation moment of energy between the given pair

of modes. The total moment of mass energy of a pair is
fok = Hior + Hy_ gy + 2HEF™" (0> 0).

If the KG field is charged, the moment of energy gets augmented to
include the amount for each type of charge. The correlation energy will
be between mesons of opposite charge traveling into opposite directions [9].

What is the nature of the photon dynamics as determined by the total
boost generator? For comparative purposes, consider the Hamiltonian
of a dilute hard core Bose gas [/1] below its lambda temperature. It is
remarkable that not only is its Hamiltonian the same as the boost generator,
but its ground state has the same form as a Rindler vacuum. In condensed
matter physics the ground state manifests itself macroscopically as a super-
fluid. We shall now ask whether the Rindler vacuum yields a similar macro-
scopic manifestation, in which case the photon configuration would be
condensed liquid light.

5. Taking our cue from condensed matter physics, we look for oscillations
in an order parameter when the system is not exactly in the condensed
vacuum state. An order parameter is a quantity that, among other things,
becomes non-zero when the system is cooled below a critical temperature.
For a superfluid the order parameter is the density of the condensate
below the lambda temperature, while for a ferromagnet the parameter is
a non-zero magnetization below the Curie temperature. Slightly above
T = 0°K one has oscillations in this parameter, « first » sound waves in
a superfluid and spin waves in the ferromagnet. The quanta of these dis-
turbances in the order parameter are called quasi-particles. For a superfluid
they are known as phonons; for a ferromagnet they are known as magnons.
For an acceleration-partitioned KG field the quasi-particles are the Fulling
particles [/2]. They occupy the Rindler modes whose spectrum, like Gold-
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stone modes, extends all the way to zero boost frequency. A tentative
candidate for an order parameter is the renormalized moment of energy.
It is the sum total of the contributions from all pairs of correlated Min-
kowski Bessel modes. The contribution from a single pair occupied by N,
quasi-particles in Rindler sector I is

{ Nok | Higi [ Nt > =< Oy [ Highie | Om > = @ [Ny — (exp 2n0 — 1)1

At T =0°K in accelerated frame I, N, = 0. Consequently, the order
parameter (= moment of mass energy) has its maximum negative value.
It is not difficult to see that the presence of quasi-particles (N, # 0) has
a tendency to decrease the magnitude of the order parameter. In fact,
suppose the KG system is heated to temperature T in the Rindler frame L
Then the quasi-particle number will have its Planckian thermal mean.
The corresponding value of the order parameter [/4] is obtained from

1 1
Nor > — 2nw—1)"1]= —

@< Nok = (exp 2n0 = 1) 7] w[exp (hw/kT)—1  exp an—l:l
for €ach pair of Minkowski Bessel modes. One sees that the Davies-Unruh
temperature

T = 1hg
Ck2mec
is the critical temperature at which the order parameter variables.

6. Candelas and Sciama [/3] in a generally unappreciated calculation
consider an inertial detector passing through Rindler sector I when the
acceleration partioned field is in the condensed vacuum state. They assume
single quantum processes. They find that modulo « transients » the detector
makes no transitions.

This is a significant result because, even though plenty of photons are
present, the detector passes through the condensed vacuum as if there
were no interaction. Like a superfluid, the photons let the detector pass
through unimpeded. Their result can be derived from (moment of) energy
conservation as follows: consider a free particle (a « detector » ) whose wave
equation is the KG equation. Its quantum states are the Minkowski Bessel
wave states. These are the stationary states for which the moment of mass
energy of the particle is a constant of motion. Now let this particle interact
with the quantized wave field in a Lorentz boost invariant way. It follows
that the moment of energy of the total system, particle plus field in Rindler
sector I, is conserved. If the field is in the condensed (« Rindler ») vacuum
state of least moment of energy, then the particle can extract no more
energy from the field by making an absorptive single quantum transition.
Thus, at least to first order perturbation theory, the particle passes through
the field without friction.
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7. The quantum mechanical implementation of Einstein’s edict [/5]
« All Gaussian coordinate systems are essentially equivalent for the laws
of nature », demands that under parallel translation a zero-particle
(= ground) state go over into a zero particle state, and in general an n-par-
ticle state go over into an n-particle state.

However, a calculation shows [8] that in the thermodynamic limit
(« bottomless » accelerated frames) a Rindler vacuum state relative to
one pair of accelerated frames cannot be related by a unitary transformation
to another Rindler vacuum state relative to a parallel translated pair of
accelerated frames. One concludes, therefore, that a KG field can be pre-
pared in anyone of an infinite number of condensed vacuum states, all
lying in different Hilbert spaces. This is expressed by saying that translation
symmetry is broken by a Rindler vacuum state. Einstein’s edict cannot
be implemented quantum mechanically.
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