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Topological and algebraic aspects of quantization:
symmetries and statistics
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ABSTRACT. 2014 We discuss the inequivalent quantizations of a physical
system with configuration space Q. A brief review is given of rigorous
results concerning the number and type of quantizations available to such
a system. The example of n identical particles moving on an arbitrary
manifold is considered in some detail.

RESUME. - Nous discutons les quantifications inequivalentes d’un

systeme physique a espace de configuration Q. Nous presentons une breve
revue des resultats rigoureux concernant Ie nombre et Ie type de quanti-
fications possibles pour un tel systeme. L’exemple de n particules identiques
en mouvement sur une variété arbitraire est considere en detail.

I INTRODUCTION

When constructing a quantum theory from a classical dynamical system
with configuration space [1] Q, the standard procedure is to choose the
fixed-time quantum mechanical state vectors as functions from Q into
the complex numbers C. However, one can use a much more general
notion of a state vector ~P(~). First, ’ may be « multiple-valued » on Q ;
and second, ’ may take values in any CN, N 2:: 1. More specifically, ~(q)
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can have N-components ~n(q), 1  n  N, and when q is taken around
a generic loop in Q, we may have [2] ]

m2014 1

where V( [~]) is an N x N unitary matrix depending only on the homotopy
class of l, denoted by [l ]. (Note that 03A8~03A8 must be single-valued.) Moreover
for any two loops l1 and l2 we require

where l1l2 denotes the standard product loop. Eqs. (1) and (2) imply that
V provides an N-dimensional unitary representation of the funda-
mental group of Q [3 ].

If ’P and ~I’’ are two such N-component objects « transforming under
loops » according to V and V’ respectively, then ~ + ~I’’ is an acceptable
state vector if and only if V = V’ (as representations of 7Ti(Q)). Thus the
total Hilbert space Jf of states breaks up into a direct sum of subspaces
{ where each ~p only contains states which transform according
to the fixed representation p of 7Ti(Q). If p is reducible, then breaks

up further into a direct sum of subspaces {H03C1i} where the 03C1i’s are the
irreducible components of p. Therefore we can achieve a decomposition
of Jf into superselection sectors, each labelled by a finite-dimensional
irreducible unitary representation (IUR) of [4 ]. If we let ~(~1(Q))
denote the set of all finite-dimensional IUR’s of then the quantum
theories defined by each of the sectors represent the
« prime » quantizations of the original system. Clearly, contains

at least one element, namely the trivial IUR, and the corresponding quan-
tum theory has ordinary complex-valued functions as state vectors. How-
ever, in general will contain more than one element revealing
the essential « kinematical ambiguity » in quantizing a classical system [6 ].
The quantizations corresponding to IUR’s of degree 1, the so-called

scalar quantizations, are simply labelled by the character group Q of
1L1 (Q) [7], [8]:

where H 1 (Q) is the first (integral) homology group of Q. Again, there is
always at least one scalar quantization. The quantizations associated
with IUR’s of degree &#x3E; 1 are of a qualitatively different nature. They
possess an « internal symmetry » of topological origin associated with
the entire system [9 ]. In this paper, we review various results concerning
when a system has a unique quantization, a unique scalar quantization,
or only scalar quantizations. We then turn our attention to a class of sys-
tems which almost always possesses nonscalar quantizations; namely,
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n identical particles moving on a manifold M. Here the different choices
of quantum representations of the system are related to the different
possible types of statistics available for the n identical particles. Much
work has been done on the scalar quantizations of this class of systems,
and their relationship to statistics. Here we survey these studies and proceed
to derive some new results concerning nonscalar quantizations.

II SURVEY OF RIGOROUS RESULTS

In what follows, by a Q-system we will mean a physical system with
configuration space Q. One natural question concerning the above classi-
fication of inequivalent quantizations of a Q-system is :

A) When does a Q-system have a unique prime quantization ?
For scalar quantizations, this question is answered in Ref. [10 ].

THEOREM 1. A Q-system has a unique scalar quantization if and only
is a perfect group [ 11 ], or equivalently, H 1 (Q) is trivial.

More generally, if we call a group G with no nontrivial finite-dimen-
sional IUR’s a U-inert group, then by definition a Q-system has a unique
prime quantization if and only if 7~1 (Q) is U-inert. (Clearly U-inert groups
must be perfect.) A characterization of finitely generated U-inert groups
is given in Ref. [5 ] :

THEOREM 2. A finitely generated group G is U-inert if and only if G
has no nontrivial finite quotient groups.
The restriction to finitely generated groups is not severe since almost

all spaces Q of interest in physics have finitely generated. There are
many nontrivial examples of U-inert groups [5 ] and the possibility of
finding physically interesting Q-systems with U-inert (and nontrivial)
is addressed in Ref. [5] ] with some success. We therefore see, contrary
to the usual intuition, that there exist physical systems with multiply-
connected configuration spaces Q which nonetheless have a unique quan-
tization.
Another natural question is the following :
B) When are all the prime quantizations of a Q-system scalar?

Let us call a group U-scalar if it has no finite-dimensional IUR’s of

degree &#x3E; 1. Then by definition, all the prime quantizations of a Q-system
are scalar if and only if 7:1 (Q) is U-scalar. Clearly, all abelian groups are
U-scalar. In Ref. [5 it is shown that :

THEOREM 3. A finitely generated group G is U-scalar if and only if
G has no finite nonabelian quotient groups.

Vol. 49, n° 3-1988.
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There are many examples of nonabelian U-scalar groups (for example,
all nontrivial U-inert groups), and such groups can be realized as 7Ti(Q)
of interesting Q-systems [5 ]. For more properties of U-inert and U-scalar
groups, see Ref. [5 ].

III. STATISTICS OF IDENTICAL PARTICLES

An interesting example of a class of physical systems which almost
always possesses nonscalar quantizations is that of n identical particles
moving on an arbitrary path-connected manifold M (without boundary).
The relevant configuration space is the orbit space [8] ]

where Mn represents the n-fold Cartesian product of M with itself, 1B is
the subcomplex of M" for which two or more (particle) coordinates are the
same, and Sn is the permutation group on n symbols with the obvious
action on Mn - 1B. Clearly this action is free (i. e. without fixed points),
yielding the following fibration [72] ]

The long exact homotopy sequence of this fibration gives the following
five term short exact sequence for 

The is called the n-string braid group of M in the mathe-
matical literature [12 ], [7~], and is usually denoted by Bn(M). (Note that

7Ti(M).) The prime quantizations of our system are labelled by
contains at least as many elements as More

specifically, for any IUR p of Sn of degree m, there is a corresponding IUR
of Bn(M) of degree m constructed by « lifting » p. So since 3, always
has an IUR of degree &#x3E; 1, we see that there is always a nonscalar quantiza-
tion of our system 3 (for any M).

It is clear that the different quantizations of the above system are related
to the different possible statistics for the n identical particles (~ &#x3E;: 2).
However, one must be careful not to overcount. There is, in general, a
quantization ambiguity already present for n = 1 (and therefore having
nothing to do with statistics) which will manifest itself again in 
for any n. So in order to get the set which labels - the different choices of
statistics one must take and « mod out » by ~(B 1(M)) in an appro-
priate way. We will denote the formal quotient set 
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by 0n(M). For simply-connected manifolds M we have 0n(M) == 
We now turn to a discussion of scalar quantizations and the corresponding
choices of statistics.

IV . SCALAR STATISTICS

The scalar quantizations of n identical particles moving on a manifold M
are labelled by .

Qn(M) = Hom U( 1 )) "--’ Hom U( 1 )) . (6)
In Ref. [7~] it is shown, using standard techniques in algebraic topology
and homological algebra, that if dim M &#x3E; 3 or if M is a closed 2-manifold
not equal to S2, then

For these manifolds we then have

The different statistics associated with these scalar quantizations (« scalar
statistics ») are then labelled by 7~2 and it is easy to see
that these two choices correspond to Bose and Fermi statistics. So there
are no exotic scalar statistics available to n identical particles moving on
the above manifolds.

If M == ~2 the situation is different. We have [7~] ] (n &#x3E; 2)

So we see that the choices of statistics for n identical particles moving on ~2,
are labelled by an angle 0, 0  e  27r. This angle smoothly interpolates
between quantizations with Bose (e = 0) and Fermi (8 = ~c) statistics.
The new statistics are often called 0-statistics (or fractional statistics)
and seem to be relevant in theoretical interpretations of the Fractional
Quantum Hall Effect [16 ]. Finally, for M = S2 one has [16 ], [77] (n &#x3E; 2)

Note that the number of possible scalar statistics grows as n grows. This
peculiar n-dependence of the set of scalar statistics seems to be unique to
the case 

V GENERAL STATISTICS
ON SIMPLY CONNECTED MANIFOLDS

In this section we consider the possible statistics for n identical particles
moving on a simply connected manifold M. If dim M ¿ 3 we have [8] ]

A) == f e ~ and Eq. (5) yields

Vol. 49, n° 3-1988.
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The representations of Sn are well studied. The number of IUR’s of Sn
is equal to the number of partitions of the integer n, denoted by p(n). So
there are p(n) choices of statistics for n identical particles moving on a
simply connected manifold M of three or more dimensions. Some values

are given below [18 ].

Note that p(n) grows rapidly as n increases. For large n, one can use the
Hardy-Ramanuj an asymptotic formula [7~] ]

For any n &#x3E; 2, there are only two IUR’s of degree 1. Namely the trivial
IUR and the IUR sending all even permutations to + 1 and all odd permu-
tations to - 1. The corresponding statistics are Bose and Fermi respectively
(see Section IV). The (nonscalar) statistics associated with the remaining
IUR’s represent a generalization of these [5 ], [19 ].
The situation in dimension two is much more complex. Bn([f~2) (n &#x3E; 2)

is an infinite group known as the n-string Artin braid group [20] and has
many applications in knot theory. It can be defined by the following pre-
sentation

)’ ~)2014~/’ ~

B2(~2) ~ ~ and therefore there are no non scalar quantizations of 2 iden-
tical particles on R2. For n ~ 3, Bn(R2) is infinite and nonabelian. We shall
concentrate on the case n = 3. A slightly more useful presentation of
B ~2 is f~1, f271 .

where a == and b = The degrees of the finite dimensional
IUR’s are unbounded. This can be seen as follows. It is known [22] ]
that

where F2 is the free group on two generators (x and y). It is easy to see that
F2 has an IUR in every positive dimension m. Just send x to any dia-
gonal m x m unitary matrix all of whose eigenvalues are distinct, and
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send y to any m x m unitary matrix all of whose off diagonal elements
are nonzero. Finally, send z to any unitary scalar matrix. These three
matrices will generate a unitary representation p of F2 x Z, and since the
only matrices commuting with all of them are the scalar matrices, p is
irreducible. Now by Eq. (5) we have that F2 is a normal subgroup
of finite index in B3(fR~). It is a well known result in the theory of induced
representations [2~] ] that if a group G has a normal subgroup of finite
index with an IUR of degree m, then G mu.st have an IUR of finite degree
&#x3E;_ m. We therefore have that the degrees of the finite-dimensional IUR’s of
B3(~2) are unbounded. So we see that there are an infinite number of
« types » of nonscalar statistics for 3 particles on ~2.

All the two-dimensional IUR’s of B3(f~) are easily found. They are
labelled by two angles ~ and 0,0 ~ ~  2~, 0  e  vc/2, and are generated
by (see Eq. (15))

where co = e21d/3. (For 0=0, one must restrict the range 
in order not to overcount.) The case ~=7~/3, 8 = 0 corresponds to the « lift »
of the two-dimensional IUR of S3. A 3-parameter family of three-dimen-
sional IUR’s of B3(t~) is generated by (0 :::; 4J  27r)

where ~~k is the Kronecker delta symbol and n = (nl, n2, n3) is a real positive
unit vector all of whose components are nonzero. (If n 1 == n2 = n 3 == 1/B/3?
then one must restrict the range of ø to 0 :::; ø  2~c/3 so as not to over-
count.) These exhaust the three dimensional IUR’s of B3(~2). The higher
dimensional IUR’s of can also be explicitly constructed although
the procedure is much more tedious. Representations of Bn(f~2), n &#x3E;- 4,
are also more difficult to construct.

Finally, we consider M = S2. We have [2~] ]

B2(S2) ~ 7~2 and there are only the Bose and Fermi quantizations. B3(S2)
can be presented as

where c == 5i52 and d = ð1ð2ð1. B3(S2) has order 12 since [24]
7Ti((S~)~ - 0) ,., ~2 (see Eq. (5)). There are six IUR’s of four of

Vol. 49, n° 3-1988.



394 E. C. G. SUDARSHAN, TOM D. IMBO AND CHANDNI SHAH IMBO

them have degree 1 (see Section IV) and the remaining two have degree 2.
They are given by

with ~, = 1 and ~, = i. The groups Bn(S2), n &#x3E;_ 4, are infinite, nonabelian [2~] ]
and more difficult to deal with.

VI. CONCLUSION -

In this paper we discussed various topological and algebraic aspects
of the process of quantizing a classical system. First, the classifica-
tion of the prime quantizations of a Q-system by finite-dimensional
IUR’s of 7~1 (Q) was reviewed and then three recent theorems concerning
the nature of the quantizations available to  given Q-system were stated.
Specifically, we saw that there exist Q-systems with nonabelian 7Ci(Q)
which have only scalar quantizations, or even a unique quantization.
Finally, we considered in some detail the prime quantizations of n identical
particles moving on an arbitrary manifold M and their relationship to
statistics. In particular the possible scalar statistics of n identical particles
on manifolds of dimension &#x3E;_ 3, as well as 1R2 and all closed 2-manifolds,
were completely given, followed by a discussion of nonscalar statistics on
all simply connected manifolds of dimension &#x3E; 2.

In closing, we would like to say that throughout his career, Jean-Pierre
Vigier has always been open to new ideas, no matter how bizarre they may
have initially appeared. This immense curiosity has often paid dividends.
When the above nonstandard scalar quantizations utilizing multiple-
valued state vectors first appeared [25 ], they must also have seemed very
strange; a mere formal curiosity. However, with the discovery of « 8-vacua »
in nonabelian gauge theories, gravitational theories and nonlinear sigma
models [2 ], as well as fractional statistics in condensed matter physics,
the new scalar quantizations have entered the mainstream of physics,
despite their initial exotic appearance. It is our sincere hope that the

(even stranger) nonscalar quantizations discussed here will enjoy a similar
fate [26 ].
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