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ABSTRACT. — We discuss generally and with reference to typical
examples the classical limit of quantum mechanics, including equations
of motion and the uncertainty relations, from the point of view of the causal
interpretation. We show how universal criteria may be formulated in terms
of sufficient conditions to be satisfied by the wavefunction in order that the
classical results are recovered. These overcome the problems associated
with limiting procedures such as # — 0 or high quantum numbers.

RESUME. — Nous discutons de maniére générale et exemples a Pappui
la limite classique de la mécanique quantique, y compris les équations du
mouvement et les relations d’incertitude, dans 'optique de Pinterprétation
causale. Nous montrons comment des critéres universels peuvent étre
formulés en termes de conditions suffisantes que la fonction d’onde doit
satisfaire afin de retrouver les résultats classiques. Ces critéres surmontent
les problémes associés aux passages & la limite tels que # — 0 ou celle des
grands nombres quantiques.

1. INTRODUCTION

Any transformation in thought brings with it its dissenters and doubters.
These may be reactionaries harking back to a system of ideas they feel
comfortable with out of habity but they may also prick the conscience of
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326 P. R. HOLLAND AND A. KYPRIANIDIS

the majority and remind them that perhaps there is a better way. All oppo-
sition contains a grain of truth. Throughout his long career in theoretical
physics, Jean-Pierre Vigier has sought to put across in his work a very
distinctive point of view. Challenging the most basic tenets of the orthodox
interpretation of quantum mechanics, he has consistently argued that a
materialist, causal interpretation of the theory is both possible and desirable.
Because it has been ignored or misrepresented, this approach is still marginal
in quantum physics. Yet the orthodoxy, with which we have lived since
the 1920’s, faces serious problems. Not least through the efforts of
Jean-Pierre Vigier, the quest for a deeper explanation of quantum phe-
nomena continues unabated. It is in the spirit of this debate that we dedicate
this essay to Jean-Pierre.

The detailed relationship between classical and quantum mechanics
is subtle and still not completely understood. It involves both conceptual
and formal aspects. To illustrate the former we may note that in Bohr’s
interpretation of quantum mechanics the validity of classical concepts is
already presupposed since, it is suggested, it is only in terms of these notions
that we can unambiguously communicate the results of experiments in
the quantum domain [/]. That is, classical physics must be considered as
prior to quantum mechanics. Thus, in Bohr’s approach, any procedure
involving the second, formal, aspect, by which classical mechanics is
recovered from quantum mechanics as a mathematical limit, can only
be a demonstration of consistency with the already postulated epistemolo-
gical relation between the two and not as a « derivation » of classical mecha-
nics from quantum mechanics. Nevertheless, the discussion of this problem
is usually carried on as if quantum mechanics is the more fundamental
theory from which classical mechanics emerges when certain parameters
naturally occurring in the theory are varied (e.g. A — 0 or n — oo (high
quantum numbers)). Such limits however have never been shown to have
general validity and, indeed, as we shall see, do not always result in the
physical behaviour expected from classical physics. (In fact, the limits
h - 0 and n — oo are not equivalent [2]). The question is therefore
left open as to what constitutes a universal criterion for recovering classical
mechanics as a limit of quantum mechanics.

The causal interpretation of quantum mechanics greatly clarifies and
simplifies this problem [3]. It does not presuppose a « classical level »
but rather deduces classical mechanics as a special case of quantum mecha-
nics both conceptually and mathematically; it is thus more in harmony
with the way in which most physicists think of the relation between the
two theories. Moreover, the limiting process provides a universal criterion
for when we can expect motions typical of the classical domain in terms
of a condition to be satisfied by the wavefunction (vanishing quantum
potential). It is thus not necessary to let constants such as # « vary ».

The purpose of this paper is to bring out the value of the quantum poten-
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tial approach in discussing the classical limit for several typical examples.
We include a discussion of the uncertainty relatlons and briefly comment
on spin — 1/2 fields.

2. THE CLASSICAL LIMIT
OF QUANTUM MECHANICS

All of our discussion is non-relativistic. Substituting = R exp (iS/h)
into the Schrddinger equation yields

oS
E+——(VS)2+Q+V 0 (1)
and
oR? 1
a_+ V- (RZVS) )

where Q = (— #2/2mR)(V?R) is the quantum potential. According to the
causal interpretation, eq. (1) is an equation of the Hamilton-Jacobi type
which implies a new theory of motion: the phase function S is a physically
effective field (coupling to R and hence Q via (2)) and not merely a mathe-
matically convenient function of the kind employed in classical mechanics.
Correspondingly, we have a new conception of matter: each individual
« material system » comprises particle and field aspects, the latter being
mathematically described by y(x,t). The particle trajectories are the
solutions to the equation
mi = VS |e— s 3)
or of
mx = —V(V + Q) =y 4

once we have spemﬁed the initial position x, = x(0). In this 1nterpretat10n
quantum mechanics is a causal theory of individuals which is not tied
to any particular scale (micro or macro) and which is not essentially sta-
tistical in character. To ensure conlstency with the results of quantum
mechanics the subsidiary condition is imposed that R? is the probability
density of a particle being at the point x at time ¢. An ensemble of particles
is thus associated with the same y-field which only differ in their initial
positions. Only one material system is ever present at any one time however.

If we set Q = 0 eq. (1) reduces to the classical Hamilton-Jacobi equation.
It is convenient to work now in one dimension. For a stationary state of
energy — 0S/0t = E, with E > V, we can solve (1) and (2) (with Q = 0)
to obtain an explicit expression for the wavefunction in terms of E and V:

Ywks(x, 1) = At Y | mE = Vo) tdx — Er) (5
wkalX, —mesz<_J[m( — V(x)) JFdx — t) (3)
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328 P. R. HOLLAND AND A. KYPRIANIDIS

where A, is constant. This of course is the WKB wavefunction. Now the
latter is usually obtained as the result of an asymptotic expansion of ¢,
where = €™ in terms of powers of h: ¢ = o + A, + H?P, + ...
The criteria which allow us to neglect the terms in this expansion beyond ¢
and ¢, (and hence obtain the function (5)) are expressed in terms of the
variation of the potential and the magnitude of the de Broglie wavelength
as follows:

hm(0V /0x) ]
2mE — V) T2 ©

mh(32V/0x?)
)

<
2[2m(E — V(x))]?

and so on for higher derivatives of V. What (6) means is that the fractional
change in the wavelength within the distance of a wavelength is small
compared with unity. This will be so when V is a slowly varying function
of x and E — V is not too small. Conditions (6) and (7) are consistent
with the initial supposition Q = 0 since from them we can deduce that

2
(E — V(x))? %(E ~ V() * < E - V() ®)

2m

which will be recognised as the condition that the quantum potential
evaluated from the amplitude of the wavefunction (5) is negligible in compa-
rison with E — V.

We obtain the classical limit, then, when Q may be neglected in relation
to the other relevant energies, and (8) states the condition to be satisfied
by the external potential which is necessary for this. The important point
is that the converse is not necessarily true—the conditions (6)—(8) do not
always guarantee that Q will be negligible and hence on their own they
do not constitute universal criteria for when we are approaching the classical
limit. In other words, the short wavelength, high quantum numbers limit
does not always result in classical behaviour. This is actually rather obvious
and is easily demonstrated by simple examples (e.g. the superposition
of two WKB wavefunctions (5)) but it has not been sufficiently stressed
in the literature.

It is often stated that classical mechanics is recovered in the limit of
high quantum numbers and indeed this was the view of Einstein [4].
Schiff [5]states: « The agreement between classical and quantum probability
densities improves rapidly with increasing n » (for the harmonic oscillator).
Yet this is only true for a restricted class of states. The basic problem with
limiting procedures such as # — 0 or n — oo is that the wavefunction
depends on these parameters and so the quantum potential does not neces-
sarily vanish when the limit is taken (even though Q contains the factor #2).
As we have seen the latter is necessary in order to recover the classical
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Hamilton-Jacobi equation. As a result, we do not always find in the limit that
the accessible particle motions are those which obtain for the given potential
V in the corresponding classical problem. We shall see this explicitly in the
next section. The implications for the Principle of Equivalence of gravitation
and inertia in the quantum domain have been discussed elsewhere [6].

To summarize, the distinction between quantum and classical mechanics
does not lie in the finiteness of Planck’s constant in the one and its absence
in the other, or in a particular range of values taken by quantum numbers,
but in the value of the quantum potential. The vanishing of the latter
provides a universal and generally applicable criterion for the classical
limit; in those regions where it is not negligible we obtain typical quantum
effects (1). In the causal interpretation there is no need to introduce a « cut »
between quantum and classical levels and it is clearly evident that quantum
physics is not tied just to the microscopic level.

3. STATIONARY STATES

We have seen that the classical Hamilton-Jacobi equation is recovered
when Q ~ 0in (1). If this condition is satisfied the S field decouples from
the R field and the theory reduces to the classical statistical mechanics
of a single particle. We shall now study some typical examples where Q
does not become negligible when # — 0 and/or n — oo.

In a stationary state, Y(x, t)=u(x) exp (—iEt/h) and the energy —dS/0t=E
is a constant of the motion. In addition, the quantum potential and the
velocity field VS/m are independent of time. In fact, since the energy eigen-
states are often real functions, the associated velocity field is often zero.
The particle is at rest where one would classically expect it to move since
the quantum force (— VQ) cancels the classical force (— VV).

3.1. Particle in a Box.

In one dimension the eigenfunctions for a particle trapped between
infinitely high walls placed at x = + a are

1
u(x) = —sinKy, K=-—2  pez. 9)

\/; 2a’

This function possesses a distribution of nodes. The higher the quantum
number n the more nodes will be present and hence the more positions

(*) To be absolutely precise we should say that Q ~ 0 is a sufficient condition for the
classical limit, it sometimes happens that we obtain classically expected individual motions
even when Q is not negligible. Cf. §4.1.
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330 P. R. HOLLAND AND A. KYPRIANIDIS

inaccessible to the particle. The particle motion implied by the causal
interpretation is consistent with nodes because the spatial part of i, i. €. (9),
is real so that v = VS/m = 0. The energy entirely resides in quantum poten-

tial energy: 2 ,
E, = ("_”> Q. (10)

" 2m\2a

There is no limit that we can perform which would result in the motion
expected from classical mechanics in this situation, i e. uniform motion
backwards and forwards with equal likelihood.

The wavefunction (9) in fact predicts that if we perform a measurement
to determine the momentum then we will obtain as results either + #K,
with equal probability. But to do this we have to remove the barriers
and this implies a new wavefunction and quantum potential and conse-
quently different particle motion. If at time ¢t = 0 we suddenly remove
the walls, the wavefunction at time ¢ is given by

1 ® sin (K + k)a sin (K—k)a
1) = dk -
e aL ( K+k K-k )7

x exp { i(kx —hK?t/2m)}. (11)

That is, two separating packets begin to form peaked around k = + K
in k-space. The maximum in phase occurs where 0S/0k = 0 which yields
for the motion of the centres of the packets x = + AK¢/m. The particle
enters one of the packets with approximate velocity + AK/m. The results
of a momentum measurement are thus causally but not directly related
to the actual momentum of the system (in this case, zero) prior to the
operation of measurement. In fact the latter is treated as a particular appli-
cation of the theory and does not possess the fundamental significance
it is afforded in the usual interpretation.

3.2. Harmonic Oscillator.

Consider another one-dimensional problem with V(x)=(1/2)mw?x>. The
eigenfunctions are given by:

[ (mw | h) [mo \ —1me..
Un(x) = m H,,< Tx)e 2 h (12)

where H, is the Hermite polynomial of order n. We can calculate the
quantum potential for the nth eigenstate by means of the formula:
2 _% &2
o 5 a0 20)
Q=-F> " — (13)
H,@e **

Annales de IInstitut Henri Poincaré - Physique théorique



QUANTUM POTENTIAL, UNCERTAINTY AND THE CLASSICAL LIMIT 331

which yields:

Q= hw(n + 1) - lmwzxz‘ (14
2 2

Once again v = VS/m = 0 so that the total energy of the system comprises

just the oscillator and quantum potential (the latter cancels the former to

yield the familiar quantized oscillator energy).

We cannot deduce by taking the limits# — 0/n — oo any of the features
characteristic of a classical oscillator. The velocity stays zero, the quantum
potential remains finite and the probability density derived from (12)
is quite distinct from the classical probability density which is, from (5),

1

pr= (1 m(x§ — x%) (15)
where x, is the amplitude of the motion. The function (15) follows the local
average of | u, |2 for high n but the latter possesses nodes which are incompa-
tible with oscillatory motion.

4. OSCILLATING PACKETS

4.1. One Packet.

We now consider a case where the quantum analogue of a classically
conserved system admits solutions which imply non-conservative motion
due to a time-dependent quantum potential. It is particularly instructive
since it provides an example of how precisely the motion expected in the
classical case is obtained for the quantum particle motion even through Q
is not negligible. It is well known that we can construct a non-dispersive
Gaussian shaped wave packet by an appropriate superposition of the sta-
tionary wavefunctions (12):

U(x, t) = Z A, (x)e  Enth

n=0

If we choose A, = (£5e * /(2" !) ) then the packet is centered around &,

[mw
<§o = 0Xp = T%) att=0and [5]:

1/2

Nl

1
—153

1 i . 1
o — = (&—E&ocos wt)2—+(wt + 2E&0 sin wt—= E3sin 2t
l//(é, t)=WE 2 2( 0 7 50 ). (16)
The position probébility density reads:
o
| Qp(é, t)|2 = Eme_(é—ﬁocoswt)z. (17)
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The wavefunction is thus non-dispersive and its centre oscillates between
the points x = + x,.
We now consider the individual energies associated with this state:

1
Exn = 5 mw?x3 sin? wt (18)
1 2.2
V= 7 mw*x 19
1, ; 1
Q= —Emw (x — xo cos wt) +§hw (20)
which add up to give the total energy
S 1 1
-5 =3 hw + mw?xx, cos wt — Emwzx?, cos 2mt. (21)
The trajectory of a particle guided by this packet is given by the solution to
L = 198 2x, sin ot 22
—mx =—-— = — a’x, sin wt .
h hox ° (22)
At t = 0, x = 0. The solution is

x(t) = xo cos wt + ¢ (23)

where ¢ is a constant which measures the distance of the particle from
the centre of the packet: x(0) = x, + ¢. The particle therefore performs
a simple harmonic motion of amplitude x, about a centre point x = c.
Now this is precisely the motion of a classical oscillator in the poten-
tial V = (1/2)mw*(x — ¢)?, with equation of motion

X + wx = w’c. (24)

With initial conditions x(0) = x, + ¢ and x(0) = 0, the solution to (24)
is (23). Eq. (24) should be compared with the quantum equation of motion (4):

X = — w’xy cos wt. (25)

It follows that when ¢ = 0, so that the quantum particle is at the centre

of the packet, the particle in the state (16) behaves precisely as a classical
Lo . 1 . . .

particle in the same potential V = Emw2x2. Yet this result is obtained

in a situation where the quantum potential is far from being negligible.
As is clear from (19) and (20) part of Q cancels V and it is the variable
remainder that brings about the Shm.

Is there nevertheless a limit in which Q becomes negligible? If we let
h — 0, then from (20) we see that

Q - — %mwz(x — X0 cos wt)?. (26)
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The resulting quantum potential gives rise to exactly the same motions
as were obtained with a finite # indeed the latter has no bearing at all on
the motion and only appears in a constant zero point contribution to the
total energy (via Q). Eq. (26) thus provides a striking example of how
QA 0as h » 0. To be sure, as i — 0 the width of the packet,
Ax = (h/2mw)* decreases, but, as with the harmonic oscillator stationary
states (§ 3.2), there does not seem to be any simple limit in which we can
make Q small in relation to the other energies in the Hamilton-Jacobi
equation and recover the classical probability density (15) from (17).

4.2. Interference of packets.

To conclude our discussion of the particle in a harmonic oscillator
potential we shall consider the case of the superposition of two packets
of the form (16), centred about x = + x, respectively at t = 0. The particle
motions resulting from the interference of the packets are qualitively
distinct from the classical-type motion that we found in §4.1. We have:

1/2

WG D=re
T

%(52 + &2 cos2 wr) + % &3 sin 2wt

2 cosh [EEqe™ ] @7)

with a position probability density:

IW(E, B) 2 =% e~ €+ & cost o) [cosh (268, cos wt) + cos (2£&, sin wt)].

It is convenient to restrict ourselves to the case where the centres
of the packets coincide (cos wt = 0). Then (27) has nodes at the points
x = (®*x¢)~*(2n + 1)n/2 and the quantum potential

how

Q= ——2—(62 — &5 — 1+ 2&&, tan &&)
becomes singular there. This result is typical of interference phenomena
(although Q is not always singular at nodes as we saw in § 3) and is irre-
ducible; we cannot perform a limiting procedure that would leadto Q — 0.
The case of a many-body system in a harmonic oscillator potential
has been discussed elsewhere [7].

5. MEAN VALUES AND THE UNCERTAINTY RELATIONS

Having established a sufficient criterion which enables us to pass from
the quantum to the classical equations of motion, one might ask whether
we can arrive at the classical limit of other aspects of the quantum formalism
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334 P. R. HOLLAND AND A. KYPRIANIDIS

by a similar limiting procedure—for example, the operator structure, and
the commutation relations as manifested through mean values and the
uncertainty relations. In fact these concepts are closely related with the
quantum potential since the latter arises (along with (VS)?/2m) from the
kinetic energy operator in the Schrodinger equation. Is then the vanishing
of Q sufficient to imply classical mean values and uncertainty relations,
or are we compelled to attempt to apply a limiting procedure based on
h — 0 (which we already know to be problematic from our results above)?

It turns out that the vanishing of the quantum potential on its own is
not sufficient to establish the classical limit of the uncertainty relations,
but that a condition of a similar nature can be formulated in terms of the
stress tensor associated with the y-field.

Let us begin by considering mean values. According to classical statistical
mechanics (in the Hamilton-Jacobi formalism) the mean momentum and
energy of a free particle, over an ensemble, are given by

(p>= JRZVSdE (28)

<Lp2> = | R2[VS)?/2m]dx 29)
2m = =

respectively, where R? is the probability density (R being the amplitude
of the classical wavefunction). In quantum mechanics we expect the expres-
sion (28) for the mean momentum to be the same, but (29) will be modified
since a (classically) free particle has quantum potential energy. That is,
the mean energy of a (classically) free quantum mechanical system will
be given by:

j R2<L (VS)? + Q>d£. (30)
2m '

Now it is hardly surprising that (28) and (30) are just the usual quantum
mechanical expectation values for the operators p = — ihV and p?/2m,
respectively. And so we see that the quantum mechanical definition of
averages, ( A > = (¢, Ay > where A is some non-multiplicative operator,
has in these cases a simple physical meaning: it is equivalent to taking
an ensemble average according to the classical prescription, but taking
care to include contributions of purely quantum mechanical origin.

This result can be easily extended to the case where A is an arbitrary
polynomial function of ¥ and p. Physically, polynomials in p higher
than the second order do not appear to be relevant. Nevertheless, should
they prove to be useful, we will find contributions to the mean values of
such operators analogous to Q, in addition to the classical terms (for p"
the latter is (VS)", etc.). And once again the reason for the appearance
of the non-classical contributions to the ensemble average comes about
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from the properties of the y-field, and the mean value defined in this way
is mathematically equivalent to the usual definition of { A ) given above.

The classical limit of quantum mechanical expectation values is then
readily established: this simply follows when we are able to neglect the
extra local contributions to the ensemble average which are characteristic
of quantum mechanics (in (30) this is Q).

If the light of these remarks, let us turn to the uncertainty relations.
The key point is that these are deductions from the tensorial relations:

[x;, pil= ihd;;, i,j=123. (31)
Defining
AZ)P = (3> =< x)? }
AP = P> = p)? (32)
where in rectangular Cartesian coordinates, with = Re™/",
¢t = [v21w Paa= [Rexta 3

(piy=—hn jl//*afl//dJ_F J Rz(ais)zdf—hZJRZ(a.?R/R)dE (34

the Heisenberg relations are
(AZ)* (AP = (1]2)%5;;. (35)

Now (A%;)* and (Ap;)? are each components (lying on the diagonal) of

rank 2 tensor quantities and we might expect therefore that a sufficient

condition to obtain the classical limit of (35) is that we can neglect some

tensor quantity constructed from . We shall now see that this is so—the

proof of (35) tacitly assumes that certain tensor components are finite.
One usually proves (35) by applying the Schwarz inequality:

jl f Izdzfl glPdx > Uf*g@

where f, g are complex functions and it is assumed that the integrals
converge. In one dimension, the proof proceeds [8] by letting f = xy,
2

2

(36)

g=py, so that the right hand side of (36) becomes ‘f¢*xpl#dx , and

writing xp = (1/2)(xp + px) + (1/2)ih. To bring out the assumptions
implicit in this proof, we shall demonstrate (35) in a slightly different way.

Vol. 49, n° 3-1988.



336 P. R. HOLLAND AND A. KYPRIANIDIS

We assume without loss of generality that { Xx;> = { p; > = 0. Mul-
tiplying (33) by the last term on the right hand side of (34) we have:

-1 [+210 Pax [ ReRx @7

=h2 J| XV |2d§J(6jR)2d£ (by parts)=h2J] X |2d5J| Y0, log R|%dx (38)

2

>h? - (h*/4) 39)

jxi w*wa] log RdE inaijdf
= (h/ 2)25i j (40)

by parts and using JRZdE = 1. In going from lines (38) to (39) we have
used (36) with f = x; and g = yd;log R. It is easy to see also that

J | X0 |2dx fRZ(a S)2dx > 0. 1)

Combining the results (40) and (41) we then recover (35).
This proof assumes that the integral <h2 JR@}Rd{) is finite. If it is not,

then the proof breaks down and (35) reduces to (41), the classical relations.
To see the local significance of this assumption, we write down the stress
tensor of the Schrddinger field in terms of the R and S fields, as derived
from the Lagrangian [9]:

Ty = (1mR20.S0,S + 6 w)

where
2

h
0, = 5 (20ROR — 5,(RV’R+ (VR)?). 43)

Clearly, the first term on the right hand side of (42) represents the classical
stress tensor density of a free ensemble of particles, and (43) contains the
quantum effects. The mean stress tensor is then easily shown to be

J T, dx = (1/m) JRZaisa Sdx — (H/m) jRaindE (44)

by parts. Comparing (44) with (37) we see that a sufficient covariant local
condition for the validity of the above proof of the uncertainty relations
is that part of the quantum stress tensor be non-vanishing:

(1/R%0;; # 0. 45)
(We have multiplied by the factor 1/R? since ;; is a density).
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If this condition is not satisfied then T;; reduces to its classical form and,
as we have said, we obtain (44) (3).

As with the vanishing of the quantum potential, it cannot be guaranteed
that (1/R?)0;; becomes negligible when # — 0 indeed, both A%; and Ap;
depend on . We conclude that it is not necessary, or necessarily consistent,
to assume that h — 0 in order to achieve the result (41).

The origin of the statistical correlations between AX; and A p; may thus
be considered to be locally due to the distribution of stresses in the y-field.
In fact, the existence of a relation between AX; and Ap;, which becomes
apparent over an ensemble of trials, comes about because the field (i)
which guides each individual particle also enters into the definition of mean
values. We have seen that the physical aspect of the field which is relevant
to the determination of mean values here is the stress tensor. As regards
the particle motion the latter has precisely the effect of the quantum force
since, as is easily shown,

610,1 = Rza,-Q .

The Heisenberg relations thus reflect statistically deviations from classical
motion due to a quantum force and have nothing to do with the issue of
whether or not a particle actually possesses simultaneously well-defined
position and momentum variables.

We have focussed attention on the Heisenberg relations because of their
historical importance. It should be noted however that these are only
one possible deduction from (31) and they are not always the most physically
useful correlation relations; one may derive many other types of « uncer-
tainty » relations [10].

6. SPIN-1/2 AND QUANTUM FIELDS

The point of view advocated in this paper is that all characteristic quantum
effects are mediated by the quantum potential. In a series of papers we
have shown how this approach can be extended to include spin-1/2 phe-
nomena [11], [12]. This is best developed in the angular coordinate repre-
sentation of the underlying quantum theory [12], [13]. A quantum system
with spin comprises an extended rotator whose orientation is specified

(*) The energy density (Too), momentum density (T;o) and energy current density (To;)
of the Schrédinger field are already identical to their classical counterparts and there is no
need to perform a limit [9].
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by the Euler angles, together with a wave whose evolution determines
the time development of the angles. The wave is defined on SU(2) but the
physical motions take place on SO(3). The spin-1/2 character of the wave
manifests itself in the particle motion via a quantum torque (the rotational
analogue of the quantum force for translational motion of the centre of
mass)—when the latter is negligible the theory reduces to the classical
statistical mechanics of a rotating body. Despite all the statements in the
literature to the contrary, there is therefore a classical analogue of spin-1/2;
the causal interpretation provides a way of continuously passing from one
to the other.

Finally we point out that this approach has been extended to embrace
quantum fields. In the Fermi case, the Jordan-Wigner algebra is refor-
mulated as an algebra of spin-1/2 angular momentum generators which
are realized in the angular coordinate representation [/3]. The quantized
field is then represented as an infinite set of rotators whose orientations
evolve under the action of the superwavefunction W (the Fermi analogue
of the representation of a Bose field as a collection of oscillators). The Clif-
ford algebraic structure of the anticommutation relations is translated into
physical effects on the motion of the rotators via a quantum torque cons-
tructed from ¥. Once agaln the theory has a clearly defined classical ana-
logue: when the torque is negligible we obtain a collection of independent
rotators performing a Larmor-type precession. The reader is referred to
the references for further details.

7. CONCLUSION

The essence of the correspondence principle is that classical mechanics
should emerge in the # — 0/n — oo limit of quantum mechanics. But
it has never been demonstrated that this will always be so. And indeed these
limits cannot be used as universal criteria for the classical limit since it
cannot be guaranteed that the quantum potential will always vanish and
hence that classically expected behaviour will result.

We conclude that the universal sufficient criterion for the classical
limit of quantum mechanical motions is the vanishing of the quantum
potential. Planck’s constant is then always a fixed number, and what varies
is the relative magnitude of energies in the Hamilton-Jacobi equation.
Other aspects of the quantum formalism, such as the uncertainty relations,
may be treated by a similar process. This procedure also makes clear how
the superposition principle is essentially quantum mechanical in character.
When Q is negligible the (now classical) Hamilton-Jacobi equation and
equation of conservation combine to yield a non-linear equation for the
propagation of .
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